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Abstract

Behaviours of complex biomolecular systems are often irreducible to the elementary properties of 

their individual components. Explanatory and predictive mathematical models are therefore useful 

for fully understanding and precisely engineering cellular functions. The development and 

analyses of these models require their adaptation to the problems that need to be solved and the 

type and amount of available genetic or molecular data. Quantitative and logic modelling are 

among the main methods currently used to model molecular and gene networks. Each approach 

comes with inherent advantages and weaknesses. Recent developments show that hybrid 

approaches will become essential for further progress in synthetic biology and in the development 

of virtual organisms.

Introduction

Even the simplest cellular process involves many molecular components, which display 

non-linear behaviours and interact in a non-independent and non-additive manner. This 

complexity hinders any intuitive grasp of the behaviours of a system: for example, a cell, an 

organ or an organism. Detailed quantitative characterization of each component in isolation 

is of little help. However, concurrent mathematical descriptions of all the relevant 

interactions within a system can help to describe its structure, provide understanding of its 

function and predict its behaviour or ‘misbehaviour’. Over the past few decades, MATHEMATICAL 

MODELS of molecular and gene networks have become an important part of the research toolkit 

for the biosciences. Their NUMERICAL SIMULATIONS complement experiments aimed at understanding 

the molecular basis of cell function. They form a unique tool for predicting emergent 

properties of complex systems. For instance, work on bacterial chemotaxis provides a 

lasting example of a successful collaboration between modelling and experimental 

approaches(1,2). Models have increased in size and complexity, culminating in recent 

efforts such as the comprehensive reconstruction of human metabolism3, the complete 

model of a microorganism (4) and multiscale models of whole organs (5) and plants (6). 

Genome-wide reconstructions of gene interactions in various cell types (7,8) mean that we 

can now model complete gene regulatory networks with increased accuracy.

Mathematical models are constructed and used in a cycle that involves building the structure 

of the model, choosing mathematical expressions to characterize the networks with 
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increased accuracy. relationships between its components, finding PARAMETER VALUES and INITIAL 

CONDITIONS, and performing numerical simulations and other mathematical analyses that can 

both reproduce observations and lead to predictions (BOX 1). The availability of cheap and 

easy-to-use computers, coupled with the generation of large amounts of experimental data in 

digital form, has triggered the development of many methods to model and simulate 

molecular and gene networks9 (FIG. 1). This diversity of methods has led to uncertainty as 

to which approach is the most relevant (TABLE 1). QUANTITATIVE MODELS, which are based, in 

particular, on the application of systems theory to CHEMICAL KINETICS, have been used to describe 

metabolic networks (10–13), signalling pathways (1,14) and gene regulation (15–18). In 

addition, the advent of experimental insights of a qualitative nature, such as gene targeting 

and phenotype screens, has led to the development of methods to model gene regulatory 

networks on the basis of logic rules (that is, logic, or logical, models) (19,20).

This Review presents some of the approaches available and provides guidance on how to 

choose the most appropriate one, a choice that depends on the research question and the 

available data. I focus on dynamic models of biochemical reactions in homogeneous (that is, 

well-stirred) compartments; this Review does not cover the structural analysis of networks 

(21) and steady-state analysis (22), nor does it describe methods to spatially model reaction 

diffusion, which have been covered elsewhere (23,24). Although most of the examples are 

from gene regulatory networks, all of the methods described can be used to model a wide 

range of biological processes.

Four network representations in systems biology

Network representation and analysis sit at the core of systems biology, and behind each 

mathematical model of molecular or genetic processes is a network. Many network 

representations have been used, and although they might seem to form an unstructured 

continuum, one can classify them into four families (FIG. 2) . These representations are 

more than mere illustrations; they convey deep semantics about the underlying biological 

process together with the context of the study and the hypotheses made. It is important to 

choose the appropriate representation on the basis of the question asked and the data 

available. The choice of network representation must be made early in the modelling process 

because it affects the selection of the modelling and simulation methods, as well as the 

processing of the data used to build and validate the models.

Interaction Networks

Interaction networks (FIG. 2a) are used to represent lists of physical or functional (for 

example, genetic) interactions. Interactions are often undirected (that is, if X interacts with 

Y, Y interacts with X), and the graph is non-sequential (that is, one cannot start on a node 

and draw a path through the map via successive arcs). A subset of interaction networks have 

directed but ‘unsigned’ arcs: we know that X affects Y, but not whether it activates or 

represses it. Such networks can be classified as either interaction networks or activity flows 

(see below). Gene and protein interaction networks have been reconstructed to obtain a 

comprehensive view of genome regulation 8,25–27 or to understand specific processes (for 

instance, the regulation of pluripotency) 28–31. Although interaction networks are useful for 

analysing the structure of systems or the results of their perturbation21, their lack of 
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mechanistic insights and their static nature make them unsuitable for representing dynamic 

models.

Activity flows

Often, the precise molecular mechanisms underlying the effect of a mutation or a chemical 

perturbation are unknown, with the only information being that X is increased or decreased. 

Activity flows (also known as influence diagrams) allow this information to be represented 

in a concise way (FIG. 2b). In other words, activity flows are used when the detail of a 

chemical reaction is not known or is not considered key to understanding the biology. This 

is often the case in the representation of signalling pathways or gene regulatory networks. 

For instance, the non-metabolic parts of the Kyoto Encyclopedia of Genes and Genomes 

pathway (KEGG PATHWAY) database and Science Database of Cell Signaling use activity 

flows. Some examples of gene networks include maps of sea-urchin development from the 

Davidson laboratory (see Davidson’s maps) and transcription networks in stem cells (32), 

neural development (33) and neurons (34). The main nodes are activities, and they are 

linked by arcs representing the direction of the influence. Activity flows are therefore 

suitable for representing the transfer of information. They have been standardized with the 

SYSTEMS BIOLOGY GRAPHICAL NOTATION (SBGN) activity flow language. Although these maps are 

directed and sequential, one cannot infer a mechanism behind an edge. The statement “X 

activity stimulates Y activity” can refer to a wide variety of mechanisms, including 

activation of Y production, inhibition of Y degradation or stabilization of a high-activity 

state of Y. Because of the qualitative nature of the information provided, activity flows are 

the natural representations for qualitative models and, in particular, for logic models.

Process descriptions

Process descriptions (FIG. 2c) are BIPARTITE GRAPHS with two types of nodes: the variables whose 

evolution one wants to follow; and the processes that decrease or increase (consume or 

produce) the values of these variables. The arcs of process description maps are directed, 

and the networks are sequential. Process descriptions are suitable for representing transfer of 

mass. They have long been used to describe biological systems and represent an evolution of 

the chemical reaction network that was present in the first metabolic maps (35,36). Process 

descriptions used in biochemistry have been standardized with the SBGN process 

description language. The granularity of description allows mechanistic descriptions, 

making process description maps suitable representations of chemical kinetic models. 

Unfortunately, this granularity comes at a cost. In contrast to the statements in entity 

relationship maps (see below), the processes are not independent and lead to a combinatorial 

explosion. For instance, a promoter that binds to a transcription factor will exist in four 

states: bound, unbound, methylated and unmethylated. Using it in another reaction — for 

example, in binding to a polymerase — requires four processes. This combinatorial 

explosion also affects the corresponding chemical kinetic models. Process descriptions are 

used widely to depict metabolic processes, whether central metabolism or metabolic 

reactions associated with signalling or gene regulation. Accordingly, the metabolic networks 

in the KEGG pathway database (37) are described in process descriptions, as are pathways 

in the Reactome pathway database (38).
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Entity relationships

In entity relationships (FIG. 2d), one represents entities (for example, a gene), statements 

about those entities (for example, an interaction or a methylation status) and the influence of 

entities on statements (for example, the stimulation of an interaction). Entity relationship 

maps introduce the directionality of influences (that is, “X stimulates Y” is different from 

“Y stimulates X”) and offer a granularity of representation that is suitable for molecular 

mechanisms (39). Entity relationships have been standardized using the SBGN entity 

relationship language (40), and such maps have been constructed to represent molecular 

events underlying, for instance, the cell cycle (41,42) and apoptosis (43). The maps are built 

through the accumulation of independent relationships, each of which describes a fact (for 

example, a site is phosphorylated or phosphorylation is stimulated). Entity relationships are 

thus a perfect graphical representation for rule-based models (44,45). Although interest in 

rule-based models is growing46 and they represent an interesting path for further 

investigation, they are still not in mainstream use. Furthermore, as their current use is mostly 

centred on signalling pathways, I do not describe them further in this Review.

Mining information to build models

As described above, network visualizations such as process descriptions and activity flows 

represent the pathway counterparts of individual modelling approaches, such as chemical 

kinetics and logic modelling, respectively. It is important to understand that each type of 

representation, and hence its corresponding modelling approach, is best suited to different 

situations and will provide different insights (TABLE 1). A key factor in the choice of 

representation is the type of knowledge available about the system: do we know only the 

direction of regulations, or are the mechanisms underlying the regulation elucidated? 

Moreover, the nature of available experimental data is important: are quantitative timecourse 

experiments available that yield data on concentrations or gene expression levels? Or can we 

use only phenotypes and normalized measurements?

Depending on the system being modelled, a bottom-up or knowledge-based approach can be 

adopted, hereby information on the components to include and their relationships is obtained 

from scientific literature or public databases that contain previously generated models or 

information to incorporate into building blocks. By contrast, it is sometimes possible to infer 

starting points for building models directly from experimental data sets. This is called a top-

down or data-based approach.

The knowledge-based approach

The existing corpus of models is often the most useful source of information when starting 

to build a mathematical model. Even if no models have been created specifically for a 

particular problem, one may be able to reuse models, or parts of models, created to answer 

others. For instance, a model of epidermal growth factor receptor (EGFR) signalling in 

tumour progression (47) was built using models of phosphoinositide 3-kinase (PI3K)48, 

mitogen-activated protein kinase (MAPK) (49) and Janus kinase (JAK)–signal transducer 

and activator of transcription (STAT) signalling (50). Although descriptions of mathematical 

models in the literature vary widely, it has become commonplace to provide the model 
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source as supplementary information, and the development of standards such as SYSTEMS 

BIOLOGY MARKUP LANGUAGE (SBML) (51) permits the reuse of these descriptions in different 

software. The models are also often deposited in public databases. This makes it possible to 

search and retrieve relevant models using various criteria (for example, biological process, 

biochemical component, organism and authors). BioModels (32) is an example of a database 

that provides a large collection of mathematical models of biological processes encoded in 

SBML.

Nevertheless, existing models developed to answer a specific question in a given context are 

rarely directly reusable. Furthermore, in some areas of cellular biology, computational 

models are scarce. Therefore, another approach is to retrieve building blocks from biological 

databases, a comprehensive list of which can be found in the annual database supplement of 

the journal Nucleic Acids Research (52). Of particular use are databases that list metabolic 

and signalling pathways, or enzymes. After listing the molecular components to include in 

the model, one must determine physical or genetic interactions between them (BOX 1). 

There are many protein interaction databases, distributing information generated with 

methods such as immunoprecipitation or yeast two-hybrid assays. One of the largest 

resources is the well-curated IntAct (53). In addition to physical molecular interactions, 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (54) distributes 

functional interactions inferred from various sources, such as coexpression and text mining. 

However, the sole interactions cannot be directly used in dynamic models.

Pathway databases provide functional information such as reactions or regulations. The most 

frequently used is KEGG PATHWAY (37) , which provides a large collection of manually 

drawn maps linked to underlying databases. Reactome (38) provides the deepest level of 

curation, albeit with a more limited coverage. Its maps exported in SBML can be used 

directly as a starting point for further modelling. The BioCyc database collection, which 

includes the metabolic pathway database MetaCyc (55), provides the largest coverage in 

terms of both organisms and biological processes. Metaresources such as ConsensusPathDB 

(56) and Pathguide (57) provide access to a large variety of pathway databases. Quantitative 

information about biochemical reactions can also be found in databases such as SABIO-RK 

(58) and BRENDA (59). The Path2Models project (60) is an example of large-scale 

generation of mathematical models from pathway and biochemistry databases. With more 

than 140,000 annotated SBML files covering all domains of cell biology, it provides starting 

points for mathematical models.

The data-based approach

An alternative to reconstructing molecular and gene network models from known 

interactions is to infer their topology from experimental datasets. Most inference software 

was originally developed to infer the network from gene expression data (61,62), although 

information can be extracted from various molecular phenotypes (63). Such BIOLOGICAL NETWORK 

INFERENCE is part of reverse engineering (64) (another part is parameter estimation, which is 

discussed below). Comprehensive surveys of existing network inference methods and tools 

have been undertaken elsewhere (65,66).
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Different approaches perform better with different kinds of measurements (for example, 

steady state or time courses) and provide different types of information (for example, 

directed versus undirected arcs) (FIG. 3). Statistical methods such as correlation (for 

instance, WGCNA) and regression (for example, TIGRESS (67)) reveal whether variables 

are independent. For instance, if two genes are consistently upregulated or downregulated 

together, the chances are that they share some regulatory features. A recent example of such 

an analysis is the definition of a gene regulatory network that controls naive pluripotency 

(68). INFORMATION THEORETIC METHODS such as mutual information — for instance, context likelihood 

of relatedness (CLR) (69) and ARACNE (70) — express how much information one gets on 

a variable value when the value of another variable is known; for example, how much more 

certain we are of the expression of a gene when we know the expression of another one. 

Correlation and information theoretic methods infer networks with undirected arcs, whereas 

regression methods can predict directed influences. Undirected networks cannot be easily 

used to build dynamic models, and some methods have been proposed to add directionality 

to interaction networks (71). Directed influences are also predicted by probabilistic methods 

such as BAYESIAN INFERENCE (72) — for example, Banjo (73) and CatNet — which compute the 

probability that a certain set of data is produced by various networks. One can then select the 

most probable network. Such methods can infer causal networks from large-dimensional 

data sets, such as signalling pathways from multi-parametric flow cytometry (74). Bayesian 

inference methods permit the construction of directed, sometimes signed (in which arcs 

represent positive or negative effects), networks from functional genomics data sets and 

interactomes. Thereafter, those networks can be transformed into fully fledged LOGIC MODELS (for 

instance, with CellNetOptimizer (71)). Bayesian inference networks are graph models. Other 

methods based on graph theory have recently been proposed (75). Finally, methods based on 

ordinary differential equations (ODEs) (76) (for example, Inferelator (77) and NIR (78)) are 

particularly suited to time-course data and aim at inferring quantitative and dynamic 

interactions between genes and molecules. Only in the case of linear models can interactions 

and their signals be easily inferred from data (79,80). Methods can be compared and ranked 

between and within any of the categories above. However, the advantages and pitfalls of the 

various categories are often complementary, and the best approach to robustly infer accurate 

networks seems to be a combination of methods (81). Recent software tools can be used to 

help to implement such a multiple-prong strategy (82).

Quantitative kinetic models

The most common approach used to model molecular networks is based on the application 

of systems theory to chemical kinetics. A state variable of the model represents the quantity 

of a molecular species (such as a metabolite concentration), an amount of mRNA or the 

activity of a gene. This quantity is dynamically controlled by the combination of all 

processes that increase the level of the molecular species (for example, synthesis, import and 

activation) and all processes that decrease the level of molecular species (for example, 

degradation, export and inhibition). Each process is characterized by a rate that can be 

modulated by various parameters, including the quantity or activity of other molecular 

species. A more thorough explanation of the basis of chemical kinetics can be found 

elsewhere (83,84). The system can be simulated by computing the changes in variable 
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values over small intervals of time. This is done either by reconstructing ODEs that 

represent the whole system or by simulating each process separately using, for instance, 

stochastic simulation approaches (BOX 2). A plethora of tools are available to create such 

models and simulate their behaviours (TABLE 2). These programs range from simple 

simulators of models encoded in SBML, such as SBMLsimulator (85), to fully featured 

modelling environments, such as COPASI (86). A good starting point for exploring the 

current offerings is the SBML Software Guide.

Depending on the size of the model, the type of information available and the granularity of 

answers sought from the simulations, different approaches can be used to represent the 

regulatory mechanisms (87). Used in conjunction with quantitative experimental data, such 

models are powerful tools for decrypting and understanding systems. Testing the effect of 

mutations in silico and replacing them within the context of complete pathway models can 

direct experimental perturbations and help to interpret their result, as shown by the 

discovery of a new PI3K-insensitive activation of mammalian target of rapamycin (mTOR) 

by insulin (88). Their simulations provide quantitative and temporal predictions (FIG. 1) , 

which can be crucial for understanding biological processes. For instance, quantitative 

models of nuclear factor-κB (NF-κB) signalling predicted oscillations that were shown to be 

essential to NF-κB-dependent transcription (89). It was later shown with experiments and 

stochastic simulations of single cells that a complex model of three feedback loops 

accounted for the response to pulsatile stimulations with different frequencies of NF-κB 

signalling and patterns of NF-κB-dependent transcription (90).

Process description models can be developed with varying degrees of mechanistic insight. I 

present only three of them below, going from more biochemically accurate representations 

to more abstract descriptions.

Chemical kinetics

Chemical kinetics. Biochemical and cellular phenomena follow the laws of chemistry and 

physics. If the underlying chemical processes are known, the behaviour of the system can be 

described on the basis of thermodynamics and chemical kinetics. The rate of elementary 

reactions is determined by the relative activities (molecular concentrations or gene activity) 

of the reactants and products, and by rate constants, which are themselves linked to the free 

energy of the different states. The most generic representation is based on the MASS ACTION LAW, 

which takes into consideration all of the elementary binding events, dissociation events, 

catalyses and state transitions driven by the laws of chemical kinetics (91). This approach is 

the most accurate if one wants to quantitatively explore the behaviours of simple molecular 

(92) or gene regulatory networks (90). BOX 2 presents an example of such a model. 

However, if some conditions are met, simplified rate law can be used (93). The most 

frequent simplification is HENRY–MICHAELIS–MENTEN kinetics, which allows the enzyme–substrate 

complex (or ligand–receptor or promoter–transcription factor complexes) to be ignored if 

the concentration of this complex does not change or if the rate of binding is much faster 

than the rate of product formation. These rules can be generalized to represent a large range 

of regulatory processes, including non-independent regulations (94,95).
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However, the detailed molecular mechanisms underlying a process are often unknown, or 

the aim is to reduce their complexity and concentrate on the main effect of a component. In 

such cases, the model needs to be derived from experimental observations, for which several 

approaches have been developed. Below, I describe in detail the use of Hill functions; an 

example of an alternative approach is the use of S-SYSTEMS (11,96).

Hill functions

Hill functions. A generic way to represent modulations if the underlying biochemical 

mechanisms is unknown is to multiply the default activity of a gene or the velocity of a 

process by Hill functions, of the form Xα / (Xα + Kα). K represents the activity of X for 

which the effect is 50%. If α is positive, the value of the function is 0 for X = 0 and 1 when 

X is very large. Therefore, X is an activator. If α is negative, the value of the function is 1 

for X = 0 and 0 when X is very large. Therefore, X is a repressor. K shifts the response 

curve horizontally and represents the sensitivity of the response to X. The exponent α 

controls the steepness of the response to X (that is, the cooperativity). With α = 1, the 

systems respond linearly to X when X is not very large in comparison to K. As α increases, 

the response becomes ever closer to a threshold with a small dynamic range. It is easy to see 

that one can then combine the effects of different regulators by multiplying the Hill function 

terms. One can even combine different Hill functions for the same regulator to represent 

several modulations at different concentrations (97). More-complex representations can take 

into account basal expressions in the absence of activators, the non-independence of 

regulators, and so on.

This approach has been useful in modelling many biochemical systems, such as calcium 

signalling (97), the cell cycle (98) and oscillators in general (99). In the field of gene 

regulatory networks, Hill functions have been useful for understanding the control of 

segmentation (16,100,101). Although Hill functions and similar phenomenological 

descriptions are extremely useful and practical, one must keep in mind that they rely on 

assumptions that might not always be valid. For instance, a core hypothesis is that the 

binding and dissociation of the regulator are extremely fast in comparison to the process 

regulated and can therefore be ignored because the fraction of bound regulator is at 

equilibrium. Although this hypothesis does not always hold for signalling cascades — in 

which perturbations and responses are on the same time scales as association and 

dissociation, thus resulting in distorted kinetics — it is generally considered to be valid for 

gene regulation because of the considerable difference between the dynamics of 

transcription factor diffusion and binding in comparison to transcription and translation.

Piecewise linear differential equations

A further approximation is taking the limit of Hill functions by using step functions (also 

known as Heaviside functions). In this framework, the response to modulators (that is, their 

effect on the rates of the processes) is discrete: for instance, 0 below a certain amount of 

modulators and maximal over it. These approaches, which were introduced in the 1970s 

(102), have been intensely studied and improved over time. Further simplifications were 

recently introduced, such as the use of discrete instead of continuous time, in which the 

system is updated at regular intervals (103) . Nevertheless, their use in quantitative kinetic 
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models has remained limited, although a subset was used to model gene regulatory networks 

that also consider qualitative descriptions of variables (104). Software such as the Genetic 

Network Analyzer (105) allows the construction of such models and the study of their 

possible stable states. The generation and analysis of such qualitative models is similar to 

the study of logic models (see below).

Parameterization of quantitative models

A bottleneck in building quantitative kinetic models is the lack of suitable parameters, such 

as rate or equilibrium constants. One way of addressing this issue is to estimate the values of 

those parameters using experimental data sets. The estimation of model parameter values is 

a form of GLOBAL OPTIMIZATION and part of the reverse engineering of molecular and gene networks 

(64), a complement of network inference presented above. The principle is to test different 

parameter values and select the sets that minimize an error function. This function can be 

derived, for instance, from the difference between the values of model variables and their 

experimental determination. As testing all of the possible data sets is impossible, the 

difficulty of the procedure is sampling the parameter space and selecting the next set to test 

on the basis of past values of the error function. Many methods have been developed106, 

and several of them have been implemented in software such as COPASI86. It is important 

to note that the experimental data do not necessarily directly correspond to the variable of 

the model. As far as there is a mathematical transformation that can lead from the 

experiment to unique values of the model variables, parameters can be estimated. A model 

for which one can theoretically find values for unknown parameters from adequate data is 

known as an IDENTIFIABLE MODEL (64).

Limitations of quantitative kinetics modelling

Despite quantitative kinetic modelling being a natural representation of molecular and gene 

networks, and despite the approach providing the most precise predictions, the lack of 

kinetic data (and of quantitative data in general) hampers its use in many situations. 

Although central metabolism has been characterized quantitatively for more than a century, 

little is known about reaction kinetics or equilibrium constants in the realm of gene 

expression or signalling. Moreover, reaction-based descriptions are sensitive to the existence 

of multiple-state entities — for instance, proteins with several conformations, covalent 

modifications, methylation states and promoters with different occupancies — or multiple-

component complexes. In such situations, process descriptions lead to a combinatorial 

explosion of both variables and processes, as described above. Finally, the theoretical 

framework of chemical kinetics assumes a homogeneous distribution of participants in 

volumes. Most signalling reactions involve a few molecular partners that are 

heterogeneously located in spatially complex cellular compartments, such as membranes. 

Gene regulation involves even fewer partners, and reactions take place in a complex spatial 

domain composed of folded nucleic acids. These limitations are tentatively addressed by 

other approaches, such as logic modelling.
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Logic models

Logic models are characterized by the assignment of new values to model variables on the 

basis of the result of logical statements (107). These statements combine the values of the 

model variables. For instance, C = x if A = y and B = z. Logic models are most often used in 

conjunction with qualitative variables that are represented by a few discrete integers. In most 

variants, time is not represented in the model or during its simulation. State transitions take 

place at each time step; however, a time step can represent a different duration for different 

transitions. Once a logic model is built, one can produce trajectories (pseudo time courses) 

and study the possible ATTRACTORS of the system (BOX 3).

Logic models are versatile: a variable can represent almost anything, such as a gene activity, 

the presence of a protein or the state of a cell. They are flexible: the state of a given cellular 

component can be represented by one or more variables, with different sets of values. For 

instance, EGFR could be represented by a single variable: EGF would switch EGFR ‘on’, 

and once on, EGFR would switch its targets on. Alternatively, if we want to model 

separately the effect of drugs that target the binding of EGF (such as cetuximab) and those 

that block the tyrosine kinase activity of EGFR (such as gefitinib), we can represent EGFR 

as two variables: EGFRbinding would be switched on by EGF and ‘off ’ by cetuximab. 

Once on, it would turn on the variable EGFRtk, which is itself turned off by gefitinib. 

Finally, perturbations, such as the effects of inhibitors and mutations, can be tested 

straightforwardly in a logic model.

Logic modelling remained fairly theoretical until the end of the 1990s, when it aided the 

modelling of gene regulatory networks involved in the regulation of development (108,109). 

Since then, logic models have played an important part in increasing our understanding of 

cell differentiation; recently, such models have been used in the study of haematopoiesis 

(110) and embryonic stem cells (29). In a similar way to the modelling of gene regulation, 

the modelling of signalling pathways suffers from the lack of kinetic information. Logic 

modelling has thus made a difference in, for instance, our understanding of the pathways 

underlying cell fate in cancer (111–113).

Different types of logic models

Different types of logic models. Logic modelling of biological systems is a rapidly 

expanding field with the development of new methods (107). In particular, the 

representation of time is the subject of many variations.

An updating scheme is needed when simulating logic models; variables in a logic model can 

be updated synchronously, with the values of all variables being calculated after each 

transition, or asynchronously, when variables undergo these transitions one at a time (114). 

This requires mechanisms of prioritization and delay (115). Probabilistic Boolean networks 

allow greater flexibility by providing alternative logical functions with different 

probabilities for updating a node (116). Stochastic simulations of such models allow 

biological noise and the resulting variability of responses to perturbations to be taken into 

account (117,118). In the most frequent variant of logic models, Boolean models, variables 

take the values 0 or 1 (119). The use of multi-valued variables allows the encoding of much 
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richer behaviours with alternative influences of one variable on another on the basis of its 

state. Examples are semi-quantitative proportionality, with off, low and high activities 

resulting in no, weak and strong effects, respectively, and alternative signs for the resulting 

influences with off, low and high activities resulting in no effect, stimulation and inhibition, 

respectively. Continuous regulations were ultimately introduced in logic models with FUZZY 

LOGIC (120). The limit of this trend is reached through methods that allow the transformation 

of logic models into quantitative ones using, for instance, Hill functions (111).

As is the case for quantitative kinetic models, a crucial part of building logic models is the 

parameterization, which might consist of deciding on the terms (also called ‘gates’ or 

‘connectors’) of the logical function regulating the values of the variables. Advanced 

software (121) can provide different approaches for fitting logic models with experimental 

information. The adequacy of data fitting to the variants of logic modelling is discussed 

elsewhere (122). Logic models are also easily amenable to model checking (123), a set of 

approaches that seek to evaluate whether a model produces a given behaviour.

Limitations of logic models

Despite their ease of use, logic models present a few inconveniences. First, although scaling 

up logic models is relatively easy, the number of states increases exponentially with the 

number of variables. Computing state-transition diagrams and attractors (that is, stable 

solutions of the model) is not necessarily a problem with modern computers. However, 

gathering insights from these analyses becomes difficult. Second, the lack of a 

representation of time in simple logic modelling approaches makes it difficult to take into 

account slow and fast processes and delays. Third, because of its purely qualitative nature, it 

can often be difficult to choose between alternative behaviours proposed by logic modelling: 

for instance, a functional negative feedback would always lead to a periodic behaviour, with 

the model cycling between states, whereas in a quantitative kinetic mode it would lead to 

either equilibrium or oscillation, depending on the strength of the feedback. To alleviate 

such shortcomings, more-complex logic model analysis have been designed, some of which 

are implemented in the software listed in TABLE 2.

Towards modular hybrid models

So far, models have been developed mostly in a monolithic manner; that is, a system is 

described using a single model, based on a single modelling method. This design approach 

is reaching its limit, and a paradigm shift is needed to support the emerging fields of 

research. Synthetic biology involves the assembly of existing parts (‘biobricks’) to create 

new systems. Predicting the behaviour of these systems requires a model that is built by 

merging models of individual parts. Systems pharmacology bridges the fields of 

pharmacometrics and systems biology (124) , and requires statistical pharmacokinetic and 

pharmacodynamic models that can ‘talk’ to mechanistic network models. Finally, the 

development of virtual organs and organisms (single-cell or multicellular) relies on the 

assembly of many different models of processes taking place at different scales (5,6).

The next generation of models needs to be modular, in which different processes are 

modelled independently and the integration of models takes place during simulation through 
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variable transformation and synchronization. Such modularization of models and 

simulations would allow more even distribution of the model-development burden, more 

efficient version handling and the use of different simulators for the relevant modules. 

Chemical kinetics is intrinsically modular (that is, each reaction can be seen as a module), 

and combining different quantitative simulation algorithms was proposed by members of the 

E-Cell Project (125), in which separate processes can be simulated using different ‘steppers’ 

that update the system when synchronization is needed.

Furthermore, because of the range of biological processes to represent and the heterogeneity 

of experimental measurements available to build and validate the models, it is necessary to 

use hybrid modelling approaches, in which qualitative and quantitative representations are 

used in the same model. This approach was proposed in 1995 for the modelling of gene 

regulatory networks(126). One possibility is to use ODEs and piecewise linear differential 

equations to represent the evolution of different quantities (127). Logic models (for instance, 

of signalling pathways) can also be combined with quantitative models (for instance, of 

metabolism) by generating kinetic representations of the logic parts when necessary (128) 

(that is, ‘ODEfication’ (111)). The awareness that biological processes take place on 

different time scales led to the development of models that use iterative quantitative steady-

state representations of metabolism, in which the iteration is coupled by logic modelling of 

gene regulatory networks (129–131).

This approach culminated in a complete whole-cell model of Mycoplasma genitalium that 

combines modularization and hybrid modelling. This model used a mix of ODEs, stochastic 

processes and flux balance analysis to simulate 28 modules representing gene networks, 

signalling and metabolism (4) . Recent work also showed that synchronizing several 

simulators allows the concurrent use of different representations and simulation procedures. 

Such synchronization can be applied, for example, to a whole-neuron model, in which 

chemical kinetics is used to model synaptic signalling and cable approximation is used to 

model electrical signals at the level of the entire neuron (132).

Conclusions

Using mathematics to model and understand the world is one of the cornerstones of science. 

With the rise of systems biology at the end of the twentieth century, the adoption of 

mathematical modelling has been rapid in genetics and molecular biology. The launch of a 

large number of projects by many institutions led to a demand for scientists with good 

knowledge of molecular and cellular biology and an understanding of the modelling process, 

along with its underlying mathematics. However, there is a skill shortage in the 

mathematical modelling sector; furthermore, the information and training needed to address 

this skills gap is spread across disciplines and institutions. Typically, the community of 

quantitative kinetic modelling originates from physics and engineering, whereas scientists 

who develop and use formal modelling have a background in bioinformatics and/or 

mathematics.

Mathematical modelling of molecular and gene networks is an important part of systems 

biology, and numerous methods and models are continually being developed by a vibrant 
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community. Well-designed, experimentally validated models help us to understand 

molecular and cellular processes and can predict the effects of drugs or mutations. A greater 

awareness of the different modelling methods and how to combine them will make such 

models more versatile and more useful, and new training programmes must strive to 

encompass all aspects of the modelling process.
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Further information

ARACNE: http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE

Banjoo: https://www.cs.duke.edu/~amink/software/banjo/

BIOCHAM: http://lifeware.inria.fr/biocham/

BioCyc: http://biocyc.org/

BioModels: http://www.ebi.ac.uk/biomodels

BoolNET: http://cran.r-project.org/web/packages/BoolNet/

BRENDA: http://www.brenda-enzymes.org/

CellDesigner: http://www.celldesigner.org

CatNet: http://cran.r-project.org/web/packages/catnet/

CellNetOptimizer: http://www.cellnopt.org/

COPASI: http://copasi.org

ConsensusPathDB: http://consensuspathdb.org/

Davidson’s maps: http://sugp.caltech.edu/endomes

DBSolve: http://insysbio.ru/en/software/db-solve-optimum

E-Cell Project: http://www.e-cell.org/

GINsim: http://www.ginsim.org/

Genetic Network Analyzer: http://www-helix.inrialpes.fr/gna/

iBioSim: http://www.async.ece.utah.edu/iBioSim/

IntAct: http://www.ebi.ac.uk/intact
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Inferelator: http://bonneaulab.bio.nyu.edu/networks.html

KEGG PATHWAYS: http://www.genome.jp/kegg/pathway.html

Kohn's maps: http://discover.nci.nih.gov/mim

MetaCyc: http://metacyc.org/

NAIL: http://sourceforge.net/projects/nailsystemsbiology/

NIR: http://dibernardo.tigem.it/softwares/network-inference-by-reverse-engineering-nir

Path2Models: http://www.ebi.ac.uk/biomodels-main/path2models

Pathguide: http://www.pathguide.org/

Reactome: http://www.reactome.org

SABIO-RK: http://sabio.villa-bosch.de/

SBMLsimulator: http://www.ra.cs.uni-tuebingen.de/software/SBMLsimulator/

SBML Software Guide: http://sbml.org/SBML_Software_Guide

Science Database of Cell Signaling: http://stke.sciencemag.org/cm

STRING: http://string-db.org

TIGRESS: http://cbio.ensmp.fr/tigress

WGCNA: http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/

XPP-Aut: http://www.math.pitt.edu/~bard/xpp/xpp.html

Glossary

ATTRACTORS Stable behaviour of a system, as reflected by a fixed trajectory 

in the space of all possible states of the system. Examples of 

attractors are periodic behaviours (for example, oscillations) 

and steady-states.

BAYESIAN 
INFERENCE

A method of inference using Bayes’ theorem to evaluate the 

probability of a network given a data set, as a function of the 

probability that this network produces the data set, the chance 

probability of this network and the chance probability of the 

data set.

BIOLOGICAL 
NETWORK 
INFERENCE

A procedure whereby an unknown set of biological interactions 

and processes is deduced from the molecular phenotypes it 

Le Novère Page 14

Nat Rev Genet. Author manuscript; available in PMC 2015 October 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://bonneaulab.bio.nyu.edu/networks.html
http://www.genome.jp/kegg/pathway.html
http://discover.nci.nih.gov/mim
http://metacyc.org/
http://sourceforge.net/projects/nailsystemsbiology/
http://dibernardo.tigem.it/softwares/network-inference-by-reverse-engineering-nir
http://www.ebi.ac.uk/biomodels-main/path2models
http://www.pathguide.org/
http://www.reactome.org
http://sabio.villa-bosch.de/
http://www.ra.cs.uni-tuebingen.de/software/SBMLsimulator/
http://sbml.org/SBML_Software_Guide
http://stke.sciencemag.org/cm
http://string-db.org
http://cbio.ensmp.fr/tigress
http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
http://www.math.pitt.edu/~bard/xpp/xpp.html


produces: for instance, a list of gene expression, of molecular 

concentrations or of phenotypes on perturbation.

BIPARTITE 
GRAPHS

Graphs that contains two types of nodes, in which nodes of one 

type are only connected to nodes of the other type. For 

example, in a metabolic network, nodes representing 

biochemical species connect to nodes representing reactions.

CHEMICAL 
KINETICS

The study of rates of chemical processes and how they affect 

the evolution of chemical compounds in a system.

GLOBAL 
OPTIMIZATION

A branch of numerical analysis that deals with the global 

optimization of a function or a set of functions according to 

some criteria. Examples of global optimisation problems in 

biological network modelling are parameter estimation and flux 

balance analysis.

HENRY-
MICHAELIS-
MENTEN KINETICS

A kinetic scheme used in enzymatic reactions. If the formation 

of an enzyme–substrate complex is faster than the formation of 

the enzymatic product or if the concentration of enzyme–

substrate complex is constant, one can explicitly avoid 

representing the enzyme– substrate complex. The rate of 

formation of the enzymatic product is then proportional to the 

fraction of enzyme bound to the substrate: that is, [E] × [S] / 

(Km + [S]), where Km is the concentration of substrate 

necessary to achieve half the maximal reaction velocity.

IDENTIFIABLE 
MODEL

A model in which the values of its parameters can be 

unambiguously determined by the data sets available. A model 

is non-identifiable if alternative sets of parameter values can fit 

the datasets.

INFORMATION 
THEORETIC 
METHOD

Inference methods based on the information theory. Variables 

(nodes) are linked in a network if information about one 

variable (for instance, the distribution of its values) is affected 

by the knowledge of the values of the other.

INITIAL 
CONDITIONS

Values for the model variables at the start of numerical 

simulations. These initial conditions might affect the simulation 

results — for instance, in the case of systems with several 

stable states that can be reached from different trajectories.

LOGIC MODELS Mathematical models in which the discrete values of variables 

are determined by logical combinations of the values of other 

variables.

MASS ACTION LAW A law stating that the velocity of a reaction is proportional to 

the concentration of the reactants it consumes raised to the 

power of their stoichiometry. For instance, the rate of a reaction 
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consuming two molecules of A and one molecule of B will be 

proportional to [A]2×[B].

MATHEMATICAL 
MODELS

Descriptions of a system using mathematical concepts and 

language. Models are composed of a set of variables and a set 

of equations that establish relationships between the variables.

NUMERICAL 
SIMULATIONS

Reproductions of the behaviour of a system, obtained by 

iteratively computing the values of variables in a mathematical 

model over a certain number of time steps.

OPEN STANDARDS Standards that are publicly available and that can be 

implemented without restriction by licensing terms. In 

computational biology, open standards are additionally 

developed by the community, and implementations are not 

subjected to fees.

ORDINARY 
DIFFERENTIAL 
EQUATION

[ODEs] Equations describing the change of a variable in a 

system over time as a function of the values of other variables 

and parameters in the system. In a model of a biochemical 

system, the ODEs are derived from the combination of the 

different processes in which the entity represented by the 

variable is involved.

PARAMETER 
VALUES

The temporal evolution of model variables (for example, 

protein concentrations) is affected by the values of other 

variables and by parameters such as dissociation constants, 

kinetic rate constants and reaction orders. Parameter values 

affect the dynamic behaviour of model variables.

QUANTITATIVE 
MODELS

Mathematical models in which the values of the variables are 

determined by numerical analysis of the variable and 

parameters in the system.

REACTION ORDER The order of a reaction for a given reactant is defined as the 

exponent to which its concentration is raised in the rate law that 

characterizes the reaction. In the case of reactions taking place 

in a well-stirred, diluted medium, the reaction order of a 

molecular species is equal to its stoichiometry for this reaction.

S-SYSTEMS Modelling approaches for biochemical systems in which the 

creation and destruction of molecular species are expressed as 

products of the concentration of all the molecular species in the 

systems raised to a phenomenological order (obtained by fitting 

the model to experimental data).

STOCHASTIC 
SIMULATION

Simulation of a model in which each process has a certain 

probability to occur. Examples of stochastic simulations are 

solutions of stochastic differential equations, in which noise 
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factors are added to otherwise deterministic ordinary 

differential equations, and dynamic Monte Carlo simulations in 

which reaction rates are sampled from distributions.

SYSTEMS BIOLOGY 
GRAPHICAL 
NOTATION

[SBGN] A set of standardized symbols to represent the entities 

included in a biochemical network and their relationships. The 

notation is formed of three complementary languages to 

represent activity flows, entity relationships and process 

descriptions.

SYSTEMS BIOLOGY 
MARKUP 
LANGUAGE

[SBML] A format to encode mathematical models that is used 

in systems biology. Although initially focused on non-spatial, 

reaction-based biochemical models, the language now features 

packages covering different modelling approaches. SBML is 

supported by software libraries in different programming 

languages and can be imported or exported by hundreds of 

modelling and simulation tools.

FUZZY LOGIC Approximate logic computation in which the variables can have 

partial truth values ranging from 0 (false) to 1 (true).
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Box 1

Building mathematical models of biological processes

Far from being a linear activity, the process of building a mathematical model is a cycle 

of multiple iterations in which the appropriate number of variables, the mathematical 

relationships and the parameter values are selected, and in which numerical simulations 

and other mathematical analyses are performed to both reproduce observations and form 

predictions (see the figure, part A). In each cycle, the model is extended to include novel 

variables that are necessary to account for observed behaviours and is also pruned of 

superfluous complexity. The most sophisticated simulation approaches are of little use if 

the initial model structure contains basic flaws.

Model building is a layered procedure, and new biological insights can be obtained at 

each stage.

The first layer is to determine, or infer from experimental data sets, the biological entities 

(represented as blue circles) to be represented in the model: that is, which genes or which 

molecular species will be part of the network (see the figure, part Ba). The number of 

entities to include depends on both the question asked and the data available to 

parameterize and validate the model. A model does not necessarily need to include all 

that is known about a system. Biological processes and structures can be described at 

different levels of granularity (for example, different models have been constructed using 

1 (133) , 4 (134) or 32 (135) states to represent calcium–calmodulin). Choosing when to 

be biochemically accurate and when to be approximate is one of the most challenging 

steps in the model-building process. Selecting too many molecular species might lead to 

difficulties when building the mathematical model. The next step constitutes searching 

for possible interactions between the components (see the figure, part Bb), which can be 

added, for instance, from functional genomics experiments. The analysis of such a 

network can already provide information at the level of the system (21). A deeper 

description includes the directionality of the relationships, transforming the network into 

a pathway, and permits the description of the flux of information in the network (see the 

figure, part Bc). Finally, the relationships can be characterized and quantified (see the 

figure, part Bd; (line thickness represents the strength of influences).
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A mathematical model of a system is made of three structures. First, the variables 

correspond to biological entities, the activity or quantity of which we know or want to 

determine. Variables can represent physical constituents (such as pools of molecules) or 

parameters (such as kinetic and equilibrium constants or characteristic dimensions) that 

are either constant or varying during the simulation. Second, the mathematical 

relationships link the variables together and represent what we already know or what we 

want to test. Mathematical relationships come in many guises: for instance, assignments, 

rates of change, sampling and logic rules. Third, the constraints represent the context of 

the analysis or represent processes that we choose to ignore in the project. Examples of 

simple constraints are concentrations that cannot be negative and conservation laws. An 

important set of constraints is the initial conditions: for example, the values taken by all 

variables at the beginning of a simulation.

All steps of the model building and simulation procedures must be carefully documented 

to enable verification and reproduction. The computational systems biology community 

has developed sets of guidelines that list all information that must be shared together with 

the model — namely, Minimal Information Required for the Annotation of Models 

(MIRIAM) (136) and Minimal Information about a Simulation Experiment (MIASE) 

(137). The required information can be encoded in standard formats: for instance, 

Systems Biology Markup Language (SBML) (51) for the models and Simulation 

Experiment Description Markup Language (SED-ML) (138) for the simulations and 

analyses. These open standards have had an important impact on the field of modelling in 

systems biology, opening the door to model sharing and reuse, as well as automated 

model building and analyses (60).
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Box 2

Quantitative modelling based on chemical kinetics

Chemical kinetics is based on the notion of processes that consume reactants and 

generate products. The rate of a process is determined by the quantity of the components 

involved, their REACTION ORDER and parameters. The exact form of the mathematical 

expression depends on the assumptions made. The behaviour of a system emerges from 

the combination of all of the processes affecting its components. The value of each 

variable — for instance, the amount of a protein or the activity of a gene — is positively 

or negatively affected by processes such as binding or catalysis. The resulting effect on a 

given component is the sum of the rates of all processes that the component is involved 

in, multiplied by its stoichiometries for these processes. For instance, if two molecules of 

X reversibly bind to form a molecule Y, the stoichiometries for X are −2 for the 

formation of Y and +2 for its dissociation, whereas the stoichiometries for Y are 1 for its 

formation and −1 for its dissociation. If we model the processes using mass action law, 

the reaction orders are 2 for the formation of Y (2 molecules of X are needed to form 1 

Y) and 1 for its dissociation (1 molecule of Y dissociates into 2 X). Therefore, equations 

describing the temporal evolution of X and Y concentrations are as shown below, where 

rateass and ratediss are the rates of association and dissociation, respectively, and kass and 

kdiss are the association and dissociation constants, respectively.

The addition of simple processes allows the rapid construction of more-complex systems. 

Part a of the figure represents, using the Systems Biology Graphical Notation (SBGN) 

process description language (40), a simple two-gene system that can display different 

behaviours, such as monostability and bistability or oscillations, depending on the 

parameter values (139). We can model the system’s behaviour by following the state of 

gene B (reversibly binding to protein A), the amount of mRNA B (increased by gene B 

expression and decreased by degradation), the amount of protein A (increased by gene A 

expression and decreased by binding to gene B, binding to protein B and degradation), 

protein B (increased by mRNA B expression and decreased by binding to protein A and 

degradation) and complex AB (increased by the binding of A to B and decreased by 

degradation). The resulting equations are as follows (see the figure, part a).
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Using a biochemical simulator such as COPASI (86), one does not need to write the 

differential equations. The modeller writes down the chemical equations and the rates of 

the reactions. The software will then numerically solve the resulting equations (see the 

figure, part b). Alternatively, one can run a stochastic simulation, in which case each 

process is considered separately. The model and simulation description can be found in 

Systems Biology Markup Language (SBML) and Simulation Experiment Description 

Markup Language (SED-ML), and in COPASI format in the BioModels database 

(accession number: BIOMD0000000539).
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Box 3

Logic modelling

Logic modelling is based on the idea that a variable can take a discrete number of states 

or values (two in the case of Boolean models) and that the state of a variable is decided 

by a logical combination of the states of other variables. The system can be updated 

synchronously, with the values of all variables being calculated after a transition, or 

asynchronously, when variables undergo transitions one at a time (114).

We can create a logic version of the system presented in BOX 2 by building a model with 

three nodes representing protein A, protein B and the complex AB (see the figure, part a). 

The activity of A is represented by a Boolean variable. It is inhibited by the complex AB, 

otherwise it is always ‘on’. The activity of AB is represented by a Boolean variable and 

is stimulated if both A and B are active. Finally, the activity of B is represented by three 

values. It can be off, low or high if A is on (and stimulates its production) and AB is off. 

Note that in the following expressions, B is true if B = 1 or B = 2.

A = 0 if AB

A = 1 if not AB

B = 0 if not A and AB

B = 1 if (not A and not AB) or (A and AB)

B = 2 if A and not AB

AB = 0 if not A or not B

AB = 1 if A and B

The model was implemented using the GINsim software (140). The synchronous 

simulation of the logic rules permits the tracing of trajectories across the ensemble of 

states. The combination of all of these trajectories forms the state-transition graph (see 

the figure, part b). Whatever the starting state, the system will end up as a circular 

attractor in which all three variables oscillate.
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Figure 1. Granularity of time representation and variable values for various modelling 
approaches
Variables in a model can take unbounded values (for example, concentrations or the number 

of molecules), multiple although limited values (for example, null, low, medium or high) or 

Boolean values (present or absent, or active or inactive). Progression of the variables during 

simulations can be represented using continuous time (mirroring the real world) in a discrete 

manner (with updates made after specified time durations), or using iterations (which do not 

necessarily represent any specific duration). Green methods are updated according to logic 

rules, whereas purple methods compute the new values of variables using quantitative 

mathematics.
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Figure 2. The four views of systems biology
Four different types of networks used to represent biological processes and their features are 

shown. a ∣ An interaction network can be used to represent physical interactions (black line) 

— such as that between extracellular signal-regulated kinase (ERK) and ELK1 — and 

functional interactions (grey lines), such as those between UBC9 (also known as UBE2I), 

ERK, ELK1 and c-FOS. b ∣ An activity flow can be used to show the stimulation of c-FOS 

activity by ELK1 activity, the stimulation of ELK1 activity by ERK activity, and its 

inhibition by UBC9 activity. c ∣ A detailed process description can be used to show the 

catalysis of ELK1 sumoylation (SUMO) and phosphorylation (P), their reversed reactions, 

and the trigger of c-FOS expression. The graph is simplified by the inexistence of ELK1 

with both covalent modifications. d ∣ Entity relationships can be used to describe the 

stimulation of sumoylation and phosphorylation of ELK1 by UBC9 and ERK, respectively, 

and the influence of these processes on c-FOS.
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Figure 3. Network inference methods
The four main approaches to infer networks from data include: correlation (part a), 

information theoretic (part b), Bayesian inference (part c) and differential equations (part d). 

The combination of several approaches seems to be the most robust method to obtain the 

correct network.
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Table 1

Comparison matrix of quantitative and qualitative models

Quantitative model Logic model

Suitable for Time series Phenotypes

Time representation Linear representation Abstract iterations

Variables Quantitative Qualitative

Mechanism representation Yes No

What can we do? Compute concentrations and durations; 
evaluate the effect of parameter values

Compute state transitions and attractors 
(steady-states and cyclic attractors)

Data necessary to build the model Molecular species, genes, interactions, 
biochemical processes

Activities, defined phenotypes, rules linking 
those

Data to parameterize and validate the 
model

Amount of molecular species, timecourses, 
quantitative phenotype

Perturbations of activities such as RNA 
interference, inhibitors, qualitative phenotypes

Advantages Quantitative, precise; direct comparison with 
quantitative measurements; large existing 
toolkit

Easy to build; easy to compose; easy 
simulation of perturbations

Weaknesses Requires quantitative knowledge of initial 
conditions and kinetics

Cannot provide quantitative predictions; 
difficult to choose between alternative 
behaviours
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Table 2

Example of freely available software used to build and analyse models

Name Features License Refs

Gene regulatory network inference

ARACNE Information theoretic Non-commercial license 70

BANJO Bayesian inferences Non-commercial license 73

CatNet Bayesian inferences General Public License -

Inferelator ODEs No license 77

NAIL Multiple Apache License 82

NIR ODEs Non-commercial license 78

TIGRESS Regression General Public License 67

Quantitative kinetic modelling

BIOCHAM ODEs General Public License 141

CellDesigner ODEs, stochastic Gratis 142

COPASI ODEs, stochastic Artistic License 86

DBSolve ODE Gratis -

E-Cell Project ODEs, stochastic General Public License 125

iBioSim ODEs, stochastic MIT License 143

SBML simulator ODEs Lesser General Public License 62

XPP-Aut ODEs General Public License 144

Qualitative modelling

BoolNET Logic models Artistic License 145

CellNetOptimizer Logic models General Public License 121

GINsim Logic models General Public License 140

GNA Piecewise linear equations Gratis for non-profit academic research 105
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