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Special Section

For individuals with type 1 diabetes (T1D), daily insulin 
intake is vital to regulate the glucose levels and reduce the 
risk of diabetes-related complications. The recent advances 
in continuous glucose monitoring (CGM) systems, continu-
ous subcutaneous insulin infusion pumps, and control algo-
rithms for closing the loop between CGM devices and pumps 
have moved forward the realization of an artificial pancreas 
(AP). In a typical scenario, the individual with T1D is using 
both a CGM system and a pump. The CGM is measuring the 
glucose concentration and provides input to a control algo-
rithm running on a portable device (smartphone/tablet/lap-
top). The algorithm optimizes the insulin infusion, and in 
some cases the appropriate glucagon infusion, toward 
improved, safe, and prompt glucose regulation. Backbone of 
the AP is the control algorithm. A broad spectrum of control 
strategies has been proposed: proportional–integral–derivative 
(PID), model predictive control (MPC), fuzzy logic (FL), and 
very recently reinforcement learning (RL).1,2 Comprehensive 
reviews of the PID, MPC, and FL control strategies within the 
AP framework can be found in Doyle et al,3 Kudva et al,4 and 
Peyser et al.5 However, it has to be noted that the majority of 
the proposed strategies rely on glucose measurements only, 

although it is well known that glucose is affected by a pleth-
ora of parameters related to lifestyle (eg, eating habits, physi-
cal activity), patient-specific characteristics (eg, body mass 
index, age) and metabolic status (eg, insulin sensitivity, other 
diseases, medication, stress levels).

Very recently the integration of information related to 
physical activity6 and insulin sensitivity7 has started being 
investigated, while for the effects of meals in the postpran-
dial glucose regulation two different approaches have already 
been proposed. In the first, the user is manually announcing 
the meal (time and carbohydrate amount) to initiate the infu-
sion of the premeal insulin bolus dose, while in the second an 

583333 DSTXXX10.1177/1932296815583333Journal of Diabetes Science and TechnologyAgianniotis et al
research-article2015

1Diabetes Technology Research Group, ARTORG Center for Biomedical 
Engineering Research, University of Bern, Switzerland
2Department of Endocrinology, Diabetes & Clinical Nutrition, Bern 
University Hospital “Inselspital,” Bern, Switzerland

Corresponding Author:
Stavroula Mougiakakou, PhD, Diabetes Technology Research Group, 
ARTORG Center for Biomedical Engineering Research, University of 
Bern, Murtenstrasse 50, CH-3010 Bern, Switzerland. 
Email: stavroula.mougiakakou@artorg.unibe.ch

GoCARB in the Context of an Artificial 
Pancreas

Aristotelis Agianniotis, PhD1, Marios Anthimopoulos, PhD1, 
Elena Daskalaki, PhD1, Aurélie Drapela, MSc1,  
Christoph Stettler, MD2, Peter Diem, MD2,  
and Stavroula Mougiakakou, PhD1,2

Abstract
Background: In an artificial pancreas (AP), the meals are either manually announced or detected and their size estimated 
from the blood glucose level. Both methods have limitations, which result in suboptimal postprandial glucose control. The 
GoCARB system is designed to provide the carbohydrate content of meals and is presented within the AP framework. 
Method: The combined use of GoCARB with a control algorithm is assessed in a series of 12 computer simulations. The 
simulations are defined according to the type of the control (open or closed loop), the use or not-use of GoCARB and the 
diabetics’ skills in carbohydrate estimation. Results: For bad estimators without GoCARB, the percentage of the time spent 
in target range (70-180 mg/dl) during the postprandial period is 22.5% and 66.2% for open and closed loop, respectively. 
When the GoCARB is used, the corresponding percentages are 99.7% and 99.8%. In case of open loop, the time spent in 
severe hypoglycemic events (<50 mg/dl) is 33.6% without the GoCARB and is reduced to 0.0% when the GoCARB is used. In 
case of closed loop, the corresponding percentage is 1.4% without the GoCARB and is reduced to 0.0% with the GoCARB. 
Conclusion: The use of GoCARB improves the control of postprandial response and glucose profiles especially in the 
case of open loop. However, the most efficient regulation is achieved by the combined use of the control algorithm and the 
GoCARB.
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algorithm detects the meal and estimates its size.8,9 The major 
shortcoming of the manual meal announcement is the proven 
inaccuracy in carbohydrate counting of even trained individu-
als with T1D.10-12 In the automatic meal announcement, the 
developed meal detection algorithm analyses the CGM data 
before they enter an MPC system. The in silico results indi-
cate that the algorithm was able to detect the meals 30-45 
minutes after their intake. Although this delay results in 
delayed insulin boluses and slightly higher postprandial glu-
cose concentration, the average glucose is comparable to the 
case of manual meal announcement. In summary, both meth-
ods have certain limitations either because of erroneous car-
bohydrate estimation or due to delays in detecting the meal 
onset. The majority of the already proposed control algo-
rithms have been evaluated with respect to their ability to 
reject the meal disturbance either in silico—by introducing 
uncertainties in the meal protocol—or in clinical setup. 
However, only a limited number of studies were focused on 
the postprandial glucose control. According to Chase et al,13 
in the case of control algorithms without meal announcement, 
the American Diabetes Association’s goal to have postpran-
dial glucose levels below 180 mg/dl is not met,14 indicating 
that meal announcement is required with the currently avail-
able insulin types.

Recently, the introduction of adaptive control strategies 
has been proposed to address the challenges related to inter- 
and intrapatient variability, and uncertainties in disturbances, 
for example, meal and physical activity.2,6 Although real-
time learning permits the continuous adjustment and person-
alization of insulin therapy that overcomes most disturbances, 
the announcement of meals may still add robustness against 
patient variability and uncertainties.

To address the limitations related to the meal announce-
ment approach, the GoCARB system is introduced. GoCARB 
is a novel system based on computer vision and smartphone 
technologies and is designed to support individuals with T1D 
to count the meal’s carbohydrate content with an error less 
than 20 grams by just using 2 meal images. The prototype 
provides output in less than 15 seconds, while minimum user 
interaction is required. Scope of this article is to present 
GoCARB within the AP framework (GoCARB-AP) in an in 
silico environment. The procedure is conducted as a prepara-
tory step of the clinical evaluation and involves individuals 
with T1D under sensor-augmented pump therapy using 
GoCARB for CHO estimation, initially in open and then in 
closed-loop approach. To this end, the developed prototype 
provides input to an “in-house” adaptive control algorithm 
based on RL.2 It has to be noted that GoCARB is indepen-
dent of the applied control strategy. The present GoCARB-AP 
implementation is evaluated in a number of meal scenarios. 
The structure of the article is as follows. In the next section 
the integrated system is presented followed by the study pro-
tocol. Then, the results are presented and discussed. 
Concluding remarks and future research directions complete 
the present research study.

System Outline

The combined use of the GoCARB system with a control 
algorithm for closing the loop between a CGM and a pump is 
presented in Figure 1, while the major involved components, 
namely the GoCARB system and the RL-based control algo-
rithm, are briefly presented in the next paragraphs.

GoCARB System

GoCARB is a smartphone based system designed to provide 
automatic, accurate and near real-time carbohydrate (CHO) 
estimation for nonpacked foods to support T1D patients with 
prandial insulin dose estimation.15-18 The application requires 
as input a pair of images of the upcoming meal with a credit 
card-sized reference object placed next to it. The first image 
is acquired horizontally above the dish and the second at 
20-30 degrees from the vertical axis crossing the center of 
the dish. Simple tools integrated in the graphical user inter-
face of the application guide the user in choosing the optimal 
angles based on the smartphone’s built-in motion sensors. 
The optimal shooting distance is the smallest possible that 
permits a full view of the dish together with the reference 
object, which is usually around 30-40 cm. As soon as both 
images are taken, they are transmitted to a dedicated server 
via Wi-Fi or the mobile network, where a series of computer 
vision steps takes place. First, plate detection is performed 
and then the different food items on the plate are automati-
cally segmented and recognized based on color and texture 
information. Food volume estimation follows, which relies 
on the reconstruction of the meal’s 3D shape by using both 
images and stereo vision techniques. The real dimensions of 
the produced shape are provided by the reference card, while 
the segmentation result is used to separate the volumes for 
the different foods. Finally, the CHO content is estimated by 
considering the recognized food types, the corresponding 
volumes, and information coming from the USDA nutri-
tional database. The result is then transmitted back to the 
smartphone and displayed to the user. The current version of 
the system is a prototype that considers 9 broad food classes 
found in common central European meals. The system’s 
mean absolute percentage error was 10 ± 12% (or mean 
absolute error of 6 ± 8 CHO grams) in a laboratory setup15 
and 28 ± 20.5% (or mean absolute error of 13.16 ± 10.16 
CHO grams) when being used by T1D patients in a preclini-
cal study.19

Control Algorithm

An adaptive model-free control strategy based on the Actor-
Critic (AC) algorithm has been designed, developed, and in 
silico evaluated to compensate for the inter- and intraindi-
vidual variability of the diabetic population and the associ-
ated uncertainties.2 The principle of the AC algorithm relies 
on RL and approximates an optimal control strategy through 
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real-time learning in an iterative manner. It evaluates the cur-
rent control policy (critic) and updates it (actor), according to 
the patient-specific characteristics yielding an optimized 
insulin infusion policy. The CGM gives glucose measure-
ments as input to the AC algorithm. The resulting insulin 
infusion policy consists of the basal rate (BR) and bolus 
doses, both delivered by an insulin pump. AC optimizes the 
daily BR and insulin:carbohydrate (IC) ratio for each patient 
based on his/her measured glucose profile. The IC ratio is 
used for the calculation of the bolus dose according to the 
announced CHO content of the upcoming meal. For the auto-
matic and personalized tuning of the AC, a method based on 
the estimation of information transfer (IT) from insulin to 
glucose signals is used. Insulin-to-glucose IT is linked to 
patient-specific characteristics related to total daily insulin 
needs and insulin sensitivity.20 The AC needs minimal com-
putational time and its use does not require interventions 
either by physicians or engineers.

Study Protocol

A series of computer simulations were designed to assess the 
combined use of GoCARB together with the AC control algo-
rithm on T1D patients. Scope of the study is to prove whether 
the use of GoCARB by T1D patients on open loop (OL) or 
closed loop (CL) could improve their postprandial glucose con-
trol. To this end, we used a population of 10 adult T1D patients 
provided by the Food and Drug Administration accepted 
University of Virginia T1D simulator.21 This group of patients 
was considered to be either on OL, simulating the standard 
treatment in which BR and IC ratio were defined by the treating 
physician, or on CL control based on the AC algorithm. For 
each case, the patients were either estimating their CHO intake 
by themselves or alternatively by using the GoCARB system, 
leading to a number of 4 different scenarios.

To achieve a realistic simulation of the performance in 
CHO counting for both patients and GoCARB, we used the 

Figure 1. Conceptual diagram showing the combined use of the GoCARB system with a control algorithm. The control algorithm 
closes the loop between the CGM and the insulin infusion pump. The GoCARB takes as input images of meals and provides estimation 
of the carbohydrate content of the meals.
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results of a relevant preclinical study we recently  
conducted.19 The scope of the study was to test the accuracy 
of the GoCARB system in comparison to the patients’ esti-
mations. To this end, 18 T1D adult patients were asked to 
give estimates about the CHO content of 6 different dishes 
and then use the GoCARB application on them. Among the 
participants, 16 were from outpatient’s clinic of the Bern 
University Hospital “Inselspital” and trained in CHO count-
ing, while the remaining 2 were of unknown experience in 
CHO counting. Since the results of the study indicated high 
interpatient variation, we decided to split the patients into 3 
groups—good, moderate, and bad—according to their CHO 
estimation skills and repeat the aforementioned 4 scenarios 
for each group leading to a final number of 12 simulations. In 
this way, the performance of the proposed system will also 
be assessed with respect to the patient’s CHO counting skills. 
Good estimators were the ones with a mean absolute percent-
age error up to 30%, moderate estimators were those from 
the rest with errors less than or equal to 70%, and the rest 
were considered as bad estimators. The aforementioned 
errors were mostly equally distributed around zero, corre-
sponding to either over- or underestimation.

In all the simulations the patients received 3 meals per 
day: breakfast, lunch, and dinner.

•• Breakfast: The GoCARB system is designed for meals 
served in a dish. Therefore, for the breakfast a random 
CHO content defined by a uniform distribution in the 
range of 30-60 grams was used.22 The error in CHO 
counting for the breakfast was set to zero.

•• Lunch: For lunch the CHO content was defined by 
randomly choosing 1 of the meals of the preclinical 
study (16-125 grams). The considered error in CHO 
estimation was exactly the one recorded in the pre-
clinical study both for the GoCARB and for the 
patients’ own estimates.

•• Dinner: The same as for lunch.

The timing for the meals was randomly defined by a uniform 
distribution in the range of 7:00-11:00, 13:00-16:00, and 
20:00-22:00 for breakfast, lunch, and dinner, respectively. 
The total duration of each simulation was 14 days. In the 
case of CL, for the first 4 days OL glucose control was 
applied, followed by a 5-day training phase using the AC 
algorithm, while the rest were used for evaluation.

Results and Discussion

As mentioned before, the effects of GoCARB in postprandial 
response and in the individual’s glucose control were inves-
tigated using a number of computer simulations.

Postprandial Response

The following parameters were defined to describe the glu-
cose profile in the postprandial period from the time of food 
intake up to 4 hours following the meal: the area under the 
curve (AUC) of the glucose profile, the peak glucose (PG), 
and the percentage of the time the glucose profile is between 
70 and 180 mg/dl (P70_180) or exceeds 180 mg/dl (P180). 
The values of the main parameters that describe the glucose 
profile in the postprandial period are presented in Table 1.

Table 1 shows that the use of GoCARB increases the time 
spent in target range (70 ≤ glucose ≤ 180 mg/dl), reduces the 
PG value, and minimizes the percentage of postprandial glu-
cose levels above 180 mg/dl. Furthermore, it decreases the 
4-hour AUC for both OL (simulations 1b, 3b) and CL (simu-
lations 2b, 4b) approaches. In the case of simulation 5a, bad 
estimators in OL without GoCARB, for the 50% of the vir-
tual patients (patients 1, 2, 8-10) the glucose level decreased 
to zero and remained constant until the end of the simulation. 
The rest (patients 3-7) had extreme postprandial hypoglyce-
mic events (an example is presented in Figure 2). Thus, the 
4-hour AUC is substantially lower in simulation 5a than in 
simulation 5b, where the use of GoCARB has diminished all 

Table 1. Mean Values of the Parameters That Describe the Glucose Profile in the Postprandial Period for Each Simulation

Good estimators (error in CHO ≤ 30%)
Moderate estimators (30% < error in CHO 

≤ 70%) Bad estimators (error in CHO > 70%)

10 virtual 
adults with 
T1D Simulation 1: OL Simulation 2: CL Simulation 3: OL Simulation 4: CL Simulation 5: OL Simulation 6: CL

Parameters
a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

4-hour AUC 
(mg-4 hour/dl)

4210.2 3292.1 4293.8 3310.2 5157.9 4210.9 5230.9 4246.1 1378.2 2425.1 745.3 2434.1

PG (mg/dl) 152.5 139.8 146.8 144.6 163.5 158.6 162.8 162.3 89.5 137.1 188.9 139.9
P70_180 (%) 95.5 99.9 97.6 99.6 76.3 91.1 76.5 88.3 22.5 99.7 66.2 99.8
P180 (%) 4.5 0.0 2.4 0.4 21.1 8.9 21.5 11.7 0.0 0.0 10.4 0.2

AUC, area under the curve of the glucose profile; PG, peak glucose; P70_180, percentage of the time the glucose profile is between 70 and 180 mg/dl; P180, percentage of the 
time the glucose profile exceeds 180 mg/dl.
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the above mentioned extreme situations. The same is 
observed in simulations 6a and 6b. It has to be noted that for 
simulations 5a and 6a, the results presented on the Table 1 do 
not take into consideration the virtual patients 1, 2, and 8-10. 
In terms of postprandial control, the contribution of GoCARB 
is mostly significant in individuals with T1D with a mean 
absolute percentage error in CHO counting greater than 30% 
(moderate and bad estimators). The combined use of 
GoCARB and control algorithm seems to be more important 
for bad estimators (simulation 6b), since it achieves higher 
time spent in the target range, eliminating the number of glu-
cose values above 180 mg/dl.

Glucose Control

The evaluation criteria used to assess the performance of 
combined use of the GoCARB with the AC algorithm were 
the time spent in normoglycemia (70 ≤ glucose ≤ 180 mg/dl), 
mild hypoglycemia (50 ≤ glucose < 70 mg/dl), severe hypo-
glycemia (glucose < 50 mg/dl), mild hyperglycemia (180 < 
glucose ≤ 300 mg/dl), and severe hyperglycemia (glucose > 
300 mg/dl). The results are summarized in Table 2. 
Furthermore, the Low Blood Glucose Index (LBGI)23 was 
calculated.

When GoCARB was applied, the glucose control was 
improved by reducing the time spent in hypo- and hypergly-
cemic ranges and increasing the time spent in target range. 
According to Table 2, there is generally an improvement of 
the glucose regulation when the AC control algorithm is 
applied regardless of the CHO estimation and the use of 
GoCARB. The “in-house” developed RL-based controller is 
able to optimize the daily insulin infusion through learning 
of important patient-specific characteristics and deal with 

high uncertainties. However, the most efficient regulation is 
obtained in the case of the combined use of AC and 
GoCARB. This can be further seen in Figure 3, which pres-
ents the daily evolution of the LBGI for the total duration of 
the study and for the case of individuals with T1D with a 
mean absolute percentage error in CHO counting greater 
than 70% (bad estimators). Without GoCARB, both the OL 
and CL approaches fail to control glucose with some of the 
virtual patients experiencing glucose concentrations equal 
to zero until the end of the simulation and the rest extreme 
hypoglycemic events (Figure 3a). By using GoCARB, glu-
cose control is achieved (Figure 3b). Furthermore, the paral-
lel use of the AC algorithm further reduced the risk  
of hypoglycemic events (in both training and evaluation 
phases).

Conclusions

In the present study a novel approach for glucose manage-
ment is presented. The approach combines the GoCARB 
system, which supports individuals with T1D to count a 
meal’s CHO content, with an adaptive control algorithm 
within the AP framework. The approach is assessed in a 
series of computer simulations, prior to conducting a clinical 
evaluation that involves individuals with T1D. In summary, 
the results show improved control of the postprandial 
response and glucose profiles when the GoCARB is used, as 
there is increase in the time spent in target range, reduction in 
the time spent in hyperglycemia, and reduction in the peak 
glucose. In the case of OL, the use of GoCARB substantially 
improves the glucose regulation. The use of the AC control 
algorithm generally improves the glucose regulation. The 
most efficient regulation is obtained when there is combined 

Figure 2. Example of extreme postprandial hypoglycemic event for bad estimators. The postprandial glucose level is shown from the 
beginning of the meal at 10 pm (•) up to 4 hours later.
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use of the AC control algorithm and the GoCARB. However, 
there is still a need for further algorithmic optimization, inte-
gration, and clinical evaluation of GoCARB both as a stand-
alone system and within the framework of the AP. The 
GoCARB prototype needs to be extended to additional food 
classes to deal with issues related to the diversity of eating hab-
its. The use of adaptive learning approaches and involvement 
of users from different countries might be an important step 
toward this direction. Furthermore, the GoCARB’s CHO esti-
mation can be fed to a bolus calculator to estimate the amount 
of insulin needed to compensate the effects of the CHO con-
tained in a meal. Finally, it has to be noted that the GoCARB 
system is absolutely independent from the type of the used con-
trol algorithm, while after minor technical modifications, it 
could be applicable to individuals with type 2 diabetes as well.
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Figure 3. Daily evolution of the LBGI in the case of individuals 
with T1D and mean absolute percentage error in CHO counting 
greater than 70%, when the OL approach (blue) or CL approach 
(orange) is used. The CHO content of the meals is estimated (a) 
without the GoCARB and (b) with the GoCARB. The results are 
presented for the total duration of both the OL and CL (training 
phase, evaluation phase) simulations.

Table 2. Percentage of the Time Spent in Normoglycemia (70 ≤ glucose ≤ 180 mg/dl), Mild Hypoglycemia (50 ≤ glucose < 70 mg/dl), 
Severe Hypoglycemia (glucose < 50 mg/dl), Mild Hyperglycemia (180 < glucose ≤ 300 mg/dl), and Severe Hyperglycemia (glucose > 300 
mg/dl), on Average, for Each Simulation.

Good estimators (error in CHO ≤ 30%)
Moderate estimators (30% < error in CHO 

≤ 70%) Bad estimators (error in CHO > 70%)

10 virtual adults 
with T1D Simulation 1: OL Simulation 2: CL Simulation 3: OL Simulation 4: CL Simulation 5: OL Simulation 6: CL

%
a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

a. Without 
GoCARB

b. With 
GoCARB

70-180 mg/dl 97.8 99.8 98.8 99.4 85.4 95.4 85.2 94.0 50.5 99.3 54.3 99.8
50-70 mg/dl 0.0 0.2 0.0 0.0 1.9 0.5 1.7 0.0 15.9 0.7 6.4 0.0
<50 mg/dl 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 33.6 0.0 1.4 0.0
180-300 mg/dl 2.2 0.1 1.2 0.6 12.4 4.1 12.8 6.0 0.0 0.0 33.1 0.2
>300 mg/dl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.0

www.gocarb.eu
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