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Abstract—Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the
phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to
incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for
ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we
have recently shown to efficiently estimate mutation rates and fixation biases from within and between-species variation
data. We extend this model to perform efficient estimation of species trees. We test the performance of PoMo in several
different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy
and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele frequency
based. We show that PoMo is well suited for genome-wide species tree estimation and that on such data it is more accurate
than previous approaches. [Incomplete lineage sorting; Phylogenetics; PoMo; Species tree]

Understanding the speciation history of taxa is
fundamental to the study of evolution, but is
often hampered by incongruency among phylogenetic
trees from different genomic regions. Three different
biological processes can cause this pattern: horizontal
gene transfer, gene duplication and loss, and incomplete
lineage sorting (ILS, see Maddison 1997; Knowles 2009).
Horizontal gene transfer plays a major role in bacterial
evolution, and gene duplication and losses are common
throughout the tree of life. The third process, ILS,
has received considerable attention from a theoretical
point of view, in particular in the recent years (see
Maddison and Knowles 2006; Degnan and Rosenberg
2009; Edwards 2009; Liu et al. 2009a). ILS occurs when
the coalescent time between two lineages within a
branch of the species tree is longer than the branch
itself. Simple and computationally efficient approaches
such as concatenation of the gene alignments to one
overall alignment to infer the species tree (see Gadagkar
et al. 2005) or “democratic vote” between gene trees
(Pamilo and Nei 1988), proved to be unsatisfactory in
accounting for ILS. In fact, they tend to infer the wrong
topology for species trees with parameters within the
so-called “anomaly zone” as more data are considered
(see Degnan and Rosenberg 2006; Kubatko and Degnan
2007).

Several alternative likelihood-based methods have
been proposed that explicitly model ILS. These can
be divided into two classes: population tree and
species tree methods. Although a population tree and
a species tree have the same structure, population
tree and species tree methods focus on different time
scales. In fact, population tree methods model recent
population splits by assuming that any polymorphism
observed within or between taxa already existed at the
phylogenetic root (or equivalently, that there are no

new mutations along the phylogeny). Some examples
of population tree methods are 3adi (Gutenkunst et al.
2009), and the methods of RoyChoudhury et al. (2008),
and Sirén et al. (2011). A partial generalization is SNAPP
(Bryant et al. 2012), which allows a single new mutation
per site and back mutations, but still assumes at most
two alleles per site. These population tree methods
are therefore generally not suited for long phylogenetic
distances where two or more mutations are likely to
occur at the same site in different points of the phylogeny.
Another characteristic of population tree methods is that
all sites are modeled as unlinked, ignoring haplotype
structures. This can be problematic when few linked loci
are considered, but it generally does not lead to biases
if many recombining loci are considered, even if linkage
within each locus is strong (Wiuf 2006; RoyChoudhury
2011).

Species tree methods, on the other hand, do not
rely on the infinite sites assumption, and can generally
deal with sites presenting any number of alleles,
and arbitrarily long branches. They assume that
sites from the same locus (or “gene”) are perfectly
linked, whereas sites from different loci are perfectly
unlinked, so that the phylogenetic history of each
locus is modeled by exactly one tree (the gene tree)
and, conditioned on the species tree and mutational
parameters; gene trees are independent of each other.
In particular for large samples and highly effective
recombination rates, these assumptions could also lead
to biases in phylogenetic estimation due to intra-locus
recombination. Nevertheless, a recent simulation study
suggested that these biases are very mild (Lanier and
Knowles 2012). Bayesian phylogenetic software for ILS
include BEST (Liu et al. 2008), *BEAST (Heled and
Drummond 2010), ST-ABC (Fan and Kubatko 2011),
and recent versions of MrBayes incorporating the BEST
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model (Ronquist et al. 2012). Maximum likelihood
(ML) methods include STEM (Kubatko et al. 2009) and
STELLS (Wu 2012). Other approaches aim to reduce the
computational burden of a full-likelihood analysis but
still remain in the parametric framework, for example,
the approximate ML method MP-EST (Liu et al. 2010),
but see also GLASS (Mossel and Roch 2010), STAR
and STEAC (Liu et al. 2009b), and the approach of
Carstens and Knowles (2007). Many nonparametric
phylogenetic methods have also been proposed, which
are generally faster and do not use sequence data directly,
but summary statistics from the gene trees estimated
by the user (reviewed in Liu et al. 2009a). Several
other phylogenetic software packages solve gene tree
incongruencies, but are not tailored in particular for ILS
(see Larget et al. 2010; Boussau et al. 2013), with some
exceptions such as DLCoal (Rasmussen and Kellis 2012)
which accounts for both ILS and gene duplication and
loss.

Recently, we proposed a POlymorphisms-aware
phylogenetic MOdel (PoMo) to estimate population
genetic parameters (mutation rates and fixation biases)
using the genetic variation within and between species
(De Maio et al. 2013). In particular, we applied it to
exome-wide alignments of four great ape species. We
included 10 sequences from each species, for a total
of 40 sequences and analyzed more than 2 million
sites in a single ML estimation run. A brief description
of the model is given below. Here, we extend PoMo
to accurately estimate species trees and to overcome
discordances in gene trees caused by ILS. PoMo is a
species tree method, allowing any number of mutations
at each site and branch. Nevertheless, it shares several
of its features with many population tree approaches,
for example, all sites are assumed to be unlinked and
substitutions are modeled via accumulation of allele
frequency changes. With PoMo we aim to overcome the
difficulties and caveats associated with parameterizing
and estimating gene trees (Knowles et al. 2012). We
show that in contrast to other parametric phylogenetic
methods, PoMo allows the fast and accurate analysis of
large data sets, even genome-wide data. Additionally,
our method accounts for within-locus recombination
and can easily be used to model fixation biases (such
as selection or biased gene conversion) and variation of
rates among sites and branches (De Maio et al. 2013).

METHODS

Species Tree Inference with PoMo

PoMo is a phylogenetic model of sequence evolution.
As in standard models, a single phylogenetic tree (the
species tree) represents the speciation history of the
considered taxa and all sites are modeled as unlinked.
Evolution of a genomic site is modeled as a continuous-
time Markov chain along the phylogeny. Yet, in contrast
to classical phylogenetic models, PoMo can account
for multiple samples from the same taxon. Rather

than representing the state of a species with a single
nucleotide, PoMo allows species to be polymorphic, with
two alleles coexisting at a certain frequency. This is
achieved by using a larger state space in the Markov
chain. In fact, we use four states representing each one
of the four nucleotides being fixed in the population,
and also other states representing polymorphisms. We
model evolution of populations in the species tree with
a Moran model with population size N (called “virtual
population” in the following). Hereby, we will always
use a virtual population size of N=10. The symbol

(v ;) with 1<i<N-1 represents the polymorphic

state associated with alleles {I,]} and with frequency

i/N of allele I. In a Moran model, the probability of a

population changing in one generation from (NZ_II ]) to
i+11 ..
(vZisa ]) 18:

fitl _pgiic1_ L N—i

M- =M = NN

We use this model of genetic drift together
with the HKY model of mutation to define an
instantaneous rate matrix (see Online Appendix 1
in Supplementary Material available on Dryad at
http://dx.doi.org/10.5061 /dryad.bn038). This matrix is
used in the same way as a standard DNA substitution
model. In particular, we use the Felsenstein pruning
algorithm (Felsenstein 1981) to calculate likelihoods,
summing over all possible histories of mutations and
frequency changes. In this work, we do not model
fixation biases (e.g., selection) or variation in mutation
rates. However, these features have already been
introduced in De Maio et al. (2013).

Although a single tree (the species tree) is assumed
for all loci and sites, PoMo naturally accounts for
ILS, because ancestral species are allowed to be in
polymorphic states. For example, let us consider the
particular evolutionary history depicted in Figure 1la.
Here, an ancestral polymorphism is still present in the
species from which sequences Bl and B2 are sampled
(none of the two alleles has reached fixation). In this
scenario, Bl is more closely related to Al and A2 than to
B2 at the considered site, despite B1 and B2 being in the
same species.

The same situation is also modeled by the multispecies
coalescent framework (Rannala and Yang 2003), as canbe
seen in Figure 1b. In this context, a local phylogeny (the
gene tree) models the local relatedness of all samples,
and so, here Bl is again less related to B2 than to
Al and A2 at the considered site. In the multispecies
coalescent, gene trees are embedded within a species
tree, which means that in gene trees a coalescent event
between lineages from different species can only happen
before (higher up in the tree) the split of the considered
species in the species tree. In many applications of
the multispecies coalescent, gene trees are modeled as
constant within loci and unlinked between loci. In PoMo,
on the other hand, all sites, even those within the same
gene, are modeled as unlinked.

1)
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FIGURE 1.

Comparison of PoMo with the multispecies coalescent. Example of a phylogeny with two species, each with two sampled sequences

per population (A1-A2 and B1-B2, respectively). A single alignment site is considered for simplicity, and the observed nucleotides are as depicted:
C, C, C, T. a) In PoMo, observed nucleotides are modeled as sampled from 10 virtual individuals (gray arrows at the bottom). Mutations (stars
in the figure) can introduce new alleles, and allele counts can change along branches due to drift, and be lost or fixed. The state history shown
is only one of the many possible for the observed data. b) In the multispecies coalescent, the species tree (black thick lines) as well as gene trees
(gray thin lines) are considered. Usually only the species tree parameters are of interest, and gene trees are nuisance parameters. One of the

many possible unobserved gene trees is depicted as an example.

PoMo has a small number of parameters, and,
importantly, the number of parameters does not depend
on the number of genes considered or on the number
of samples per species. As in most parametric species
tree methods we parameterize the species trees (branch
lengths and topology). Then, we have parameters that
describe the mutational process: in the case of the
HKY85 adopted here, these are the mutation rate p
and the transition—transversion rate ratio k. Finally, one
parameter, 0, represents the proportion of polymorphic
sites, similarly to STEM; yet, differently from STEM, we
estimate 6 from data, and only ask the user to provide
an input value for it in case there is a single sample per
species, and therefore no information on within-species
variation. Differently from *BEAST and BEST, we do not
parameterize gene trees, and differently from STEM and
MP-EST, we do not ask the user to estimate them, but we
implicitly marginalize over all possible histories at each
site, and do not make use of haplotype information.

Modeling the sampling process in PoMo.—We introduce
a slight modification to PoMo to include the sampling
process into the model. In fact, observed nucleotide
frequencies do not necessarily match the real population
frequencies. If this is not accounted for, sampling
variance could be interpreted as drift by PoMo, resulting
in biases in branch length estimation. Furthermore, this
modification allows the use of any number of samples
(even one) for each of the species considered.

Let us assume that at a leaf of the phylogenetic tree,
allele I is observed m; times, and allele | is observed
mj=M—m; times (M being the sample size). We also
assume that at the considered leaf the virtual population
has count n; for allele I and count nj=N —n; for allele
J (which cannot be observed directly, but we fix it
for now). This corresponds to the state represented

n; I
as (11] ]
Online Appendix 1 in Supplementary Material). Each
sampled allele is necessarily present in the virtual
population (m; >0 implies #;>0), that is, we do not
model sequencing errors. On the other hand, an allele
in the virtual population may be absent from the sample
due to chance (1n; >0 but m; =0). We use the binomial
distribution to model the probability of sampling with
replacement m; times allele I and m; times allele | from
the virtual population with n; times allele I and n; times

allele J:
7\ Mi n; m] M
o= (3) () @

It is straightforward to include this sampling step in
the likelihood calculations that are performed with
the Felsenstein pruning algorithm (Felsenstein 1981),
such that at each leaf we sum over all possible virtual
population allele counts.

) in our Markov chain (see Equation (1) and
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FIGURE 2.

Species trees used in simulations. We chose trees that are well known for inference problems caused by incomplete lineage

sorting. Each of the six trees shown is used in two scenarios: total tree height (T) is either set to 1N, or to 10N, generations, where N, is the
effective population size. L represents a short branch length of N, /10 generations. Values not shown are determined by the strict molecular clock
assumption. The scenario names are (i) trichotomy, (ii) classical ILS, (iii) balanced, (iv) anomalous, (v) recent radiation, and (vi) unbalanced.

Topology search.—To efficiently explore the topology
space, we included a nearest neighbor interchange (NNI,
see Felsenstein 2004) branch swap search in PoMo.
Given an unrooted tree ((T1,T2),(T3,T4)), where T;
for i=1,2,3,4 is a subtree, an NNI move swaps the
subtrees to estimate the likelihoods of the alternative
topologies ((T1,T3),(T2,Ty)) and ((T1,Ty),(T2,T3)). If
any of the two alternative topologies results in a
likelihood improvement, it becomes the new base
tree for the next NNI step. For every internal
branch of the base tree, an NNI swap is attempted.
The iterations stop if no likelihood improvement is
obtained.

Simulations

Our simulations fit the assumptions of multispecies
coalescent methods such as STEM (Kubatko et al.
2009), BEST (Liu et al. 2008), and *BEAST (Heled and
Drummond 2010), but not those of PoMo or SNAPP
(Bryant et al. 2012). We simulated gene sequences under
the standard coalescent model (free recombination
between genes, no recombination within genes), each
gene being 1kb long. We wanted to address possible
differences in performance among methods due to
total tree height, tree shape, and sampling strategy
(see McCormack et al. 2009; Huang et al. 2010; Leaché
and Rannala 2011; Knowles et al. 2012). We simulated
12 different scenarios according to the species trees
depicted in Figure 2. All trees have four or eight species
and at least one short internal branch causing ILS. In the
“trichotomy” scenario (Fig. 2i), an internal branch has

zero length, such that three species are equally related
to each other. In the “classical ILS” scenario (Fig. 2ii) an
internal branch has short length (N, /10, where N¢ is the
effective population size), therefore ILS is expected to
be predominant. In the “anomalous” scenario (Fig. 2iv),
both internal branches are very short, such that the
species tree falls inside the “anomaly zone” described
by Degnan and Rosenberg (2006). Lastly, for the “recent
radiation” scenario (Fig. 2v), all terminal branches,
except the outgroup branch, are very short, and different
species are expected to share a large proportion of
polymorphisms. The last two scenarios include eight
species, and either a balanced topology (“balanced,”
Fig. 2iii), or an unbalanced one (“unbalanced,” Fig. 2vi).
Each of these six scenarios is simulated with total tree
height 1N, and 10N, generations leading to a total of 12
simulation settings.

For each scenario and each replicate we simulate
between 3 and 1000 genes. Gene trees from each
species tree were sampled according to the multispecies
coalescent using MSMS (Ewing and Hermisson 2010).
We used three different sampling strategies, extracting
either 10, 3, or 1 samples per species. For each gene
tree thus simulated, the 1-kbp sequence alignment
was generated with Seq-Gen (Rambaut and Grass
1997) according to the HKY model with k=3 and
nucleotide frequencies g =0.3, 1¢=0.2, ng=0.2, and
nr =0.3. These settings closely match those in previous
simulation studies such as Huang et al. (2010).

This simulation strategy, with trees fixed a priori rather
than sampled from a prior distribution, and a single
tree as an estimate, might partially favor ML methods
over Bayesian methods. Also the prior probability of the
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chosen species trees in the Bayesian methods might play
an important role. Yet, it is expected that with increasing
amounts of data, the priors will have a smaller and
smaller influence on the estimated posterior distribution.

Comparison of Species Tree Methods

In this work, we compared the performance of PoMo
with other methods in estimating species trees. We
tested STEM, BEST, and *BEAST, which are all based on
the multispecies coalescent equations by Rannala and
Yang (2003), and SNAPP, which is instead a population
tree method. Furthermore, we also test concatenation,
which corresponds to ignoring the effects of ILS and
assuming a single phylogeny for the whole data set.
From each simulated data set and each method we get
one estimated species tree, and we assess the accuracy
of estimation by comparing the normalized simulated
tree and the normalized estimated tree. Normalization
is achieved by dividing all branch lengths in the tree by
the root height. The normalized trees are then compared
using the branch score distance (BSD, see Kuhner
and Felsenstein 1994), calculated with TREEDIST from
PHYLIP (Felsenstein 2014). BSD uses both topology
and branch lengths to assess estimation accuracy, thus
providing a broader picture than methods that use only
the topology (see also Heled and Drummond 2010).
Furthermore, in scenarios where an internal branch is
so short as to almost correspond to a trifurcation, for
example, (A:1+3,(B:1,C:1):3) for § — 0, the BSD has the
quality to attribute small error to trees that approach the
trifurcation, but have the wrong topology, for example,
(B:1+8,(A:1,C:1):3). Below we give a short description
of each method tested.

PoMo was implemented in HyPhy (Pond et al. 2005).
We explore the topology space using NNImoves without
a molecular clock on unrooted topologies using the ML
of PoMo as a score measure for each topology. We then
use the chosen topology to estimate branch lengths with
PoMo and ML under a strict molecular clock. In contrast
to De Maio et al. (2013), we adopt the HKY mutation
model (Hasegawa et al. 1985) without fixation biases and
without variation in mutation rates. These changes, and
in particular the adoption of a molecular clock, have been
introduced to fit PoMo to the assumptions of competing
approaches and of our simulations. They can easily be
reverted by the user.

STEM (Kubatko et al. 2009) is a ML approach. It
estimates the ML species trees from a collection of gene
trees provided by the user. We estimated gene trees
with neighbor joining (NJ, see Saitou and Nei 1987)
as implemented in HyPhy, and with the Unweighted
Pair Group Method with Arithmetic mean (UPGMA,
see Murtagh 1984) as implemented in the R package
phangorn (Schliep 2011). The input parameter 6 in STEM
is fixed to 0.01.

The program BEST 2.3 (Liu et al. 2008) implements
a Bayesian method and, in contrast to STEM, accounts
for uncertainty in gene tree estimation. The Felsenstein

pruning algorithm (Felsenstein 1981) Markov Chain
Monte Carlo (MCMC) iterations is used to calculate
the likelihood of gene trees, and the multispecies
coalescent equation (Rannala and Yang 2003) for the
likelihood of the species tree given the gene trees.
We stopped the MCMC iterations in BEST when the
software’s topological convergence diagnostic reached
values below 5%. We did not alter the method’s default
priors. As in all other methods tested here, and as in
simulations, we used the HKY mutation model. As a
species tree estimate we chose the consensus tree with
all compatible groups produced by BEST.

*BEAST (Heled and Drummond 2010) is implemented
within BEAST2 (Drummond et al. 2012). *BEAST is also
a Bayesian method sampling gene trees and species
tree with a MCMC approach. An adequate number
of MCMC steps has to be specified prior to analysis,

and we used two different values: 107 and 10%. These
values were among the highest possible given our
computational resources, but found to be insufficient to
achieve convergence in the scenarios with many samples
and genes. Therefore, the accuracy and computational
cost that we show must always be considered relative to
the number of MCMC steps chosen. We allowed no site
or locus variation in mutation rates, and no variation
in population size matching the assumptions of our
simulations. We also used the default priors. We used
TreeAnnotator, included in BEAST, to summarize the
output of *BEAST into a consensus tree with mean node
heights.

SNAPP (Bryant et al. 2012) is also implemented in
BEAST?2, and is based on an MCMC algorithm that
samples species trees from a posterior distribution.
Yet, differently from *BEAST and BEST, it does not
parameterize gene trees and assumes all sites to be
unlinked. Again, we did not alter the default priors of

the method. We ran SNAPP for 10* MCMC steps, leading
to the same issues as discussed above for *BEAST. No
site variation or demographic variation were allowed,
and we summarized the posterior distribution with a
consensus tree with mean node heights.

Lastly, as representative of ML concatenation we used
HyPhy with an NNI branch swap topology search
and molecular clock. As a Bayesian representative of
concatenation we used MrBayes 3.2 (Ronquist et al. 2012).
For both methods we used two concatenation strategies.
In the first one, we sampled only one individual from
each species. In the second strategy, for each species we
used the consensus sequence of all sampled individuals.
As a tree estimate for MrBayes 3.2, we chose the
consensus tree with all compatible groups. The full list
of options for all software packages used is provided in
the Online Appendix 3.

Great Ape Data Set

The great ape family constitutes one of the most
important examples for shared ancestral polymorphisms
and ILS (Dutheil et al. 2009), with the species phylogeny
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FIGURE 3. Computational demands for different methods. Running times for estimation with 10 samples per species and tree height 10N,

generations in the trichotomy scenario. The Y axis shows the computational time in seconds, the X axis the number of genes included in the
analysis. The colors represent different methods (see legend). Each boxplot includes 10 independent replicates. HyPhy applied to concatenated
data is the fastest method. STEM estimates the ML species trees from a collection of gene trees provided by the user. We estimated the gene
trees with the UPGMA and added the CPU times. For small data sets, PoMo and STEM+UPGMA have comparable computational demands.
However, with more genes the CPU time for STEM+UPGMA increases roughly linearly with the number of genes while the time for PoMo
remains almost constant. BEST and *BEAST were applied at most to 10 genes. MCMC steps (108) have been used for *BEAST. Our simulations
suggest that methods such as *BEAST and BEST are not efficient enough to analyze large data sets.

comprising variation of evolutionary patterns, closely
related taxa, and short internal branches.

We used PoMo to estimate evolutionary parameters
from exome-wide great ape alignments (Homo sapiens,
Pan troglodytes, Pongo abelii and Pongo pygmaeus; see
De Maio et al. 2013). Here, we modify the data set
to include exome-wide sequencing data from a recent
study on the genetic diversity and population history
of great apes (Prado-Martinez et al. 2013). The authors
provide sequence data of 79 wild- and captive-born
individuals including all 6 great ape species divided
into 12 populations. The number of individuals per
population ranges from 1 (Gorilla gorilla diehli) to 23
(Gorilla gorilla gorilla).

We extracted 4-fold degenerate sites from exome-wide
CCDS alignments downloaded from the UCSC table
browser (http://genome.ucsc.edu) with hgl8 as the
human reference genome (exact download preferences
can be found in the Online Appendix 4).

The Single Nucleotide Polymorphisms (SNPs)
of the great ape data set on the population
level was retrieved from ftp://public_primate@
biologiaevolutiva.org/VCFs/SNPs/  (Prado-Martinez
etal. 2013) in Variant Call Format (VCF). In concatenation
analyses, we randomly extracted one individual
out of each population for each independent run.
For PoMo, if more than 10 haplotypes from the

same population were present, 10 were randomly
subsampled. PoMo requires fasta format files containing
the aligned sequences for all samples, but we wrote
a python library (libPoMo) to extract data from
VCF files. PoMo v11.0 was used throughout this
article. We provide documentation of the program
(http:/ /pomo.readthedocs.org/en/v1.1.0/) as well
as detailed description of the data preparation and
conversion scripts for the great ape data set in the
Supplementary Material (Online Appendix 4).

RESULTS AND DISCUSSION

Computational Efficiency

Among the approaches that we tested, the most
computationally demanding proved to be the Bayesian
multispecies coalescent methods: BEST and *BEAST
(Fig. 3, Supplementary Figs. S1 and S2). Achieving
convergence with BEST was beyond our computational
resources on many scenarios with as few as 10 genes.
The running time of these two methods seems in fact
to increase steeply with the number of genes. It might
seem that the running time of BEST increases faster than
the one of *BEAST, but it has to be considered that we
halted BEST when we reached a convergence diagnostic
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threshold, while we ran *BEAST for a prespecified
number of MCMC steps. BEST and *BEAST are similar
in many aspects, in particular they both parameterize
explicitly gene trees (with branch lengths and topologies
parameters) and explore the space of possible gene
trees using MCMC. Therefore, it is not surprising that
with an increasing number of genes or samples, the
number of MCMC steps required to achieve convergence
also increases, as the parameter space to be explored
becomes larger. So, on larger data sets, the number of
steps that we specified in *“BEAST becomes insufficient.
Nevertheless, the computational demand of *BEAST
increases, as the running time of each MCMC step
grows. For these reasons, running Bayesian multispecies
coalescent methods such as BEST and *BEAST on data
sets with large numbers of loci and samples does not
seem feasible.

We ran SNAPP for a very limited number of MCMC

steps (10*) determined by our computational resources,
similarly to *BEAST. Differently from *BEAST, the
parameter space of SNAPP does not increase with the
number of genes, yet, it still proved computationally
demanding, in particular in scenarios with many
samples (cf. Supplementary Figs. S5 and S6).

STEM, if considered alone, had extremely short
running times, in general only a few seconds (data not
shown). Yet, here we consider also the cost of running
gene tree estimation, as gene trees are a necessary
input for STEM, and they are usually not known. The
cost of running gene tree estimation varies greatly
depending on the method chosen, but the requirement
of ultrametric gene trees (where all leaves have the same
distance from the root) restricts the number of possible
methods. Here we used two heuristic approaches: NJ
and UPGMA. These are faster than Bayesian or ML
methods (UPGMA, in particular) and therefore allow the
use of STEM even with many genes and samples (Fig. 3).
Since the running time of STEM itself is negligible, we
see that the computational cost of running STEM and
gene tree estimation is approximately a linear function
in the number of genes (Supplementary Figs. S1 and S2).
Therefore, it is feasible to run STEM with exome-wide
data, in particular considering that gene tree estimation
is easily parallelizable. But, if we would run STEM on
an entire eukaryotic genome, for example, on millions
of loci each of few kbp, then gene tree estimation as
performed by us could require months.

In contrast to STEM (which in the following we
will always consider including gene tree estimation),
PoMo shows a less steep increase in computational
requirement with number of genes (Fig. 3). Furthermore,
PoMo is almost unaffected by the number of samples
included (cf. Supplementary Figs. S1 and S2). A result
of this is that while STEM is faster than PoMo on a few
genes, with hundreds or thousands of genes PoMo is
faster instead, although the particular point at which
PoMo becomes faster will depend on the particular gene
tree method used and on the number of species and
samples considered. Even with 1000 genes, it was always
possible to run PoMo in less than an hour with four

species, or in few hours for eight species (Supplementary
Figs. S1 and S7). Therefore, PoMo seems well suited for
exome-wide species tree estimation, and due to the small
increase in running time when adding more data, it is
also promising for genome-wide data sets.

Lastly, concatenation methods were generally, but
not always, faster than all other approaches (Fig. 3).
Concatenation, both Bayesian (with MrBayes) or ML
(with HyPhy), only allows one sample per species, and
has a simplified model (a single tree for all sites) which
ignores ILS. It is therefore not surprising that it is
faster (Supplementary Figs. S3 and S4). In particular,
the algorithmic steps of PoMo are almost the same as
for a ML concatenation method, the major differences
being the increased dimension of the PoMo rate matrix,
and the increased number of internal nodes since PoMo
leaf states are not directly observed. Yet, looking at
results with eight species, we see that running times
of concatenation on MrBayes are similar to those of
PoMo, while running times of concatenation in HyPhy
are similar to those of STEM with UPGMA gene trees
(Supplementary Figs. S7 and S8). This suggests that,
with more species, faster phylogenetic methods would
be required to use concatenation.

We performed all the analyses on the Vienna Scientific
Cluster (VSC-2; AMD Opteron 6132 HE processors
with 2.2 GHz and 16 logical cores). Every process was
assigned to a single core only, so that simulation run
times are easily comparable.

Accuracy in Species Tree Estimation

PoMo shows good accuracy in estimating species
tree topology and branch lengths according to the BSD
score. While accuracy is variable when only few genes
are considered, it rapidly increases with the addition
of more data (Figs. 4 and 5, Supplementary Figs. S9
and S10). Already with 100 genes, errors are below
5%, and get even lower with 1000 genes, although
specific values vary with the scenario considered. In fact,
errors are usually lower for long species trees (10 N,
generations root height) than for short species trees (1 N
generation root height). Long trees might be estimated
more accurately because they have more phylogenetic
signal, or may be because the contribution of ILS is
proportionally less important.

Concatenation methods have acceptable accuracy in
some scenarios, but show large errors with short trees
and in the “recent radiation” scenario (Supplementary
Figs. 511 and S12). Most of these large errors do not seem
to decrease when adding more data. Yet, when we use
the consensus from multiple samples of the same species
instead of a random sample, we notice often a small
but consistent reduction in error. Accuracy of Bayesian
(MrBayes) and ML (HyPhy) methods was very similar,
and overall, they both have worse or similar accuracy to
PoMo.

The accuracy of STEM was generally less predictable
(Figs.4 and 5). STEM seems to only provide an advantage
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FIGURE 5.

Accuracy of species tree estimation, eight-species-trees. For larger trees, only PoMo, STEM+UPGMA, and concatenation with

MrBayes or HyPhy could be used. Eight species and 10 samples per species were included. The Y axis is the error in species tree estimation
calculated as BSD between the normalized simulated species tree and the normalized estimated tree, the X axis is the number of genes included
in the analysis. Each boxplot includes 10 independent replicates. Different colors represent different methods (see legend). a) 1N, tree height
and balanced tree. b) 1N, tree height and unbalanced tree. c) 10N, tree height and balanced tree. d) 10N, tree height and unbalanced tree. PoMo
performs much better than STEM+UPGMA, and is slightly more accurate than the two concatenation approaches.

with respect to concatenation in the “recent radiation”
scenario, while it has larger error in all other scenarios.
Also, the error in STEM does not seem to decrease
noticeably as more genes are included into the analysis
(as already observed by Leaché and Rannala 2011,
with a different accuracy measure). These problems
mightbe attributable to the particular simulation setting,
with insufficient phylogenetic signal to estimate gene
trees accurately, or it might be related to the particular
methods used for gene tree inference. In fact, using
UPGMA for gene tree estimation, we obtained better
accuracy than using NJ (Supplementary Figs. 513 and
S14), suggesting that gene tree estimation has a large
impact on the performance of STEM. We cannot exclude
the possibility that with ML or Bayesian gene tree
inference, STEM would provide better estimates, but
the analysis would surely be more computationally
demanding. We noticed that often STEM species trees
estimates have a few branches of length zero in scenarios
with many genes and short trees. This phenomenon
can happen when two gene sequences from different
species are identical, and could be solved by using a
Bayesian method for gene tree inference. Comparing
tree estimation accuracy with the symmetric difference
(or Robinson—-Foulds metric, see Robinson and Foulds
1981) instead of BSD gave comparable results (see
Supplementary Figs. 515 and S16).

BEST, as noted in the previous section, is the most
computationally demanding approach, and for this
reason we could only run it on four species, and up to
10 genes (for 10 samples) or 20 genes (for three samples
per species). On the smaller data sets we tested, BEST
showed variable performance, with accuracy sometimes

worse, sometimes better, but overall comparable with
PoMo and most other methods (Fig. 4, Supplementary
Fig. 59).

%BEAST has an underlying model similar to BEST,
and shares many of its features. As mentioned
earlier, running *BEAST requires increased numbers of
MCMC steps to reach convergence as more genes and
samples are added. It is therefore not surprising that,
keeping the number of MCMC steps fixed, we do not
necessarily observe an accuracy improvement in *BEAST
(Supplementary Figs. S17 and S18), and generally we
did not reach acceptable effective sample sizes (data not
shown). Overall, accuracy results for *BEAST with few
genes were comparable to PoMo and BEST.

SNAPP is different from the other approaches
considered so far, in that it has been proposed to study
speciation events at short evolutionary times. This is
particularly evident when SNAPP is applied to long
trees: errors in those cases are often much higher than all
other methods (Supplementary Figs. 517 and S18). This
could be attributed to the insufficient number of MCMC
steps performed, although it seems that SNAPP tends
to converge to trees with long outgroup branches (data
not shown). Better explanations for this problem could
therefore be that the violation of the model assumptions
(unlinked biallelic sites) is causing biases, or that the
prior is playing an important rule due to the small size
of the data sets.

Performance of PoMo Without Population Data

Information on within-species variation is usually
important to accurately infer species trees. The
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availability of multiple sequences from the same species
can in fact be determinant to correctly inferring
speciation times (see Heled and Drummond 2010),
as it helps to determine the amount between-species
genetic differences that are attributable to within-species
variation. Therefore, a scenario in which a single sample
per species is available can be particularly problematic.
In PoMo, when a single sample per species is provided,
we require the user to specify an input value of 6=
4N, the degree of within-species variability. To test the
performance of PoMo in this case, and its robustness to
the specification of 6, we run PoMo on the four-species
scenarios described earlier, with a single sample per
species and with various 6 values as inputs.

Given the correct 6 value, PoMo consistently
outperforms concatenation and STEM. However, if
very large error in 6 is introduced, PoMo might give
worse estimates than concatenation and STEM (Fig. 6).
In general, we observe different trends for long and
short trees. Long trees seem to be very robust to a wrong
specification of 6 and only small errors are observed. If
the given 0 is too small, the estimates of PoMo remain
very accurate for all scenarios but the anomalous one.
Short trees are more sensitive to a mis-specification of
6 and also show an error increase for underestimated 6
values.

For these reasons, we suggest being cautious when
using PoMo on data that only includes single samples
per species, because estimates can only be trusted when
6 is known with good confidence or when the scenario is
robust to a possible mis-specification of 6. Yet, we expect
that with the constant advancement in sequencing
technologies, data sets with more than one sample
per species will become increasingly predominant (see
Bentley 2006).

Application to Great Ape Data Set

Both PoMo and concatenation were run using HyPhy
on the genome-wide great ape data described in section
“Methods”. We expect variation between consecutive
runs due to different seeds and because of the random
selection of samples. To assess the variability in
parameter estimates, each analysis was repeated 10
times.

We can see that PoMo always infers the Western-
Lowland and Cross-River gorillas to be more closely
related to each other than to the East-Lowland gorillas
(Fig. 7). Also, PoMo always infers the Central and Eastern
chimpanzee to form a clade. Both these conclusions are
supported by an array of methods (Prado-Martinez et al.
2013), and also by the geographical distribution of the
species. Yet, we see that concatenation places uncertainty
in these observations (6 in 10 concatenation runs confirm
the Western-Lowland and Cross-River gorilla clade, and 4
in 10 runs the Central and Eastern chimpanzee clade).

Furthermore, we can see that branches representing
recent population and species splits are inferred to be
more recent by PoMo than by concatenation (Fig. 7).

This happens because PoMo accounts for shared
and ancestral polymorphisms, while concatenation
attributes all differences to divergence. Also, another
reason is that concatenation interprets phylogenetic
signal that is incongruent with the species tree (due to
ILS) as due to multiple mutations. These patterns are
relatively weak in Great Apes due to their small effective
population size, but in species with higher 6 we expect
these trends to be even more pronounced. In addition
to the robustness of tree topology and branch lengths,
we also observe that the likelihood is less variable for
PoMo than for concatenation (Supplementary Table S2).
The average runtime of PoMo was 21h on a standard
desktop PC (processor: Intel i5-3330S, 2.70GHz, two
physical cores).

CONCLUSIONS

In this study, we addressed the problem of
estimating species trees in the presence of ILS. Using
simulations covering different scenarios, we tested the
computational efficiency and the accuracy of different
methods. Most details of our simulations are close to
those used in previous similar studies (in particular, see
Huang et al. 2010). We did not focus only on topology
estimation, but rather evaluated the accuracy of methods
in retrieving both topology and branch lengths. We also
proposed a new approach for species tree estimation,
PoMo, based on a recently introduced phylogenetic
model of sequence evolution (De Maio et al. 2013).

With our simulations we suggest that methods such
as *BEAST and BEST are not suited for the analysis of
large data sets (see also Liu et al. 2009a). In fact, their
computational demand is often already excessive with
few genes, and increases considerably when more genes
and samples are added. So, while these approaches are
useful in small data set, in particular to account for
uncertainty in gene tree estimates, they are not generally
applicable to exome-scale data and to large numbers of
samples.

The fastest method tested was STEM, at least unless we
account for the time required for gene tree estimation.
In fact, STEM does not estimate the species tree from
alignments, but from gene trees estimated by the user.
Even when using very fast phylogenetic methods, gene
tree estimation can be demanding if many loci and
samples are included. Overall, STEM proved applicable
to large data sets, but its estimates did not converge to
the simulated values as we included more genes. This
can be explained by the fact that STEM is not robust to
errors in gene tree estimation.

In many cases with pervasive ILS, concatenation
methods were reasonably accurate, converging to trees
not very distant from the truth. Yet, in particular for cases
of recent radiation when the polymorphisms are shared
between species, concatenation had very high error.

We also tested the performance of SNAPP a
recent approach that does not specifically fit the
assumptions of our simulations, but has many features
in common with PoMo. We were not able to obtain
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Species tree estimation on the Great Ape data set. Phylogenies were inferred using a) PoMo and b) concatenation. Population

names are abbreviated (Born: Bornean, Suma: Sumatran, East: Eastern, CrRi: Cross-River, West: Western, NonA: Non-African, Afri: African, Bono:
Bonobos, Cent: Central, NiCa: Nigeria-Cameron). The numbers indicate the abundance of the different clade topologies among different runs (we
performed a total of 10 runs per method). The PoMo trees are topologically more stable than the trees estimated from the concatenated data
of one randomly chosen individual per species. Interpretation of phylogenetic scales differs between the two methods. In fact, state changes in
concatenation represent substitutions, while in PoMo they represent mutation and drift.

convergence to the correct trees with SNAPP using our
limited computational resources. We cannot exclude
the possibility that some specific assumption violation
contributed to this problem, in fact our simulations were
tailored in particular for ML and heuristic methods, and
not for Bayesian approaches.

Lastly, we showed that PoMo provides very accurate
estimates, converging toward simulated values as
more genes are included in the analysis, with
reasonable computational demand. PoMo is slower
than concatenation, although in some sense it can
be considered itself a concatenation approach. The
difference is mostly due to the use of a larger substitution
matrix. Running PoMo never required more than a few
hours on the data sets consider here, but we are working
to make it faster by decreasing the dimension of the rate
matrix or by using faster phylogenetic packages, such
as RAXxML (Stamatakis 2014) or IQTree (Nguyen et al.
2015). In fact, one of the advantages of PoMo is that
it is easily exportable, and it is simple to extend with
classical features of phylogenetic models. For example,
presently PoMo users can choose between different
mutation models, and it is possible to adopt a molecular
clock, or site variation in mutation rates, and fixation
biases. However, it does not yet include features of
other methods such as rate variation between genes, and
population size variation along the phylogeny.

The accuracy of PoMo was broadly comparable to
most other methods when few genes were considered.
Poor estimates in this situation can be attributable to
insufficient signal. Yet, we also want to remark that
PoMo assumes that all sites are unlinked: while we
showed that this assumption of PoMo does not lead
to biases when many independent loci are considered,
caution is required when dealing with few genes. For
example, in the extreme case of a single large non-
recombining locus, PoMo might infer the gene tree to be
the species tree with high confidence. For such scenarios,
it is better to use models that account for within-locus

linkage, in particular Bayesian models that also provide
estimates of uncertainty, such as *BEAST ad BEST. Also,
inference of species trees is problematic in the absence
of information regarding within-species variation. We
urge caution using PoMo with a single sample per
species, and suggest to acquire additional samples unless
good estimates of within-species genetic variation are
known.

Apart from these limitations, PoMo can be applied to
a wide selection of scenarios where most other methods
are not suited. For example, PoMo can be used when
intra-locus recombination is very strong, or equivalently,
when loci are very small, which includes whole-genome
alignments with high recombination. It is also applicable
when haplotype information is not available (e.g., in pool
sequencing, see Kofler et al. 2011). PoMo does not need
alignment data to be arbitrarily split into loci, and is not
encumbered by large numbers of samples or sites. As an
example of the applicability of PoMo, we used it on a
genome-wide data set comprising several samples (79)
and taxa (12) of great apes. We extracted synonymous
sites and collated them into a single alignment of ~2.8
million bp. Using PoMo, in a few hours we could estimate
species tree topologies which were more consistent
with previous literature than using concatenation. Also,
results using PoMo were more congruentacross different
runs.

Estimates of PoMo and concatenation also differed
in branch lengths, in fact, as supported by our
simulations, concatenation tends to overestimate short
terminal branches. This phenomenon is probably due to
concatenation interpreting differences between samples
as divergence rather than within-species variation. In
other words, concatenation attempts to estimate an
average coalescent tree, rather than the species tree. Also,
concatenation ignores the effects of recombination, and
this can result in interpreting SNPs incongruent with
the species tree as due to multiple mutations. These
effects will be even more remarked for taxa with larger
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within-species variation 6. In conclusion, we think that
PoMo will prove very useful in providing accurate
species tree estimation from a great variety of data sets.

SOFTWARE AVAILABILITY

PoMo is open source and can be downloaded at
https:/ / github.com/pomo-dev/PoMo.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http:/ /dx.doi.org/10.5061/dryad.bn038.
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