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Physical activity (PA) for people of all ages living with type 1 
diabetes (T1D) is associated with many well-established 
health benefits, including improved cardiovascular fitness, 
better bone-health and enhanced psychological well-being.1,2 
Despite these benefits, most adults with T1D participate less 
frequently in PA than their nondiabetic counterparts3 and may 
adopt unhealthy lifestyles that contribute to cardiometabolic 
risk.4 Although the reasons for this are multifactorial, includ-
ing concerns over loss of control and low fitness levels, the 
overriding barrier to PA appears to be fear of severe hypogly-
cemia, coupled with a lack of knowledge of effective strate-
gies for hypoglycemia avoidance.3 Moreover, overall 
glycemic control (measured with glycated hemoglobin, or 
A1C, levels) with exercise has shown mixed results in T1D 
studies, with some demonstrating benefits5-7 and others no 
improvement in A1C following aerobic or resistance train-
ing.8,9 For overall glycemic control to be enhanced, individu-
als with T1D are required to skillfully balance insulin dosing 
and food intake to maintain blood glucose levels in a more 
normal range before, during, and after exercise.10-13 Although 
many obstacles to safe and effective exercise participation 
remain, present and future technologies should assist more 
people with T1D to become and remain physically active to 
improve their health and reduce the negative impact of diabe-
tes on participation in competitive sports and activities.14,15

What Complicates Diabetes Control 
During Exercise?

To optimize control of blood glucose levels during exercise, 
individuals must be aware of factors that can complicate 

glycemic management. Among these are participation in 
varying types of PA, differences in insulin regimens and food 
intake for exercise, and the necessity of maintaining normal 
or nearly normal blood glucose levels before, during, and 
after activities (Figure 1). Balancing all of these factors can 
be overwhelmingly challenging for many, who may choose 
instead to be less active to avoid hypoglycemia in 
particular.3

Exercise Variables

The impact of exercise on glucose homeostasis is influenced 
by the type, intensity, and duration of the activity. Participation 
in aerobic, sprint, and resistance training can result in widely 
varying blood glucose responses.16,17 Differences in exercise 
intensity also impact outcomes, with high intensity activities 
causing a greater release of counterregulatory hormones like 
epinephrine and glucagon that can cause immediate and last-
ing elevations in blood glucose levels.18,19 In fact, an all-out 
sprint as short as 10 seconds can have a lasting effect on 
glycemic balance.18,20 Duration also has an impact, with 
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longer periods of exercise generally resulting in greater 
blood glucose use and the risk of hypoglycemia, although 
large individual variations in hormonal responses to pro-
longed exercise of varying types have been demonstrated in 
athletes with T1D.21,22 Exercising more than once in a day or 
on more than 1 day in a row can also affect blood glucose 
outcomes during the exercise itself and afterward.23 While 
highly trained individuals with T1D can achieve the same 
cardiopulmonary exercise responses as trained subjects with-
out diabetes, their responses are reduced by poor glycemic 
control.24 The impact of PA is also complicated by the nature 
of the sport where periods of intense activity are interspersed 
with periods of much less activity, for example, American 
football, soccer, and basketball.

Individuals with T1D are frequently unable to adequately 
alter endogenous insulin levels and experience normal hor-
monal glucose counterregulation during and following exer-
cise. Consequently, they are at risk for early and late 
hypoglycemia and also hyperglycemia. The risk of overnight 
and next-day hypoglycemia is particularly problematic if 
moderate to vigorous exercise is undertaken in the afternoon 
or early evening.25,26 Late-onset hypoglycemia following 
exercise increases with the duration of exercise and the fit-
ness of the exercisers, and activities lasting 90 to 120 min-
utes double the risk of hypoglycemia in adolescents and 
young adults.26

Insulin Regimens

Glycemic control with PA is also complicated by the fact that 
different insulin regimens and delivery systems are available 

for T1D. Most insulin regimens are based on a basal-bolus 
approach.27,28 Insulin pumps using a rapid-acting insulin ana-
log are programmed to deliver small amounts of this insulin 
frequently in small doses to cover basal needs, with user pro-
gramming of bolus amounts for meals, snacks, and correc-
tions of glucose levels based on need.29 In a small clinical 
study, adults with T1D using insulin pump therapy and per-
forming regular moderate-to-heavy intensity aerobic exer-
cise experienced less postexercise hyperglycemia compared 
with multiple daily injections (MDI) without increasing the 
risk of postexercise late-onset hypoglycemia.30 However, 
even when using insulin pump therapies instead of MDI, 
individuals still can experience wide variability in glucose 
profiles before, during, and after exercise.31

Carbohydrate and Food Intake

Particularly when insulin adjustments are not made for PA 
(as is frequently the case for spontaneous activities) or the 
activity is prolonged in nature, balancing carbohydrate intake 
with needs based on the intensity and duration of PA and 
circulating insulin levels becomes critical for prevention of 
hypoglycemia.32-34 Fuel utilization in T1D adults undertak-
ing aerobic exercise during euglycemia is similar to that in 
healthy individuals, with a greater reliance on carbohydrate 
as the primary fuel for moderate to vigorous activity and a 
shift toward greater lipid oxidation during prolonged exer-
cise. However, during hyperglycemic exercise, carbohydrate 
and blood glucose use are both increased without sparing 
muscle glycogen.35 PA undertaken during injected insulin 
peaks increases reliance on carbohydrate intake to prevent 

Figure 1. Type 1 diabetes factors affecting exercise blood glucose responses.
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hypoglycemia, but also does not reduce muscle glycogen 
use.36 After exercise a mix of macronutrients may more effi-
ciently prevent later-onset of hypoglycemia.37,38 Adequate 
carbohydrate intake during and following exercise is, there-
fore, critical for effective PA participation and hypoglycemia 
prevention.

Optimal Glycemic Balance for Athletic 
Performance

Having a competitive advantage in athletic events requires 
prevention of both hypoglycemia and hyperglycemia during 
and following exercise is, therefore, critical. Particularly 
when individuals experience recurrent low blood glucose 
levels, they can develop hypoglycemia-associated autonomic 
failure39,40 that has the potential to affect subsequent counter-
regulatory responses to PA.23,41 As a corollary, antecedent 
physiologic increases in cortisol (equivalent to levels during 
hypoglycemia) have been shown to blunt neuroendocrine 
and autonomic nervous system responses during subsequent 
exercise in adults with T1D.42 Inability to prevent hypogly-
cemia during training and competitive events will assuredly 
reduce exercise performance.21,43

What Does Current Technology 
Offer to Diabetes Management With 
Exercise?

A number of technologies are already available to support PA 
in people with T1D. Among these are devices that measure 
and track heart rate, intensity of movement, calories 
expended, distance traveled as well as diabetes-specific 
devices including insulin pumps, blood glucose monitoring 
systems, and continuous glucose monitors.

Wearable Tracking Devices and Performance 
Indicators

There is increasing interest in the use of wearable sensors 
that are able to measure physiological parameters including 
heart rate, distance traveled, and calorie expenditure.44,45 
Many utilize smartphone technologies (apps) that can com-
municate with a variety of fitness and health tracking plat-
forms. For example, continuous data from ankle triaxial 
accelerometers can be transmitted from the home and com-
munity via Wi-Fi or a smartphone to a remote data analysis 
server and compile data and reports on walking speed, dura-
tion of exercise, and even the type, duration, and energy used 
during exercise.46,47 Other devices can track food intake 
(entered by the user); calculate calories in and out; estimate 
carbohydrate intake (in grams); measure body weight, per-
centage body fat, and body mass index; estimate power 
(wattage) and transmit results wirelessly to online accounts; 
and display graphs, trends, daily, and weekly goals.48

For people with T1D accurate estimation of carbohydrate 
(higher glycemic index carbohydrates in particular) and cal-
orie intake, balanced with energy expenditure during exer-
cise, is critical for maintaining euglycemia.49 The glycemic 
effects of protein and fat may also be relevant for PA.50-52 
With current devices, although it may be possible to estimate 
carbohydrate and other fuel use based on heart rate, charac-
teristics of the activity (such as intensity and duration), calo-
rie expenditure, and blood glucose responses, a considerable 
amount of variability is still likely to exist due to the poten-
tial impact of other factors like variations in subcutaneous 
insulin absorption and fluctuations in insulin sensitivity.53-55

Insulin Delivery and Pumps

Despite many advances in insulin pumps, syringes, and pens 
over the past several decades, the delivery of pumped or 
injected insulin remains hindered by its subcutaneous deliv-
ery and rates of absorption, which generally lags behind car-
bohydrate digestion and absorption and creates a mismatch 
between the postprandial rise in blood glucose and insulin 
availability. For metabolism to be normal, exogenous insulin 
would need to be delivered through the portal vein as occurs 
in nondiabetic individuals. The liver maintains glycemic bal-
ance at rest and during exercise by either releasing or storing 
glucose in response to changes in blood glucose levels; in 
people without diabetes, insulin released directly from the 
pancreas following food ingestion results in a dual trigger of 
elevated glucose and insulin postprandially that promotes 
glycogen storage. In individuals with T1D, the liver is less 
effective at both storing glucose as glycogen for later release 
and releasing adequate amounts of glucose in response to 
decreases in blood levels during exercise with elevated 
peripheral insulin levels, even though increased rates of 
hepatic glucose production apparently occur in T1D at both 
times through increased gluconeogenesis.56,57

One advance that insulin pumps offer over MDI regimens 
is that pumps allow users to change basal insulin delivery 
around the time of exercise to more closely replicate a nor-
mal physiological response, whereas users of basal insulin 
that is injected once or twice daily are less able to respond 
quickly enough to changes in insulin needs.29,30 In 1 study, 
for adults with T1D performing 45 minutes of regular mod-
erate-to-heavy intensity aerobic exercise, use of insulin 
pump therapy limited postexercise hyperglycemia compared 
with MDI and was not associated with increased risk for 
postexercise late-onset hypoglycemia. 30 Most pumps also 
now incorporate bolus calculators to take into account any 
remaining insulin from the last bolus, but the duration of 
insulin action used in such calculators has yet to be standard-
ized to assist in making a more effective reduction of circu-
lating insulin levels in the hour or 2 prior to exercise.58 Using 
pumps leads to additional practical considerations based on 
the type of PA, though, such as what to do with the infusion 
set (if the pump is not disconnected59), whether the pump is 
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waterproof, and how environmental factors may affect the 
insulin in the pump (if still connected or tubeless).

Home Glucose Monitors

The ability to test blood glucose levels before, during, and 
after PA is clearly important for managing glycemia and 
improving exercise performance, regardless of the athletic 
abilities of the exerciser.60 Although the time required and 
size of the blood drop needed for an accurate measurement 
have decreased considerably over recent years, a lancing 
device is still required to obtain a glucose sample. The small-
est self-monitoring blood glucose device is now smaller than 
the usual flash drive (and can fit into a port of an iPhone to 
display results), and most of these monitors are still stand-
alone devices. Some of them are integrated with insulin 
pumps, but remain open-loop systems leaving decision mak-
ing up to users and/or their health care teams.

Continuous Glucose Monitors

A second advance in home-based glucose monitoring is the 
development of continuous glucose monitors (CGM). In 1 
study on runners with T1D, CGM use was found to be help-
ful in identifying asymptomatic hypoglycemia or hypergly-
cemia during and after a marathon.61 In adolescents with 
T1D using CGM, participating in afternoon moderate-to-
vigorous PA was found to increase the risk of overnight and 
next-day hypoglycemia.26 At a summer sports camp, adoles-
cents with T1D were able to use CGM coupled with a novel 
carbohydrate intake algorithm to prevent hypoglycemia and 
maintain euglycemia during exercise, particularly if they 
ingested carbohydrates in adequate amounts when trend 
arrows on the device alerted them of a drop in glycemia.32

Current CGM systems have their limitations, including 
changes in accuracy with duration of sensor wear, precision 
issues, and skin irritation and problems with sensor adhe-
siveness.62-64 However, the marked inaccuracy and lag time 
of CGM readings when blood glucose levels change rapidly 
within the physiological range (such as during exercise) 
should be minimized for optimal CGM use in glycemic man-
agement.64 Future CGM systems will benefit from further 
increasing their accuracy and reliability and ideally utilize 
algorithms that can adapt over time to individual differences 
in user physiology.65,66 The most critical improvement in 
CGM systems that would increase their use (without breaks) 
by a larger proportion of individuals with T1D during exer-
cise is the ability to measure blood glucose (not interstitial 
glucose) to give the user (or any integrated system) “real-
time” values that are actually reflective of blood glucose at 
that exact point in time and not lagging behind when glucose 
levels are changing rapidly during exercise,64 and such tech-
nologies are currently not available.

Other advances combining some of these devices are in 
the early stages. One promising approach includes the 

measurement of heart rate variability (HRV). Adolescents 
who engage in spontaneous moderate aerobic activity have 
improved autonomic regulation.67 Moreover, in a very recent 
study, hypoglycemia detection accuracy and lead time were 
significantly improved by a novel algorithm involving both 
HRV and CGM data together.68 This approach, as compared 
to the CGM device alone, has the potential to make the com-
bination of such tools of immense potential value to indi-
viduals with T1D to detect hypoglycemia during and 
following PA, particularly if they experience hypoglycemia 
unawareness or autonomic failure. Hypoglycemia-associated 
autonomic failure following prior exercise or hypoglycemia 
is only experienced with peripheral insulin delivery in 
T1D.23,41,57,69-75

What Should Future Technology 
Offer to Best Manage Diabetes With 
Exercise?

An even bigger challenge than perfecting the devices them-
selves (and many of them have advanced substantially over 
several decades) is finding ways to integrate all of the avail-
able data to optimize blood glucose control and performance 
during and following exercise undertaken by individuals of 
all ages with T1D. Integration will likely involve “smart” 
calculators, better closed-loop systems that are able to do 
adapt and learn, and social aspects that allow devices to meet 
the needs of the users.

Calculators for Exercise

Currently, insulin bolus calculators are available on most 
insulin pumps that take into account the timing of prior insu-
lin dosing, usual absorption rates, insulin sensitivity, and cor-
rection factors. These calculators are also being integrated 
into glucose meters and portable device applets for use with 
multiple daily injections.76 However, none of these calcula-
tors currently account for the effects of PA beyond offering a 
percentage correction for exercise in the general sense 
(Roche device), and they may use inappropriately short esti-
mates of duration of insulin action that can cause unrecog-
nized “stacking” of insulin, leading to unexplained 
hypoglycemic events, particularly when exercise is an added 
variable.58

The primary goal of an ideal exercise calculator for T1D 
is prevention of both hypoglycemia and hyperglycemia dur-
ing the activity and during the 24- to 48-hour period follow-
ing exercise. Hypoglycemia most commonly develops 
during, in the immediate postexercise period, and then again 
around 7 to 11 hours later in a biphasic manner,25 meaning 
that many individuals experience a secondary decline in their 
postactivity glucose levels during nighttime hours. Glycemic 
management with intensive insulin therapy should ideally be 
accomplished without inducing weight gain or increasing the 
number of hypoglycemic events, which frequently requires 
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fine-tuning of both carbohydrate intake and insulin 
dosing.49

Prediction of glycemic responses for the purposes of a 
calculator may be further complicated by use of other medi-
cations with insulin like pramlintide.77 Likewise, the pres-
ence of certain diabetes-related complications like 
gastroparesis, which is estimated to affect about 40% of 
those with T1D, can make the absorption of food erratic and 
delayed and glycemic responses less predictable.78,79

Therefore, to be truly effective, a calculator will benefit 
from being able to do most, if not all, of the following:

•• Make general suggestions about insulin and food 
intake to allow for adjustments prior to the start of PA 
(such as lowering basal insulin prior to the activity 
and not just during and following it);80

•• Make more specific recommendations for regimen 
changes based on user input or measured physiologi-
cal data in real time related to the type, intensity, and 
duration of PA that is being undertaken by the 
individual;17,81,82

•• Create updated recommendations when the plan for 
PA is altered during the activity, such as a change in 
duration, intensity, or type;17,82

•• Factor in the impact of the individual’s starting blood 
glucose level on subsequent responses to PA;83

•• Predict hypoglycemia in advance or in real time based 
on specific user input about PA, prior insulin timing 
and dosage, and prior or planned food intake during 
activity and give recommendations for its prevention 
during and following activity;84

•• Predict hyperglycemia and give recommendations for 
regimen changes to prevent or correct PA-induced 
increases in blood glucose;83

•• Account for use of medications or the presence of dia-
betes complications that slow absorption of ingested 
carbohydrates taken for PA;85

•• Factor in the potential confounding effects of prior 
hypoglycemia and exercise resulting in hypoglyce-
mia-associated autonomic failure during subsequent 
exercise;71,72 and

•• Adapt to prior input to make even more “intelligent” 
recommendations for maintenance of glycemia during 
subsequent PA of a similar nature.

Artificial Pancreas Systems

This involves integration of CGM devices, insulin delivery 
via a pump, and an algorithm control system to manage 
blood glucose levels with minimal or without user input, 
thereby creating an external device-driven artificial pancreas 
(AP) system. Some investigators have suggested that dual 
hormone delivery (ie, both insulin and glucagon) may work 
more effectively in preventing hypoglycemia than insulin 
alone,86-91 while others continue to work on developing a 
system using insulin delivery only.92-98

Researchers have begun to collect a variety of PA data 
from existing devices to assist them in creating functioning 
algorithms.99-103 Early work by Turksoy et al,103 Breton et 
al,100 and Stenerson et al104 suggest that early detection of PA 
is feasible using heart rate and/ or a multisensory device like 
the Bodymedia armband and that this information will 
enhanced closed-loop control and improve both the immedi-
ate hypoglycemia risk and the latent effect. Use of adaptive 
control and/or predictive design that will use additional PA 
inputs may be beneficial especially in the prevention of latent 
hypoglycemia. However, any closed-loop system that is 
developed using current CGM technologies and insulin 
delivery methods (subcutaneous) will be limited by slow 
insulin action and slow insulin clearance and lagging of glu-
cose response in case of fast negative rate of change. This 
may affect AP systems that are based solely on glucose mea-
surements.64,105 PA variables that are introduced and/or exac-
erbated by activity include the rates of blood glucose and 
glycogen use during activity, effects of any residual insulin 
being absorbed into the bloodstream from a subcutaneous 
depot, and inability of the system to respond to rapid changes 
in blood glucose. For more information on the progress in the 
development of automated glucose control, readers are 
directed to other comprehensive review articles.106-109

Ideally any AP closed-loop system will be able to cope 
with PA with minimal or no user intervention. In a recent 
study, adolescents and adults with T1D involved in a closed-
loop insulin delivery system participated in midafternoon 
exercise (brisk walking for 60 minutes, a moderate activity) 
and still exhibited a lower risk of nocturnal hypoglycemia 
following exercise and an increased percentage of time spent 
in their target blood glucose range.110 Moreover, adding a 
heart rate signal to another closed-loop system further lim-
ited the risk for hypoglycemia during and immediately after 
exercise.100 The challenge of the current AP systems that are 
based on subcutaneous delivery of insulin and glucose sens-
ing is that the system is limited by the fact that even if PA is 
detected at the onset of the event, it may be too late to pre-
vent the acute onset of hypoglycemia without user interven-
tion or the use of glucagon. These results suggest that, while 
waiting for technology to advance to the point that a full 
closed-loop AP system would work optimally, simply per-
fecting a system that could provide closed-loop insulin deliv-
ery at night or help make better exercise adjustments may be 
of benefit to maintaining glycemic balance during and fol-
lowing PA participation.

Pattern Recognition and Learning

For an exercise calculator or a closed-loop AP system to 
work effectively, access to real-time data about physiological 
variables like heart rate, movement (with an accelerometer), 
and possibly other biometric data like blood lactate levels 
during more intense training, is likely a necessity.111 Beyond 
just receiving these data, it would benefit from having the 
capacity to analyze and integrate these inputs into algorithms 
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that would identify regimen changes in real time and be able 
to predict such a change prior to the start of the PA, enabling 
the system to take preventive actions to help to maintain gly-
cemia and optimize performance outcomes.

For real-time learning to take place with a calculator or 
for any integrated (eg, closed-loop) system, it should be able 
to collect and analyze data in real time, use algorithms devel-
oped using mathematical modeling that can adapt to new 
input from users and associated devices, and decrease vari-
ability in outcomes over time with more relevant and indi-
vidualized recommendations for diabetes regimen 
management.65,66 Ideally, such systems or machines would 
also be able to quantify or integrate users’ more subjective 
responses to them, thereby enhancing their perceived 
value.112 For that to be the case, technologies will eventually 
have to advance to be even more accurate and adaptable than 
they currently are to integrate analyses from multiple sources, 
participants and types of PA, along with having adaptive 
machine learning to allow for personalization of advice.

Regulated and Unregulated Devices

To be effective in both preventing glycemic swings above 
and beyond target values and supporting the achievement of 
personal PA goals, technologies will benefit from being able 
to

•• Be interoperative;
•• Avoid barriers related to health literacy;
•• Understand the potential value of physiological data 

affected by PA; and
•• Provide specific decision support.

Providing specific decisions for an insulin-regulated person 
with T1D will require evidence of effectiveness and safety of 
any devices or integrated system. The journey along a regu-
latory pathway can be problematic and dissuade innovators 
from participating or focusing on the consumer electronic 
market in general. One option would be to consider approval 
of hybrid systems that incorporate regulated devices measur-
ing specific variables like glucose levels and insulin pumps 
or other technologies that can predict the potential for hypo-
glycemia, but with a less burdensome approval pathway for 
PA devices that indirectly contribute to the development of 
decision support exercise. Of course, with the complexity of 
blood glucose responses to PA, any hybrid system would still 
have to be able to lower the risk of hypoglycemia compared 
to using those same devices with greater user input.

Social Integration

Systematic reviews of internet-delivered interventions for 
PA have shown modest effectiveness when self-monitoring, 
goal-setting, or feedback was included.113,114 Recently, the 
use of social networking has demonstrated a modest benefit 
for health and weight management,115-117 although at present 

there is a paucity of studies focusing on diabetes. One poten-
tial area of benefit involves the use of video games, which 
are especially popular with younger people.118-120 A recent 
approach has been to create augmented reality games 
whereby participants combine real-world with virtual activi-
ties with PA embedded within the game (such as Wii 
Fit).119,121,122 This type of approach may be especially benefi-
cial for individuals of all ages who are geographically iso-
lated or have lower levels of peer support.

Currently, many web sites and apps allow users to share 
their exercise goals and results with friends, family, and 
health care team, but these programs currently lack the abil-
ity to integrate all of the biometric and other collected data to 
be shared with others in real time to enhance the experience. 
In a recent review of mobile apps, the available ones for dia-
betes management support self-management tasks like phys-
ical exercise, insulin dosage or medication, blood glucose 
testing, and diet, but also include other support tasks decision 
support, notification and alerts, tagging of input data, and 
integration of social media.123 Overall, app usage appears to 
improve attitudes toward diabetes self-management, but app 
use may be limited by lack of personalized feedback, issues 
with ease of data entry, and ineffective integration with 
patients and electronic health records.

In adults with T1D, the use of a diabetes-related smart-
phone application combined with weekly text-message sup-
port from a health care professional and usual care was able 
to significantly improve glycemic control.124 Imagine the 
diabetic exerciser of the future who receives feedback from a 
friend or diabetes educator in real time who has access to his 
or her data and can share successes, failures, and learning 
that can improve the next exercise experience. In a world 
severely lacking in exercise motivation, such a system may 
be the answer to keeping everyone more active and healthy, 
not just individuals with T1D.

Conclusions

While technological advances have allowed exercisers with 
diabetes to progress toward more effectively managing their 
blood glucose levels during various types of physical activi-
ties, technology is still far from fully removing the fear of 
hypoglycemia that is the strongest impediment to undertak-
ing regular exercise with T1D. The use of present and future 
technologies will likely assist more people dealing with T1D 
to become and remain physically, as well as perform opti-
mally in competitive sports and activities. The future integra-
tion of various technologies will likely make exercise a much 
safer and more effective undertaking and result in a greater 
perceived value related to both health and glycemic 
management.
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