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Original Article

Diabetes is a serious and life-threatening condition that reduces 
the quality of life of the patient and is also costly, both in medi-
cal costs and in lost work-hours.1 The incidence and severity of 
the complications of diabetes can considerably be reduced if 
patients develop a lifestyle that leads to good glycemic con-
trol.2,3 Research has shown that diabetes education can reduce 
HbA1c over a longer period,4,5 resulting in a lower risk of com-
plications.6,7 Education is therefore a fundamental part of diabe-
tes care. It is currently provided in several 1-on-1 or group 
sessions with a physician, diabetes nurse, dietician, or podiatrist. 
This is time-consuming and costly.

A major part of diabetes education is learning how to adjust 
insulin injections based on carbohydrate intake, exercise and 
factors like stress or illness. However, possibilities for the 
patient to safely practice with this newly acquired knowledge 
are limited to trying different strategies on his own body. This 
gives a considerable risk of hypo- or hyperglycemia.
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Abstract

Background: Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. 
Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the 
Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice 
environment incorporating the main factors that influence glycemic control: food, exercise, and medication.

Method: The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are 
calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets 
of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is 
verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data 
points lie within an acceptance range of ±20% of the corresponding model value.

Results: All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological 
processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters 
allows to describe heterogeneity in the data and shows the capabilities of this model for individualization.

Conclusion: We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has 
successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will 
form the basis of a simulator providing individualized education on glucose control.
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Electronic educational tools can provide patients with an 
environment in which they can safely practice with factors 
influencing glycemic control, improving HbA1c and other 
diabetes outcomes.8,9 Two types of electronic environments 
currently exist: diabetes games (eg, “Time Out,”10 “Balance 
Battle,”11 “Diabetic Dog”12) and mathematical models devel-
oped for educational or clinical purposes (eg, AIDA,13 
KADIS,14 GlucoSim15). Unfortunately, most games focus on 
children or young adults and are therefore not suitable for 
adults. Also, none of the games or models are meant for type 
2 patients. Moreover, they generally cannot be individual-
ized to account for the large inter- and intrapatient variability 
in glucose and insulin responses to meals, resulting from the 
heterogeneity amongst diabetes patients.16,17

Our goal is to create an educational simulator, called the 
Eindhoven Diabetes Education Simulator (E-DES), that can 
be individualized to account for heterogeneity. The basis of 
the simulator is a physiology-based mathematical model that 
calculates glucose and insulin values during a 24-hour 
period. The simulator should function for both type 1 and 
type 2 diabetes patients.

This article describes the first step in developing E-DES: 
the development and verification of the mathematical model 
for healthy subjects. The model is created by adjusting and 
combining different models from literature. We estimate the 
parameters for healthy persons based on oral glucose toler-
ance test (OGTT) data from literature and verify the resulting 
model parameters on separate literature data sets, testing the 

capability of our model to describe and predict heteroge-
neous data. We aim for an accuracy such that 95% of the 
glucose data used for verification lie within a range of ±20% 
around the results of the model simulation. This range cor-
responds with the allowed deviation in blood glucose meter 
measurements as defined in ISO15197:2003,18 and with the 
observed glucose variability in healthy patients.

Methods
Model Development

The physiological model (shown in Figure 1) consists of 4 
compartments: the gut, the plasma, the interstitial fluid, and 
the subcutaneous tissue. For every compartment we calculate 
the dynamic in- and outflow of glucose, insulin, or both 
using (coupled) differential equations.

For the gut compartment we only consider glucose bal-
ances and assume insulin is not present. The glucose balance 
in the gut is described in 2 terms: glucose entering the gut 
from the stomach and glucose leaving the gut through uptake 
by the plasma. For glucose entering the gut we use the gastric 
emptying model by Elashoff et al.19 Glucose uptake by the 
plasma is modeled linearly: the rate of glucose leaving the 
gut is proportional to the glucose mass in the gut.

For the plasma compartment we calculate both glucose 
and insulin fluxes. The glucose balance in plasma is mod-
eled using 5 terms: glucose entering from the gut, glucose 
entering from endogenous production in the liver, glucose 

Figure 1.  Schematic representation of the model. The gray areas show the 4 compartments used in the model. Red arrows denote 
glucose fluxes, blue arrows denote insulin fluxes. The parameters governing the fluxes are written above the arrows.
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leaving the plasma through uptake by insulin-independent 
and by insulin-dependent tissue and organs, and glucose 
leaving the plasma through renal clearance. The glucose 
entering from the gut is equal to the glucose uptake by the 
plasma described in the previous paragraph. The model for 
endogenous glucose production is derived from Dalla Man 
et al.20 It consists of a basal production term which is reduced 
if either the plasma glucose concentration or the interstitial 
fluid insulin concentration is high. The combined insulin-
dependent and insulin-independent glucose uptake follows 
Michaelis–Menten kinetics and is based on Gottesman 
et al21 and Dalla Man et al.22 Glucose excretion by the kid-
neys is modeled using the renal clearance model from Rave 
et al23 and Lehmann et al.24

The insulin balance in plasma is composed of 5 terms: 
inflow from the pancreas, inflow from both short-acting and 
long-acting insulin injections, outflow through liver clear-
ance, and outflow toward the interstitial fluid. Insulin release 
by the pancreas is modeled with a proportional-integral-
derivative controller similar to the one introduced by Steil 
et al.25 We added a constant term to model insulin release in 
the basal state. Short-acting exogenous insulin inflow is 
equal to the insulin outflow from the subcutaneous compart-
ment. Long-acting exogenous insulin enters the plasma 
through a time-dependent function, as modeled by Berger 
et al.26 Insulin clearance by the liver is modeled by a clear-
ance rate proportional to the plasma insulin concentration. 
Insulin outflow toward the interstitial fluid is modeled by 
diffusion proportional to the plasma insulin concentration 
minus the basal concentration.

In the interstitial fluid compartment, we calculate the in- 
and outflow of insulin. The insulin inflow is equal to the 
insulin outflow from the plasma. The amount of insulin used 
by cells is proportional to the interstitial fluid insulin 
concentration.

In the subcutaneous tissue compartment, insulin enters 
from short-acting insulin injections, and is taken up by the 
plasma through 2 coupled differential equations that create a 
delay between injection time and uptake, as modeled by 
Shimoda et al.27

The model we created can describe the dynamics of the 
glucose metabolism of healthy persons, diabetes type 1 
patients, and diabetes type 2 patients by adjusting the values 
of the physiological parameters. For instance, for type 1 
patients the parameters governing β-cell insulin production 
will be zero. In the same way the parameter values describ-
ing insulin sensitivity will be higher in healthy persons and 
type 1 patients than in type 2 patients, who generally suffer 
from insulin resistance. Table 1 shows all model parameters, 
including the values for healthy persons determined in this 
article and an indication of which parameters are adjusted to 
create every phenotype. The complete model is given in the 
appendix.

Data Collection

The model parameters for healthy subjects were estimated 
using OGTT data from literature. For verification, a separate 
set of OGTT data was used. We performed a search in 
PubMed using the terms “OGTT,” “glucose,” and “healthy.” 

Table 1.  Overview of All Model Parameters.

Parameters Description (units) Value for a healthy person Phenotype adjustments

k1 Rate constant of glucose appearance in the gut (1/min) 1.45E-02 —
k2 Rate constant of gut emptying (1/min) 2.76E-01 —
k3 Rate constant of ΔG suppression of EGP (1/min) 6.07E-03 0 for type 1
k4 Rate constant of Iif suppression of EGP (1/min) 2.35E-04 0 for type 1
k5 Rate constant of insulin-dependent glucose uptake (1/min) 9.49E-02 Lower for type 2
k6 Rate constant of ΔG-dependant insulin production (1/min) 1.93E-01 Lower for type 2
k7 Rate constant of ∫G-dependant insulin production (1/min) 1.15E+00 Lower for type 2
k8 Rate constant of dG/dt-dependant insulin production (1/min) 7.27E+00 Lower for type 2

k9 Rate constant of short-acting insulin appearance in plasma  
(1/min)

0 Only for patients using short-
acting insulin

k10 Rate constant of short acting insulin appearance in 
subcutaneous compartment 1 (1/min)

0 Only for patients using short-
acting insulin

k11 Rate constant of insulin outflow from plasma to remote 
compartment (1/min)

3.83E-02 —

k12 Rate constant of interstitial fluid insulin utilization  
(1/min)

2.84E-01 —

σ Shape factor (no units) 1.34E+00 —
KM Michaelis–Menten constant for glucose uptake (mg/dl) 2.36E+02 Higher for type 2

The parameters have been estimated on oral glucose tolerance test (OGTT) data for healthy subjects; the resulting values for healthy persons are given in 
the third column. The fourth column shows how some of the parameters need to be adjusted to create the different phenotypes (healthy, diabetes type 1, 
diabetes type 2).
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A data set was included if it contained more than 4 measure-
ments in time of both glucose and insulin concentrations and 
if the included subjects satisfied the following inclusion 
criteria:

- � Normal glucose tolerant: fasting glucose <100 mg/dl, 
peak glucose during OGTT <200 mg/dl, 2h glucose 
during OGTT <140 mg/dl28

- � Normal insulin sensitive: fasting insulin <15 μU/ml, 
peak insulin during OGTT <100 μU/ml, 2h insulin 
during OGTT <50 μU/ml29

- � Normotensive: systolic blood pressure <120 mmHg, 
diastolic blood pressure <80 mmHg30

- � HbA1c <6,5% (48 mmol/mol)31

- � BMI <30 kg/m2 (<27.5 kg/m2 for Asian and Pacific 
populations)32,33

The criteria follow the current guidelines of each respective 
measurement. They ensure that subjects included in the study 
were not only normal glucose tolerant, but also did not have 
any other condition that would influence glucose metabo-
lism, like severe obesity.

OGTT data of tests with either 50 or 75 grams of glucose 
were included. We obtained 20 data sets adhering to our cri-
teria. These sets were divided in 2 groups: 1 for parameter 
estimation and 1 for verification. Data sets of 75 grams of 
glucose and an average time between data points of less than 
25 minutes (12 sets, 226 subjects34-44) were used for param-
eter estimation, which ensures that the data are well spread 
over the time window, a necessity for model calibration. The 
remaining data sets (8 sets, 229 subjects45-52) were used for 
verification. Table 2 (parameter estimation data) and Table 3 
(verification data) give the main features of the included 
data sets.

Parameter Estimation and Verification

The model was implemented in MATLAB and Optimization 
Toolbox Release 2010b (The Mathworks Inc, Natick, MA). To 
solve the coupled differential equations the ode15s solver for 
stiff systems was used. Parameter estimation was performed 
based on Maximum Likelihood Estimation principles by opti-
mizing the objective function given in Equation 1 such that the 
weighted sum of squared residuals (SSR) became smallest.53 
N represents the number of measurements, di,j the experimen-
tal data of observable j (either 1=glucose or 2=insulin), σi,j the 
standard deviation of the experimental data of observable j, 
and y

i,j
 the corresponding model output as predicted by the 

current parameter set. For this optimization we used the 
lsqnonlin algorithm.
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We optimized the parameters simultaneously on all parameter 
estimation data sets. To improve the chances of finding the 
global minimum of the optimization problem we repeated the 
optimization for 1000 initial parameter sets, which were 
obtained by performing Latin Hypercube Sampling for each 
parameter.54 The set with the lowest SSR, calculated on both 
glucose and insulin data, is used as the resulting healthy param-
eter set.

Verification of our model and healthy parameter set is 
performed by comparing our model predictions with the ver-
ification data. For each verification data set, simulation is 
performed using the glucose and insulin starting values and 
carbohydrate input of that specific data set. We consider our 
model prediction acceptable, and our model verified, if 95% 
of the glucose data points lie within a range of ±20% around 
the corresponding model prediction. This acceptance range 
corresponds with the accuracy criteria for blood glucose 

Table 2.  Overview of Included Oral Glucose Tolerance Test (OGTT) Data Used for Parameter Estimation.

Author (year of publication) D (g) # G # I
Time span 

(min) N M/F Age (years) BMI (kg/m2)

Anderwald et al (2011, M)34 75 10 10 0-180 26 26/0 44.3 ± 1.5 24.7 ± 0.6
Anderwald et al (2011, F)34 75 10 10 0-180 48 0/48 44.9 ± 1.3 25.2 ± 0.6
Ceriello et al (1998)35 75 5 5 0-120 10 6/4 25.9 ± 1.6 25.9 ± 1.6
Christiansen et al (1998)36 75 19 19 0-240 6 4/2 45 ± 3 22.5 ± 1.5
Ivovic et al (2013)37 75 5 5 0-120 35 5/30 57.57 ± 1.69 26.0 ± 0.6
Larsen et al (2013)38 75 5 5 0-120 9 9/0 45 ± 4 27 ± 2
Moore et al (2000)39 75 9 9 0-120 11 5/6 29 ± 2 23.6 ± 0.9
Nagai et al (2011)40 75 5 5 0-120 30 20/10 24.7 ± 2.3 21.8 ± 3.5
Numao et al (2012)41 75 7 7 0-120 9 9/0 27 ± 1 21.7 ± 0.6
Pamidi et al (2012)42 75 5 5 0-120 20 20/0 22.5 ± 0.6 22.6 ± 0.4
Penesova et al (2013)43 75 9 9 0-120 15 0/15 29.0 ± 5.2 21.6 ± 2.0
Solomon et al (2007)44 75 5 5 0-120 7 7/0 26 ± 1 24.5 ± 0.3

Listed are the first author and year of publication, if applicable whether we use the male (M) or female (F) data set, the amount of carbohydrates D in 
grams, the number of glucose (# G) and insulin (# I) data points, the covered time span in minutes, the number of subjects (N), the number of male and 
female subjects (M/F), the average age ± standard deviation in years, and the average BMI ± standard deviation in kg/m2.
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meters given in ISO15197:2003.18 For glucose concentra-
tions below 75 mg/dl the model is not allowed to predict 
higher values, because identifying and understanding condi-
tions that might lead to hypoglycemia is important in diabe-
tes education. For insulin we choose a wider acceptance 
range of ±25%, consistent with the larger variability in insu-
lin measurements observed in literature.55

Results

First, we estimated the parameter values on the 12 parameter 
estimation data sets. Figure 2 shows the different data sets 
used for parameter estimation (markers), the standard devia-
tion of the data as reported in the original articles (error bars), 
and the resulting optimal model prediction (thick solid line). 
Both the glucose and insulin data show large variation; in 
some cases more than 50%. The model prediction falls in the 
middle of the range of data sets and follows the trend of the 
data sets well. Table 1 lists the estimated parameter values.

Next, we verified the healthy parameter values on 8 veri-
fication data sets. Figure 3A shows the best predicted case 
(Ozeki et al47); for this verification set, all glucose and insu-
lin data points were within the acceptance range. Figure 3B 
shows the worst predicted case (Lu et al46). Here all insulin 
data were in range, but 1 glucose data point was not. 
However, the difference between model and data was small. 
Figure 4 shows the percentage of data points within the 
acceptance range for each verification data set. For all verifi-
cation data sets 100% of the glucose data lie within range, 
except for the data from Lu, where 1 data point is just outside 
range. The percentage of insulin data points within range 
varies from 100% (Lu et al,46 Ozeki et al,47 and Suzuki et al49) 
to 40% (Hashimoto et al45).

Last, although all verification data sets were described 
well by our model, we tested if we could individualize the 
model by fine-tuning only a small set of parameters. The 
parameters chosen to reestimate were k

5
, k

6
, k

7
, and k

8
. These 

parameters are associated with the insulin resistance and 

β-cell function of the subject, 2 processes that largely define 
the pathophysiology of diabetes type 2. A multiparametric 
sensitivity analysis has shown that these parameters are also 
the most sensitive to change (data available on request). We 
reestimated the 4 chosen parameters on the individual data 
sets while keeping all other parameters constant. Figure 4 
shows the percentage of glucose and insulin data points 
within range before and after individualization. The percent-
age of insulin data points inside the acceptance range is 
higher after individualization than before for all verification 
data sets. However, the percentage of glucose data points 
within range goes down for 2 studies (Priebe et al,48 Wachters-
Hagedoorn et al51).

Discussion

We have shown that our model can predict glucose and 
insulin profiles for healthy persons. Of the glucose data 
points, 98.4% were within range, meaning we achieved our 
goal of >95% of all glucose data within ± 20% of our 
model predictions. Our model performed less well when 
predicting insulin profiles. However, we consider the glu-
cose data to be most important for daily practice, since 
patients can only measure blood glucose and adjust their 
insulin based on these measurements. Although insulin pre-
dictions can provide patients insight, they are of limited 
clinical importance.

Nevertheless, the insulin predictions showed only small 
deviations from the data. In the cases where some of the 
insulin data points fall outside the acceptance range, the 
trend is nevertheless still described well. Changing only 4 
parameters strongly improved the insulin predictions. This 
shows that our model is sensitive to its parameters and has 
possibilities for individualization.

Several other models of the human glucose-insulin sys-
tem exist.22,26,56-59 Some are simpler than our model, others 
more detailed. Analysis of the model accuracy is often lim-
ited and usually only the capability of a model to fit the 

Table 3.  Overview of Included Oral Glucose Tolerance Test (OGTT) Data Used for Verification.

Author D (g) # G # I
Time span 

(min) N M/F Age (years) BMI (kg/m2)

Hashimoto et al (2013)45 50 6 6 0-360 14 0/14 21.5 ± 0.1 20.0 ± 0.5
Lu et al (2009)46 75 5 5 0-180 133 N/A 45.8 ± 13.8 23.6 ± 3.5
Ozeki et al (2009)47 75 5 5 0-180 11 11/0 41.0 ± 12.0 23.0 ± 4.5
Priebe et al (2008)48 50 17 17 0-360 4 4/0 23.0 ± 1.1 21.4 ± 1.3
Suzuki et al (2012)49 75 4 4 0-120 14 6/8 33.4 ± 11.9 20.71 ± 2.28
Title et al (2000)50 75 5 5 0-240 10 6/4 25.5 ± 3.1 24 ± 3
Wachters-Hagedoorn et al (2006)51 50 17 17 0-360 7 7/0 23.4 ± 1.0 21.6 ± 1.1
Yamauchi et al (2008)52 75 4 4 0-120 36 13/23 24.3 ± 4.7 20.4 ± 1.7

Listed are the first author and year of publication, if applicable whether we use the male (M) or female (F) data set, the amount of carbohydrates D in 
grams, the number of glucose (# G) and insulin (# I) data points, the covered time span in minutes, the number of subjects (N), the number of male and 
female subjects (M/F), the average age ± standard deviation in years, and the average BMI ± standard deviation in kg/m2.
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training data is reported. This is partly because data often do 
not provide sufficient information to constrain all model 
parameters. We aimed for a limited number of parameters 
that largely define the dynamic response. Uncertainty analy-
sis via the Profile Likelihood method60 shows that most of 
our parameters can be estimated with a finite, relatively 
small confidence interval (results available on request). We 
further analyzed the accuracy of our model by investigating 
the uncertainty and variability in the predictions for 

the verification data sets. The model is able to predict the 
verification sets well, which speaks strongly for the robust-
ness and predictive power of our model.

The main part of our model is based on Dalla Man 
et  al.20,22 We reduced the number of differential equations 
from 12 to 6, including 2 differential equations necessary for 
the short-acting insulin injection model (not present in the 
model by Dalla Man et al). This simplification was possible 
by reducing food intake to only 1 differential equation 

Figure 3.  (A) Best fitted verification data set. The data from Ozeki et al47 (crosses and error bars) are well predicted by the optimal 
model (solid line) since all data points lie within the acceptance range (filled area). The left graph shows the glucose data and model + 
acceptance range, the right graph shows the insulin data and model + acceptance range. (B) Worst fitted verification data set. Although 
the trend of the glucose data from Lu et al

16
 is predicted well (solid line), one glucose data point (crosses and errorbars) lies just outside 

the acceptable range (filled area). All insulin data points do lie within the acceptable range. The left graph shows the glucose data and 
model + acceptance range, the right graph shows the insulin data and model + acceptance range.

Figure 2.  Parameter estimation data sets (markers and error bars representing mean values and standard deviations, respectively) 
combined with the optimal model determined by parameter estimation (solid line). The left graph shows the glucose data and model; the 
right graph shows the insulin data and model.
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instead of 3 by using the gastric emptying model by Elashoff 
et  al.19 We simplified the endogenous glucose production 
model of Dalla Man et al by removing the early suppression 
term, thus removing 1 more parameter to be fitted. This 
caused a systematic error of approximately 0.5% on the 
plasma glucose levels, which we deemed negligible. We 
made the insulin-independent glucose uptake term depen-
dent on glucose (instead of being constant). This ensured 
glucose uptake becomes zero if the glucose concentration is 
zero, preventing a nonphysiological situation where the glu-
cose concentration could become negative. The liver insulin 
and portal vein insulin concentrations were combined into 1 
plasma concentration. We compensated for this by imple-
menting a term that models the removal of insulin by the 
liver. Our verification proves that our model, although heav-
ily simplified, is still accurate enough for our purposes. 
Through this simplification, the model is easier to under-
stand for both patients and physicians and requires less com-
putational resources.

In this article, we show the capability of our model to 
predict the outcomes of averaged OGTT data for 455 
healthy subjects from 19 publications in literature (data 
available on request). All included publications described 
their subjects as “healthy”; nevertheless the data are hetero-
geneous, and the variance in glucose and insulin profiles is 
quite large (Figure 2). Part of the variance in insulin pro-
files might stem from the fact that insulin immunoassays 
have not been standardized.55,61 But for glucose assays, 
which are standardized, this cannot explain the large vari-
ability observed. We can only conclude that the variance in 
glucose and insulin profiles is caused by factors that were 
not measured, for instance by effects of stress, exercise or 
food taken in the day before.

The dynamic response of insulin and glucose to (com-
plex) meals will show even larger variability. In meals the 

stomach has to process complex carbohydrates, proteins, 
and fats in liquid and solid form; not only liquid glucose 
solution. This will slow down the process of glucose uptake 
considerably, depending on the content and form of the 
meal.62 The parameters estimated from OGTT data will not 
be able to predict composite meals. In future work we will 
therefore extend the part of the model concerning food 
absorption and reestimate the involved parameters on 
mixed meal data to resemble postprandial responses in 
everyday life more closely.

Our next step will be to estimate parameters for patients 
with diabetes type 1 and type 2. We expect that factors such 
as age, BMI, total daily insulin dose, and duration of diabetes 
will have a strong correlation with certain parameters in the 
model. Our aim is to use these correlations to let users adjust 
the model to their own individual characteristics. As a final 
step, we will include the model in an attractive user interface, 
so that it can be used by patients and health care providers for 
educational purposes.

Conclusion

We have designed a model to predict glucose and insulin pro-
files over time. The model will be used in a simulator provid-
ing individualized education for patients with diabetes. As a 
first step, we verified our model for healthy subjects. We cal-
culated glucose and insulin predictions for 8 separate data 
sets and showed that all glucose data points except 1 were 
within the acceptance range of ±20%, thus proving our 
model verified. By adjusting the parameters influencing 
insulin resistance and β-cell function we could change the 
glucose and insulin response, showing the possibilities of our 
model for individualization including application for type 2 
diabetics that have varying levels of insulin resistance and 
β-cell function.

Figure 4.  Percentage of data points within the acceptance range, listed per verification data set. The red bars show the percentage of 
glucose data points within range before (light red) and after (dark red) individualization; the blue bars show the percentage of insulin data 
points before (light blue) and after (dark blue) individualization.
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Appendix

Full Model Description
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Name Description Units Applicability

Variables
  t Time min  
  M tG

gut ( ) Glucose mass in the gut mg  
  G tpl ( ) Plasma glucose concentration mmol/L  
  I tpl ( ) Plasma insulin concentration mU/L  
  I tif ( ) Interstitial fluid insulin concentration mU/L  
  U tI

sc1( ) Subcutaneous insulin mass at injection site U Only for patients using short-acting insulin
  U tI

sc2 ( ) Subcutaneous insulin mass proximal to plasma U Only for patients using short-acting insulin
Input variables
  Dmeal Food intake mg  
  Mb Body mass kg  
  u tsa ( ) Rate of short-acting insulin injection (for a bolus the 

injection time is set to 1 minute)
U/min Only for patients using short-acting insulin

  U la Dose of long-acting insulin injection U Only for patients using long-acting insulin

Fluxes
  m tG

meal ( ) Glucose mass entering from stomach mg/min  
  m tG

pl ( ) Glucose mass leaving to plasma mg/min  

(continued)
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Name Description Units Applicability

  g liv t( ) Glucose production by the liver (EGP) mmol/L/min  
  g tgut ( ) Glucose entering from the gut mmol/L/min  
  g tnon-it ( ) Glucose uptake by insulin-independent tissue mmol/L/min  
  g tit ( ) Glucose uptake by insulin-dependent tissue mmol/L/min  
  g tren ( ) Renal glucose elimination mmol/L/min  
  i tpnc( ) Pancreas insulin secretion mU/L/min Not for patients with diabetes type 1
  i tsa ( ) Short-acting insulin secretion mU/L/min Only for patients using short-acting insulin
  i tla( ) Long-acting insulin secretion mU/L/min Only for patients using long-acting insulin
  i tif ( ) Insulin flowing into interstitial fluid mU/L/min  
  i tliv( ) Insulin uptake by the liver mU/L/min  
  i tpl( ) Insulin entering remote compartment from the plasma mU/L/min  
  i tit ( ) Insulin usage by insulin-dependent tissue mU/L/min  
Parameters
  k1 Rate const of glucose appearance in the gut 1/min  
  k2 Rate const of gut emptying 1/min  
  k3 Rate const of ΔG suppression of EGP 1/min Zero for patients with diabetes type 1
  k4 Rate const of Iif suppression of EGP 1/min Zero for patients with diabetes type 1
  k5 Rate const of insulin-dependent glucose uptake 1/min  
  k6 Rate const of ΔG-dependant insulin production 1/min  
  k7 Rate const of ∫G-dependant insulin production 1/min  
  k8 Rate const of dG/dt-dependant insulin production 1/min  
  k9 Rate const of short-acting insulin appearance in plasma 1/min Only for patients using short-acting insulin
  k10 Rate const of short acting insulin appearance in 

subcutaneous compartment 1
1/min Only for patients using short-acting insulin

  k11 Rate const of insulin outflow from plasma to remote 
compartment

1/min  

  k12 Rate const of interstitial fluid insulin utilization 1/min  
  σ Shape factor —  
  KM Michaelis–Menten constant for glucose uptake mmol/L  
Constants
  Gb

pl Basal plasma glucose mmol/L = 
Gpl 0( )

  Ib
pl Basal plasma insulin mU/L = Ipl 0( )

  gb
liv

Basal endogenous glucose production mmol/L/min 0.04363

  Gth
pl Renal threshold mmol/L 964

  vG Glucose distribution volume in plasma L/kg 17/7065

  vI Insulin distribution volume in plasma L/kg 13/7065

  β Unit conversion factor from glucose to insulin (mmol/L)/(mU/L) 1
  f Unit conversion factor from mmol to mg glucose mmol/mg 0.00555166

  τi Integral time const min 31
  t

int
Time constant determining integral window min 30

  τd Derivative time const min 3
  c1 Rate const of glomerular filtration 1/min 0.167

  h Time characteristic of absorption — Differs per insulin brand
  t

0.5
Half-life time of long-acting insulin min Differs per insulin brand

  a Dose shape factor 1 min/U Differs per insulin brand
  b Dose shape factor 2 min Differs per insulin brand

Appendix (continued)

Abbreviations

E-DES, Eindhoven Diabetes Educational Simulator; HbA1c, gly-
cated hemoglobin; OGTT, oral glucose tolerance test.
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