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Abstract.—The Swofford–Olsen–Waddell–Hillis (SOWH) test evaluates statistical support for incongruent phylogenetic
topologies. It is commonly applied to determine if the maximum likelihood tree in a phylogenetic analysis is significantly
different than an alternative hypothesis. The SOWH test compares the observed difference in log-likelihood between two
topologies to a null distribution of differences in log-likelihood generated by parametric resampling. The test is a well-
established phylogenetic method for topology testing, but it is sensitive to model misspecification, it is computationally
burdensome to perform, and its implementation requires the investigator to make several decisions that each have the
potential to affect the outcome of the test. We analyzed the effects of multiple factors using seven data sets to which
the SOWH test was previously applied. These factors include a number of sample replicates, likelihood software, the
introduction of gaps to simulated data, the use of distinct models of evolution for data simulation and likelihood inference,
and a suggested test correction wherein an unresolved “zero-constrained” tree is used to simulate sequence data. To facilitate
these analyses and future applications of the SOWH test, we wrote SOWHAT, a program that automates the SOWH test.
We find that inadequate bootstrap sampling can change the outcome of the SOWH test. The results also show that using a
zero-constrained tree for data simulation can result in a wider null distribution and higher p-values, but does not change
the outcome of the SOWH test for most of the data sets tested here. These results will help others implement and evaluate
the SOWH test and allow us to provide recommendations for future applications of the SOWH test. SOWHAT is available
for download from https://github.com/josephryan/SOWHAT. [Phylogenetics; SOWH test; topology test]

A phylogenetic topology test evaluates whether
the difference in optimality criterion score between
incongruent hypotheses is significant. In some cases,
the test is used to determine whether a data set
provides significantly more support for one of several
previously proposed phylogenetic hypotheses. In other
cases, the test is used to compare a novel or unexpected
phylogenetic result to a previously proposed hypothesis.
In both scenarios, the observed difference in the
optimality criterion score between two trees is compared
to an estimated null distribution of differences in scores.
Phylogenetic topology tests differ largely in how this
null distribution is created. The Kishino–Hasegawa test
(KH) (Kishino and Hasegawa 1989), for example, creates
a null distribution by analyzing data sets created by
sampling with replacement from the original data set
(Goldman et al. 2000). However, this approach is subject
to selection bias and is only appropriate for tests of
hypotheses selected a priori, such as the comparison of
two alternative hypotheses from the literature. In cases
where hypotheses are not determined a priori, as when
comparing a topology to an unanticipated maximum
likelihood tree produced from the same data, tests such
as the approximately unbiased test (AU) (Shimodaira
2001), the Shimodaira–Hasegawa test (SH) (Shimodaira
and Hasegawa 1999), and the Swofford–Olsen–Waddell–
Hillis test (SOWH) are more appropriate (Goldman
et al. 2000). The SOWH test (Swofford et al. 1996), as
a parametric bootstrap method, can provide greater
statistical power than non-parametric methods such as
the SH test, though this comes at the cost of an increased
reliance on the model of evolution (Goldman et al.

2000). This test complements other approaches such as
Bayesian topology tests (Bergsten et al. 2013).

A typical SOWH test where an a priori hypothesis is
compared to the maximum likelihood tree (Fig. 1) begins
with performing two maximum likelihood searches on a
data set. One is unconstrained and results in an estimate
of the most likely tree. The other is constrained by
an alternative hypothesis, which will result in a less
likely topology. The difference in log-likelihood scores
between these two topologies (�) is the test statistic.
New data sets are then simulated using the topology
and parameter estimates (base frequencies, rates, alpha
value, etc.) from the constrained likelihood search.
On each of these data sets, two maximum likelihood
searches—one unconstrained and one constrained by the
alternative hypothesis—are performed and � values are
calculated. The observed value of � is then compared to
this distribution of simulated � values. A significant test
statistic is one which falls above some percentage, such
as 95%, of simulated � values.

The SOWH test can be burdensome to implement with
existing tools. Several helpful step-by-step instructions
for manual implementation are available (Crawford
2009; Anderson et al. 2014), but these approaches require
extensive hands-on time which makes it difficult to
systematically examine the behavior of the test under
different conditions. Performing the SOWH test requires
an investigator to make multiple decisions which may
not be informed without an evaluation of the behavior
of the test. These decisions include how many bootstrap
samples to generate, which likelihood software to use,
and how to treat gaps during data simulation. These
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FIGURE 1. A typical SOWH test. The test begins with two maximum likelihood searches on a single alignment. One search, represented by
the black arrow, is performed with no constraining topology. Another test, represented by the shaded arrow, is constrained to follow an a priori
topology that represents a phylogenetic hypothesis incongruent with the maximum likelihood topology. The black gears represent maximum
likelihood software used to score the trees (i.e., GARLI, RAxML). These two searches result in two maximum likelihood scores, the difference
(�) between which is the test statistic. From the constrained search, the optimized parameters and topology are retrieved and used to simulate
new alignments with software (shaded gear) such as Seq-Gen. For each simulated alignment (shaded), two maximum likelihood searches are
performed, one unconstrained (black arrow) and one constrained (shaded arrow), scores are obtained, and a � value is calculated. The test
statistic is compared to this distribution of � values. A significantly large � value is one which falls above some proportion of those generated by
data simulation (i.e., 95%)

factors regularly vary across SOWH tests published in
the literature, and before the analyses described here
there has not been an evaluation of their effects on
multiple data sets.

Furthermore, the test has been shown to have a
high type I error rate as compared to other topology
tests (Buckley 2002; Susko 2014). To correct this, two
adjustments to the implementation of the SOWH test
have been recommended. Before the present study,
these hypothesized corrections have not been evaluated
across multiple data sets. Buckley (2002) suggested that
when the model of evolution for simulating data is
the same model used in a maximum likelihood search
on the data, it is more probable that the generating
topology will be found. Because the generating topology
in a SOWH test conforms to the alternative hypothesis,

both the constrained and unconstrained searches on
the simulated data will find a tree very similar to the
generating tree. This will result in smaller � values,
a more narrow null distribution, and a potentially
higher rate of type I error. To correct for this, previous
investigators recommended that the model of evolution
for likelihood inference should be distinct from the
model for simulating data (Buckley 2002; Pauly et al.
2004; Fig. 2).

More recently Susko (2014) observed that likelihood
differences between unconstrained and constrained
searches on simulated data are smaller than would
be expected. Susko (2014) suggests that when data are
simulated on a fully resolved tree, it is more likely that
the generating topology used for simulation will be
found. This will result in a more narrow distribution
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FIGURE 2. A SOWH test using two models of evolution. In this test, two maximum likelihood searches are performed as described above using
a model of evolution (Model 1). Instead of retrieving parameter values from the constrained search, as would be done in a typical SOWH test,
an additional constrained maximum likelihood is performed using a different model of evolution (Model 2). Parameters are retrieved from this
test and used to simulate new data. These simulated data sets are then scored using the same model of evolution used to score the original data
sets (Model 1). This adjustment to the typical SOWH test was suggested following the assumption that a SOWH test performed with the same
model of evolution for likelihood scoring and data simulation would result in a smaller � values on simulated data, a smaller null distribution,
and a more liberal test. For tests in our study which use the CAT–GTR model in PhyloBayes, both the additional constrained search and data
simulation are performed using PhyloBayes—all other likelihood searches are performed using the specified likelihood software (i.e., GARLI or
RAxML).

and a potentially higher type I error rate, as described
above. As a correction, Susko (2014) suggests using a
tree which is not fully resolved, specifically the newly
proposed “zero-constrained” tree, as the topology for
data simulation. This tree is generated by manipulating
the most likely tree estimated in an unconstrained
search so that all edges incongruent with the alternative
hypothesis are reduced to zero or near zero, creating a
polytomy.

Using seven published data sets previously analyzed
with the SOWH test, we examined the effects on test
outcome of multiple factors (sample size, likelihood
software, and treatment of gaps) and proposed
adjustments (model specification and generating
topology). To facilitate implementation, we developed
SOWHAT (as in, “The maximum likelihood tree
differs from my alternative phylogenetic hypothesis,

so what?”), a program that automates the SOWH
test (Fig. 1) and includes features that allow for
additional complexities such as partitioned data
sets. Using our results we provide recommendations
for future implementation of the SOWH test. These
recommendations, along with the program SOWHAT,
allow for a more informed and less burdensome
application of the SOWH test.

METHODS AND MATERIALS

Implementation of the SOWH test with SOWHAT
We used SOWHAT, our automation of the SOWH

test, for all analyses. SOWHAT is available at
https://github.com/josephryan/SOWHAT.

https://github.com/josephryan/SOWHAT
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This tool evaluates the significance of the difference
between the unconstrained maximum likelihood tree
and a maximum likelihood tree inferred under a
topology constraint provided by the user (Fig. 1). At
a minimum, the user specifies the model of evolution
under which the maximum likelihood searches will be
performed, and provides as input an alignment file (in
PHYLIP format) as well as the constraint topology to
be tested (in Newick format). Two maximum likelihood
trees—an unconstrained tree, and a tree constrained
according to the provided constraint topology—are then
inferred with either RAxML (Stamatakis 2006) or GARLI
(Zwickl 2006), as specified by the user.

New data sets are simulated either by Seq-Gen
(Rambaut and Grass 1997) or by PhyloBayes (Lartillot
et al. 2009) if the CAT–GTR model is selected for
simulation. The simulated alignments are generated
using the topology, branch lengths, and model
parameters (i.e., state frequencies, rates, and the
alpha parameter for the gamma rate heterogeneity
approximation) from the constrained analysis as inferred
by the likelihood software or by PhyloBayes. If the
correction of Susko (2014) is applied, the data are
instead simulated on the zero-constrained tree. If the
original data set is partitioned, parameters are estimated
separately for each partition and new alignments are
then generated following the partitioning scheme. Each
of the simulated alignments is then used to estimate two
maximum likelihood trees, using both an unconstrained
search and a constrained search. The difference in log-
likelihood of these two searches (�) is calculated for each
simulated data set, and the set of these differences make
up the null distribution.

The observed log-likelihood difference (�) is then
compared to the null distribution and a p-value is
calculated by the equation p=d/n where d is the number
of � values greater than or equal to the observed value
of � and n is the sample size.

SOWHAT can be used to evaluate a hypothesized
topology given data sets of nucleotide, amino acid, or
binary characters. All models for likelihood inference
available in RAxML or GARLI are available in SOWHAT.

Calculation of Confidence Intervals
SOWHAT calculates confidence intervals around a

p-value following the addition of each new sample
to the null distribution. The confidence intervals are
calculated using the Clopper–Pearson method assuming
a significance level of 95%. The confidence values can be
used to determine adequacy of sample size by evaluating
whether both the lower and upper interval fall on the
same side of the significance level as the p-value.

Examined Data sets
We used Google Scholar (http://scholar.google.com)

to perform a literature search for papers that cited

Goldman et al. (2000) and included the terms “SOWH”
or “parametric bootstrap”.

We narrowed these roughly 400 results down
to 40 which had deposited data on TreeBase
(http://treebase.org/). From these we selected seven
data sets for examination that represent a range
of p-values and data set sizes. They are included
with SOWHAT so that users can easily validate
their installation of SOWHAT, explore the tool, and
reproduce our analyses. The results presented here were
prepared with the version of SOWHAT (v0.20) available
at https://github.com/josephryan/sowhat/tree/
3137601014e24274ebc115acabe086290b5f46e7. We
analyzed the data with GARLI version 2.01.1067,
RAxML version 8.1.15, PhyloBayes version 3.3f, seq-gen
version 1.3.2x, and R version 3.0.0.

Buckley (2002).—From the analysis of the SOWH
test by Buckley (2002), we selected a data set of
mitochondrial ribosomal RNA genes (12S) originally
assembled by Sullivan et al. (1995). Likelihood analysis
of this alignment produces a topology of sigmodontine
rodents, which differs from the topology recovered by
analyses of morphological, chromosomal, allozyme, and
other DNA data sets (Buckley 2002). Buckley (2002)
performed a series of SOWH tests using PAUP* and
multiple models, all of which rejected the alternative
hypothesis using a significance level of 0.05. Here we
repeat the analyses using the models GTR+I+� and
GTR+�. The data set contains eight taxa and 791
characters, and is referred to here as Buckley.

Dixon et al. (2007).—This data set contains 14 individuals
of five species of European Androsace, a perennial
herbaceous plant (Dixon et al. 2007). The alternative
hypothesis to the maximum likelihood topology
includes a monophyletic haplotype group of chloroplast
regions for two species, A. laggeri and A. pyrenica. Dixon
et al. (2007) performed a SOWH test using PAUP* which
rejected this hypothesis using the Hasegawa, Kishino
and Yano (HKY) model model of evolution, but not when
using HKY+�. The data set contains 2180 nucleotide
characters, and is referred to here as Dixon.

Dunn et al. (2005).—This data set is composed of
mitochondrial ribosmal RNA genes (16S and 18S) from
52 siphonophores (Hydrozoa: Cnidaria), as well as
four out-group taxa (Dunn et al. 2005). The authors
tested several hypotheses—the one we examine here
unites Bargmannia with Agalmatidae sensu stricto. Dunn
et al. (2005) performed a SOWH test which rejected
this hypothesis, using parsimony (PAUP*) to score the
original and simulated trees and maximum likelihood
to estimate parameters and simulate data. The data set
contains 2748 nucleotide characters, and is referred to
here as Dunn.

Edwards et al. (2005).—This data set is composed of five
distinct gene regions from 38 taxa in the group Cactaceae

http://scholar.google.com
http://treebase.org/
https://github.com/josephryan/sowhat/tree/3137601014e24274ebc115acabe086290b5f46e7
https://github.com/josephryan/sowhat/tree/3137601014e24274ebc115acabe086290b5f46e7
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(Edwards et al. 2005). The alternative hypothesis to the
maximum likelihood topology creates a monophyletic
group, Pereskia. Edwards et al. (2005) performed a SOWH
test which rejected this hypothesis, using PAUP* (ML)
and the model GTR+I+�. The data set contains 6150
nucleotide characters, and is referred to here as Edwards.

Liu et al. (2012).—This data set includes 12 DNA loci,
including 3 nuclear loci, 5 chloroplast loci, and 4
mitochondrial loci from 26 species of bryophytes (Liu
et al. 2012). The alternative hypothesis to the maximum
likelihood topology constrains the monophyly of
Physcomitrella. Liu et al. (2012) performed a SOWH
test which rejected this hypothesis using RAxML and
the model GTR+I+�, and incorporated a partitioning
scheme which we did not utilize in the analyses
presented here. The data set contains 44 taxa and 6657
nucleotide characters, and is referred to here as Liu.

Sullivan et al. (2000).—This data set is composed
of mitochondrial sequences from 26 individuals of
the rodent species Reithrodontomys sumichrasti. The
alternative hypothesis to the maximum likelihood
topology constrains phylogeographic groups similar
to other rodents (Sullivan et al. 2000). Sullivan et al.
(2000) performed SOWH tests using both maximum
likelihood (under a GTR+I+� model) and parsimony
optimality criterion scores in PAUP*. The hypothesis was
rejected using maximum likelihood scores but not using
parsimony scores. The data set contains 1130 nucleotide
characters, and is referred to here as Sullivan.

Wang et al. (2008).—This data set is composed of
mitochondrial sequences from 41 individuals of the
species of pygmy rain frog Pristimantis ridens and a
single out-group taxon (Wang et al. 2008). The alternative
hypothesis constrains a phylogeographic group of seven
individuals. Wang et al. (2008) performed a SOWH test
which rejected this hypothesis using PAUP* and fixed
parameter values for maximum likelihood searches of
simulated data sets. The data set contains 1672 nucleotide
characters, and is referred to here as Wang.

Sensitivity to Number of Sample Replicates
We selected three of the seven data sets for an analysis

of sensitivity to sample size. These data sets were
selected because the results reported in the original
study did not strongly reject the alternative hypothesis.
For each of these data sets we performed 100 SOWH tests
using a sample size of 100 each, and then subsequently
performed 100 SOWH tests using a sample size of 500
each. We compared the range of p-values returned to the
average confidence intervals calculated by SOWHAT at
the two sample sizes. Each of these tests was performed
using RAxML and the model GTR+�.

Sensitivity to Choice of Likelihood Software
For all seven data sets we performed a test using

GARLI and a test using RAxML and compared the
results, with the exception of Dixon because the model
HKY is not an option in RAxML. We compared the
results of five of these tests to the originally reported
results which were performed using PAUP∗ (ML). Our
analyses were performed using the same model, sample
size, and constraint topology as reported in the literature.
All other program settings were the default. For our
analyses, gaps were propagated into simulated data—
treatment of gaps was mentioned only in the study by
Edwards et al. (2005) where gaps were not present in
simulated data. It is not clear how gaps were treated in
the remaining data sets. We did not directly compare
the results for Dunn, because the original study used
parsimony to score data sets, or Liu, because the
original study used a partitioning scheme not used
for these analyses. Following consultation with the
authors of RAxML, we reran the RAxML analyses with
the Broyden-Fletcher-Goldfard-Shanno (BFGS) routine
suppressed (using the --nobfgs flag in RAxML) and
compared the results.

Sensitivity to Treatment of Gaps
By default, SOWHAT propagates the same number

and position of gaps present in the original data set
into each simulated data set. This is accomplished
by simulating a full data set and then subsequently
removing the cells in matrix positions corresponding
to gaps in the original data set. We analyzed the effect
of not including gaps by suppressing this feature (i.e.,
simulated data matrices were complete, where originals
were not) and comparing the resulting p-values to those
calculated with gaps in simulated data. Four of the seven
data sets analyzed in this study had gaps in the original
data (Dunn, Edwards, Liu, and Wang). We used RAxML
as the likelihood engine in all of these searches, and the
same sample size as reported in the original study.

Sensitivity to Model Specification
We analyzed the effects of using a different model for

likelihood inference from the model used for parameter
estimation and data simulation (Fig. 2). For all seven
data sets, we performed a SOWH test in which the
likelihood score was calculated using a model with a
reduced number of parameters free to vary (JC69) in
comparison to the model used for parameter estimation
and data simulation (GTR+I+�). We compared the
resulting p-values to those calculated using the originally
reported model of evolution for both inference and
data simulation. For these tests we used GARLI as the
likelihood engine and the same sample size as reported
in the original study. We then ran a SOWH test in which
the originally reported model of evolution was used
exclusively for likelihood inference and a model with
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TABLE 1. Number of sample replicates

Data set Samples Tests ML soft. P-values Min. conf. interval

Average Lowest Highest Lower Upper

Buckley 100 100 RAxML 0.261 0.140 0.312 0.114 0.185
Buckley 500 100 RAxML 0.263 0.219 0.264 0.171 0.211

Sullivan 100 100 RAxML 0.411 0.290 0.510 0.256 0.327
Sullivan 500 100 RAxML 0.401 0.344 0.458 0.329 0.360

Dixon 100 100 RAxML 0.092 0.030* 0.160 0.017 0.051
Dixon 500 100 RAxML 0.095 0.065 0.132 0.056 0.073

Notes: 100 SOWH tests were performed for three data sets with a sample size of 100, and 100 tests were performed with a sample size of 500.
P-values for the Dixon data set at a sample size of 100 vary from 0.030 to 0.169, indicating repeated SOWH tests at this sample size could result
in different outcomes using a significance level of 0.05. The minimum confidence interval is 0.017–0.051, indicating that all p-values which fall
below 0.05 are accompanied by a confidence interval which spans the significance level, therefore more sampling is required. At a sample size of
500, all p-values and all confidence intervals fall entirely above the confidence level (the minimum interval is 0.056–0.073), indicating a sufficient
sample size. * indicates p-value less than 0.05.

an increased number of free parameters (the CAT–GTR
model found in PhyloBayes) was used for parameter
estimation and data simulation. The resulting p-values
were compared to those calculated using the originally
reported model for both likelihood and inference. For
these tests we used RAxML as the likelihood engine
and the same sample size as reported in the original
study.

Sensitivity to Generating Topology
We analyzed the effects of simulating data under

the zero-constrained tree in place of a fully resolved
tree estimated under the alternative hypothesis. In this
method, following estimation of the most likely tree in
an unconstrained search, SOWHAT uses the R package
hutan (https://bitbucket.org/caseywdunn/hutan) to
identify incongruent nodes and reduce them to a value
near zero (here 1∗10−6). All other branch lengths are
preserved, resulting in a partially resolved tree referred
to as the zero-constrained tree (Susko 2014). For all seven
data sets we compared the results of a SOWH test using
a fully resolved generating topology to a test using the
zero-constrained tree. We used RAxML as the likelihood
engine in all of these searches, with the exception of
Dixon where GARLI was used, and the same sample
size as reported in the original study.

RESULTS AND DISCUSSION

Number of Sample Replicates
When an investigator applies the SOWH test they

must decide how many simulated bootstrap samples
to generate. Without sampling an adequate number
of replicates, stochasticity can lead to poor estimates
of the null distribution and different outcomes
between repeated SOWH tests. Increasing the number
of replicates, however, comes with an increased
computational cost. Few previously reported SOWH

tests provide justification for sample size. A sufficient
sample size depends on the data in question. To explore
the effects of sample size, we ran multiple identical
SOWH tests and compared the resulting p-values.

Our results indicate that a sample size of 100 is not
sufficient for all data sets (Table 1). For the Dixon data
set, repeated SOWH tests with 100 samples returned p-
values ranging from 0.030 to 0.160, which results in a
different interpretation of outcome at a significance level
of 0.05. When the sample size was increased to 500, the
test consistently returned a p-value greater than 0.05.

The confidence intervals calculated by SOWHAT
provide an explicit tool for assessing the adequacy of
sampling for a given test. With each new value added
to the null distribution, SOWHAT recalculates the p-
value and confidence intervals, allowing the adequacy
of the sample size to be evaluated simultaneously with
the results of the test. In the case of the SOWH tests
on Dixon with 100 samples, the minimum confidence
interval is 0.017–0.051, indicating that all p-values which
fall below 0.05 are accompanied by a confidence interval
which spans the significance level. This signals to the
investigator that there is not adequate sampling to
provide a robust interpretation of the outcome. As
sample size increases, the confidence interval decreases,
and at a sample size of 500 all p-values and confidence
intervals fall above the level of significance for this data
set, indicating that sample size is sufficient.

Choice of Likelihood Software
Application of the SOWH test also requires deciding

which software to use for likelihood estimation. Our
results indicate that, all else being equal, the choice
of likelihood software between GARLI and RAxML
does not affect the outcome of the SOWH test as
long as a minor adjustment is made to how RAxML
is run. Specifically, BFGS optimization of RAxML
model parameters results in suboptimal performance
on simulated data, but suppressing this optimization
resolves the problem.

https://bitbucket.org/caseywdunn/hutan
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TABLE 2. Choice of likelihood software

Data set Source Samples Model ML software P-value Conf. interval

Lower Upper

Buckley New 1000 GTR+I+� GARLI 0.018∗ 0.011 0.028
Buckley New 1000 GTR+I+� RAxML 0.010∗ 0.005 0.018
Buckley Reported 1000 GTR+I+� PAUP* (ML) 0.018∗ – –

Buckley New 1000 GTR+� GARLI 0.118 0.099 0.140
Buckley New 1000 GTR+� RAxML 0.252 0.225 0.280
Buckley Reported 1000 GTR+� PAUP* (ML) 0.015∗ – –

Dixon New 500 HKY GARLI 0.012∗ 0.004 0.026
Dixon Reported 500 HKY PAUP* (ML) 0.258 – –

Dixon New 500 HKY+� GARLI 0.002∗∗ <0.005 0.011
Dixon Reported 500 HKY+� PAUP* (ML) <0.005∗∗ – –

Dunn New 100 GTR+I+� GARLI <0.01∗∗ <0.01 0.036
Dunn New 100 GTR+I+� RAxML <0.01∗∗ <0.01 0.036

Edwards New 100 GTR+I+� GARLI <0.01∗∗ <0.01 0.036
Edwards New 100 GTR+I+� RAxML <0.01∗∗ <0.01 0.036
Edwards Reported 100 GTR+I+� PAUP* (ML) <0.01∗∗ – –

Liu New 100 GTR+I+� GARLI <0.01∗∗ <0.01 0.036
Liu New 100 GTR+I+� RAxML <0.01∗∗ <0.01 0.036

Sullivan New 100 GTR+I+� GARLI <0.01∗∗ <0.01 0.036
Sullivan New 100 GTR+I+� RAxML <0.01∗∗ <0.01 0.036
Sullivan Reported 100 GTR+I+� PAUP* (ML) <0.01∗∗ – –

Wang New 500 GTR+� GARLI <0.005∗∗ <0.005 0.007
Wang New 500 GTR+� RAxML <0.005∗∗ <0.005 0.007
Wang Reported 500 GTR+� PAUP* (ML) <0.005∗∗ – –

Notes: SOWH tests were performed using GARLI and RAxML for each data set, with the exception of Dixon et al. (2007) as HKY is not an option
in RAxML. Each SOWH test was performed using the model, sample size, and constraint topology specified in the original performance of the
test. Buckley and Dixon were analyzed using two different models of evolution, as reported originally. The resulting p-values were compared to
those reported in the literature for five data sets. The other two data sets were not directly compared due to known differences in implementation;
the SOWH test performed by Dunn et al. (2005) used parsimony to score tree; the test by Liu et al. (2012) was performed with a partition scheme
not used here. The outcome of the tests differed from the literature for two data sets, Buckley using GTR+� and Dixon using HKY. * indicates
p-values less than 0.05; ** indicates less than 0.01.

We compared the results of SOWH tests performed
using the same data, model, and sample size, but
different likelihood software (GARLI and RAxML) for
six data sets (Table 2). For the Buckley data set,
we performed this comparison using two different
models for each likelihood software tool. Under BFGS
optimization (the RAxML default), the choice of
likelihood software had an effect on the outcome for
two data sets, Sullivan and Wang (see Supplementary
Table 1 in online Appendix 1 available on Dryad
at http://dx.doi.org/10.5061/dryad.c80p7). Rerunning
the tests using RAxML with the optimization suppressed
resulted in universally smaller ranges of null distribution
and the outcomes of the tests run under RAxML were the
same as those under GARLI (Table 2).

We also compared the results of the SOWH test
reported in the literature to the results obtained here for
five of these seven data sets (Table 2). Each of the tests
compared was performed using the same hypothesis,
model, and sample size as originally reported, but
differed in likelihood software—all of the reported tests
were previously performed using PAUP*. In addition
to the previously stated difference in results of the
Sullivan and Wang tests, two other tests returned

outcomes different than those previously reported. For
Buckley using the model GTR+�, the SOWH tests
performed using GARLI and RAxML both failed to
reject a hypothesis reported to be rejected in the original
study (P<0.05). For Dixon, the SOWH test performed
using GARLI and the model HKY rejected a hypothesis
(P<0.05) that was not rejected in the original study.
As the reported SOWH tests were not performed using
SOWHAT, we cannot determine whether these results
are due to differences in performance of likelihood
software or other aspects of test implementation. We did
not directly compare the results of Dunn or Liu due to
known differences in implementation beyond likelihood
software—despite these difference, for both data sets
the outcome of the SOWH tests performed here were
consistent with those originally reported.

Treatment of Gaps
Multiple sequence alignments include gaps due to

both missing data and the accommodation of insertions
and deletions. These gaps are often not included in the
simulated bootstrap samples. The purpose of simulating

http://dx.doi.org/10.5061/dryad.c80p7
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TABLE 3. Treatment of gaps

Data set % Gaps in Simulate P-value Conf.
data set gaps interval

Lower Upper

Dunn 14.759 yes <0.01** <0.01 0.036
Dunn 14.759 no <0.01** <0.01 0.036

Edwards 14.268 yes <0.01** <0.01 0.036
Edwards 14.268 no <0.01** <0.01 0.036

Liu 9.149 yes <0.01** <0.01 0.036
Liu 9.149 no <0.01** <0.01 0.036

Wang 13.092 yes 0.026* 0.014 0.044
Wang 13.092 no 0.022* 0.011 0.039

Notes: SOWHAT by default propagates the exact number and position
of gaps present in the original data set into all simulated data sets.
Suppressing this feature, thereby excluding gaps from subsequent
analyses, did not change the outcome of any SOWH tests examined
here. * indicates p-values less than 0.05; ** indicates less than 0.01.

data sets under parametric conditions is to recreate
the situation under which the real-world data was
generated—ideally this would recreate the presence of
gaps as well. SOWH tests performed where gaps are
present only in observed data sets and not in simulated
data sets, have an increased amount of information in
simulated data sets, which has the potential to affect
likelihood analyses on these data sets and therefore affect
the outcome of the test.

SOWHAT simulates the data without gaps and
subsequently replaces determined sites with gaps based
on the number and positions of gaps in the original data
set. While this does not explicitly model the processes
that led to the original gaps, this method ensures
that taxa which were originally poorly sampled and
which may be in question will be poorly sampled in all
simulated data sets as well.

We tested the effects of gaps by suppressing this
feature (i.e., all simulated data sets were completely
full). Our results indicate that, for the four data sets
tested here, gaps had no major effect on the outcome
of the SOWH test (Table 3). Excluding these gaps from
simulated data did not change the outcome of the test
for any of these data sets.

Model Specification
The choice of model used for likelihood inference

and for simulating data sets has previously been shown
to have an impact on the outcome of the SOWH
test (Goldman et al. 2000; Buckley 2002). Buckley
(2002) suggest that when the likelihood search is being
performed with the exact same model used to generate
the data it will be prone to recover the generating
topology, therefore � values will be smaller and the null
distribution will be more narrow. To minimize type I
error, they suggest that the model used for parameter
estimation should include a greater number of free

TABLE 4. Model specification: JC69 analysis

Data set Models P-value Conf. interval

ML score Parameters Lower Upper

Buckley GTR+G GTR+G 0.241 0.215 0.269
Buckley JC69 GTR+G+I <0.001∗∗ <0.001 0.004

Dixon HKY+G HKY+G 0.012∗ 0.004 0.026
Dixon JC69 GTR+G+I <0.005∗∗ <0.005 0.007

Dunn GTR+G+I GTR+G+I <0.01∗∗ <0.01 0.036
Dunn JC69 GTR+G+I <0.01∗∗ <0.01 0.036

Edwards GTR+G+I GTR+G+I <0.01∗∗ <0.01 0.036
Edwards JC69 GTR+G+I <0.01∗∗ <0.01 0.036

Liu GTR+G+I GTR+G+I <0.01∗∗ <0.01 0.036
Liu JC69 GTR+G+I <0.01∗∗ <0.01 0.036

Sullivan GTR+G+I GTR+G+I 0.290 0.204 0.389
Sullivan JC69 GTR+G+I <0.01∗∗ <0.01 0.036

Wang GTR+G+I GTR+G+I 0.026∗ 0.014 0.044
Wang JC69 GTR+G+I <0.005∗∗ <0.005 0.007

Notes: Model 1 represents the model used for likelihood inference
(i.e., searching and scoring both the original and simulated data sets).
Model 2 was used to estimate parameter values and simulate data sets.
Separating the models for scoring and simulation has been suggested
as a correction for a liberal bias present in the SOWH test. Using a
model for scoring with fewer parameters free to vary, such as JC69,
here resulted in a more liberal test. All hypotheses were rejected when
JC69 was used as Model 1. * indicates p-values less than 0.05; ** indicates
less than 0.01.

parameters than the model used for likelihood inference
(Fig. 2).

We evaluated the effect of this adjustment using two
different methods. First, for seven data sets we compared
the results of SOWH tests performed using the JC69
model for likelihood inference and GTR+I+� for data
simulation (Table 4) to tests using the same model for
likelihood inference and data simulation. Our results
show that, contrary to what was previously suspected,
using distinct models resulted in lower � values and
a potentially higher type I error rate. For every test
performed where JC69 was used for likelihood inference
the p-value returned was <0.01 and the hypothesis
was rejected, including those tests that did not reject
the hypothesis when the models used for likelihood
inference and data simulation were the same.

Second, for six data sets we also compared the results
of SOWH tests when parameters were optimized and
data simulated under the PhyloBayes CAT–GTR model
and a simpler model used for inference (Table 5). In this
analysis, parameters were estimated using the posterior
predictive framework under the CAT–GTR model and
simulated using these parameters using PhyloBayes.
The CAT–GTR model introduces the additional free
parameter of site-specific heterogeneity. PhyloBayes
was used strictly for parameter estimation and data
simulation; data sets were scored using RAxML and
likelihood scores were used for the statistical test.

Our results show that this method can change the
outcome of the test in both directions, depending on the
data in question. For Buckley and Sullivan, the SOWH
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TABLE 5. Model specification: CAT analysis

Data set Models P-value Conf. interval

ML score Parameters Lower Upper

Buckley GTR+� GTR+� 0.241 0.215 0.269
Buckley GTR+� CAT 0.013∗ 0.007 0.022

Dunn GTR+I+� GTR+I+� <0.01∗∗ <0.01 0.036
Dunn GTR+I+� CAT 0.080 0.035 0.152

Edwards GTR+I+� GTR+I+� <0.01∗∗ <0.01 0.036
Edwards GTR+I+� CAT <0.01∗∗ <0.01 0.036

Sullivan GTR+I+� GTR+I+� 0.290 0.204 0.389
Sullivan GTR+I+� CAT 0.030∗ 0.006 0.085

Liu GTR+I+� GTR+I+� <0.01∗∗ <0.01 0.036
Liu GTR+I+� CAT <0.01∗∗ <0.01 0.036

Wang GTR+G GTR+G 0.026∗ 0.014 0.044
Wang GTR+G CAT 0.020∗ 0.010 0.036

Notes: Model 1 and Model 2 are the same as described in Table 4. Using
a model for simulation with a greater number of parameters free to
vary, such as the CAT model of PhyloBayes, did not result in universally
larger � values and therefore a more conservative test, though this
was true for one data set, Dunn. The outcome of two other tests also
differed, for Buckley and Sullivan, but the result was a more liberal
test. * indicates p-values less than 0.05; ** indicates less than 0.01.

test performed using the CAT–GTR model rejected a
hypothesis which was not rejected using the same model
for inference and simulation (P>0.05). Conversely, for
Dunn the SOWH test performed using the CAT–GTR
model failed to reject a hypothesis which was rejected
using the same model for inference and simulation
(P<0.05). These results do not support the hypothesis
that using distinct models will universally result in
higher � values and a more conservative test. We find no
consistent evidence to support the suggestion that the
model for inference should be distinct from the model
for simulation.

It has also been suggested that, to reduce the rate
of type I error, parsimony might be used in place of
likelihood inference to score the data sets (Buckley
2002). Parsimony has often been used to reduce the
computational burden of running multiple likelihood
searches (Dunn et al. 2005). However, using parsimony
in the context of the SOWH test is problematic. Often
the purpose of the test is to determine whether the most
likely hypothesis is significantly more likely than some
a priori hypothesis. It is quite possible that the a priori
hypothesis may not be significantly less parsimonious
and still be significantly less likely, as seems to be
the case in the two SOWH tests reported in Sullivan
et al. (2000). Given the improved speed in likelihood
software, parsimony should no longer be used in place
of likelihood in the context of the SOWH test.

Generating Topology
The SOWH test, as presented in Goldman et al (2000),

generates new data sets using the parameter values and
tree topology estimated under the alternative constraint

TABLE 6. Generating topology

Data Model Generating P-value Conf.
set tree interval

Lower Upper

Buckley GTR+I+� Fully Resolved 0.025∗ 0.016 0.037
Buckley GTR+I+� Zero-constrained 0.123 0.103 0.145

Buckley GTR+� Fully Resolved 0.241 0.215 0.269
Buckley GTR+� Zero-constrained 0.439 0.408 0.470

Dixon HKY+� Fully Resolved 0.012∗ 0.004 0.026
Dixon HKY+� Zero-constrained 0.032∗ 0.018 0.051

Dixon HKY Fully Resolved 0.002∗∗ <0.005 0.011
Dixon HKY Zero-constrained <0.005∗∗ <0.005 0.007

Dunn GTR+I+� Fully Resolved <0.01∗∗ <0.01 0.036
Dunn GTR+I+� Zero-constrained <0.01∗∗ <0.01 0.036

Edwards GTR+I+� Fully Resolved <0.01∗∗ <0.01 0.036
Edwards GTR+I+� Zero-constrained <0.01∗∗ <0.01 0.036

Liu GTR+I+� Fully Resolved <0.01∗∗ <0.01 0.036
Liu GTR+I+� Zero-constrained <0.01∗∗ <0.01 0.036

Sullivan GTR+I+� Fully Resolved 0.290 0.204 0.389
Sullivan GTR+I+� Zero-constrained 0.240 0.160 0.336

Wang GTR+� Fully Resolved 0.026∗ 0.014 0.044
Wang GTR+� Zero-constrained 0.034∗ 0.020 0.054

Notes: We compared SOWH tests performed using a fully resolved
generating topology to tests performed using the zero-constrained
tree, as suggested by Susko (2014). The zero-constrained tree is created
by manipulating the most likely unconstrained tree so that edges
incongruent with the alternative hypothesis are reduced to nearly zero.
Using this method changed the outcome of only one test, Buckley, using
the model GTR+I+�. * indicates p-values less than 0.05; ** indicates less
than 0.01.

hypothesis. Susko (2014) suggest that using a fully
resolved tree as the generating topology will result in
a test that is too conservative and that returns lower
p-values than it should. They suggest instead using a
third tree, referred to as the zero-constrained tree, as the
generating topology.

We evaluated this adjustment by comparing the
results of SOWH tests performed using a fully resolved
tree to the results of tests performed using the zero-
constrained tree for all seven data sets included in this
study (Table 6). Our results show that using the zero-
constrained tree results in very similar p-values for nearly
all of the tests in question. The outcome of the test was
different for one data set, Buckley when using the model
GTR+I+�, where the test using the zero-constrained
tree did not reject the alternative hypothesis which was
rejected using a fully resolved generating tree (P>0.05).

These results suggest that using the zero-constrained
tree can result in higher p-values, but that the impact is
minimal and for many data sets the outcome of the test
is unchanged.

CONCLUSION

The SOWH test is of great value to the phylogenetic
community. However, it can be burdensome to perform
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manually and requires making multiple decisions
that have the potential to affect the outcome of
the test. SOWHAT eliminates the burden of manual
implementation of the SOWH test. Using SOWHAT to
evaluate the impact of these decisions, we provide the
following recommendations for implementation of the
SOWH test. Where possible, these recommendations
have been adopted as the default behavior of SOWHAT.

The number of sample replicates in a SOWH test
should be explicitly justified. Our results indicate
that a sample size of 100 is not adequate for all
data sets. SOWHAT calculates confidence intervals
around the p-values, and our results indicate that
these confidence values capture a reasonable amount
of the observed variation in repeated tests. Following
a minimum number of samples—we recommend 100—
an investigator should evaluate the adequacy of sample
size by determining whether the confidence intervals fall
entirely on one side of the significance level.

We found that the choice of likelihood software did
not depend on whether GARLI or RAxML were used for
likelihood analyses, as long as BFGS optimization was
suppressed in RAxML. Given that RAxML performs the
likelihood searches much faster than GARLI, RAxML
with the BFGS routine silenced is the default likelihood
engine in SOWHAT. GARLI can be used if additional
models are required.

Our results indicate that excluding gaps from
simulated data is unlikely to change the overall outcome
of a SOWH test, however this effect may depend on
the data in question. Since there is little computational
cost and strong biological justification, we recommend
simulating data with gaps.

Model misspecification is a problem universal to
parametric bootstrap tests, which rely on the model
to both simulate and evaluate the data. It has been
suggested that using a model for likelihood inference
that is distinct from the model used for data simulation
may result in lower type I error rate (Buckley 2002).
Our results are not consistent with this hypothesis—we
found that using a simpler model for inference compared
to the model used for simulation does not result in
universally higher � values. We therefore suggest that
the same model is used for inference and simulation.

It has also been suggested that simulating new data
under a tree which is not fully resolved, such as the
zero-constrained tree will result in lower type I error
(Susko 2014). We find that simulating data on the zero-
constrained tree can impact results, but that for many
data sets using the zero-constrained tree will not change
the outcome of the test. Given the well-established
concern of a high type I error rate along with the low
computation cost in implementation, we recommend
simulating data under the zero-constrained tree.

In all statistical tests such as the SOWH test, the
recommended approach is to perform all reasonable
permutations of the test and to report the highest p-value.
SOWHAT greatly facilitates running multiple SOWH
tests with a range of parameters and comparing the
effects on the final result.
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Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.c80p7.
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