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Abstract: We use functional near-infrared spectroscopy (fNIRS) to 
discriminate the alert and drowsy states for a passive brain-computer 
interface (BCI). The passive brain signals for the drowsy state are acquired 
from the prefrontal and dorsolateral prefrontal cortex. The experiment is 
performed on 13 healthy subjects using a driving simulator, and their brain 
activity is recorded using a continuous-wave fNIRS system. Linear 
discriminant analysis (LDA) is employed for training and testing, using the 
data from the prefrontal, left- and right-dorsolateral prefrontal regions. For 
classification, eight features are tested: mean oxyhemoglobin, mean 
deoxyhemoglobin, skewness, kurtosis, signal slope, number of peaks, sum 
of peaks, and signal peak, in 0~5, 0~10, and 0~15 second time windows, 
respectively. The results show that the best performance for classification is 
achieved using mean oxyhemoglobin, the signal peak, and the sum of peaks 
as features. The average accuracies in the right dorsolateral prefrontal 
cortex (83.1, 83.4 and 84.9% in the 0~5, 0~10 and 0~15 second time 
windows, respectively) show that the proposed method has an effective 
utility for detection of drowsiness for a passive BCI. 

©2015 Optical Society of America 

OCIS codes: (170.2655) Functional monitoring and imaging; (300.0300) Spectroscopy; 
(070.5010) Pattern recognition; (200.3050) Information processing. 
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1. Introduction 

Non-invasive brain-computer interface (BCI) methods measure brain activities either by 
detecting the electrophysiological signals [1–3] or by determining the hemodynamic 
responses [4–10]. The electrophysiological phenomena are generated due to neuronal firing as 
a result of brain tasks [1]. The hemodynamic response is produced when the blood releases 
glucose at a greater rate to active neurons in the areas of inactive neurons [9, 10]. 
Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are the 
leading non-invasive BCI modalities in terms of cost and portability [1, 7]. Recently 
researchers have combined these two modalities for improved BCI performance and better 
control command signal generation [11, 12]. 

The body of BCI research can be categorized into active, reactive and passive brain tasks 
[13]. In an active BCI, the brain signal is made directly and intentionally by the user, which is 
independent of external events: Motion intention, motor imageries, and mental tasks fall into 
this category [11, 14–21]. In a reactive BCI, the brain signal is generated in reaction to 
external stimulation: All audio, video and pain stimuli generate a reactive signal in the brain 
that can be used for reactive BCI [3, 22–26]. In a passive BCI, an arbitrary activity generated 
without any objective control is used: Fatigue estimation [27], for example, falls under the 
passive BCI domain. Whereas the active and reactive types of BCI are based on the users’ 
will for generation of commands that are used in control applications [3, 7, 11], the passive 
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type of BCI is an effective tool for monitoring brain activity changes during normal tasks 
[13]. 

Drowsiness (a passive brain activity caused by fatigue or sleep deprivation) is a significant 
contributor to traffic accidents [28]. The drowsiness activity has been found to occur in the 
prefrontal cortex (PFC) while driving a vehicle [29]. Also, increased brain activity has been 
reported during the sleep transition between wakefulness and the rapid eye movement state 
[30]. Thus, developing an effective system based on the drowsy state of the driver is an 
essential prerequisite for real-life safe driving. Previous studies have used eye-blinking [31] 
and head-nodding-related tasks [32] to detect drowsiness. However, in those studies, 
drowsiness was sometimes incorrectly detected due to false detection of visual attributes [33]. 
In the last decade, brain activity has been studied using several functional brain imaging 
modalities for steering, vigilance and drowsy states [34–44]. These studies showed the 
possibility of detection of vigilance [35], fatigue [42, 43] and drowsiness [41, 44, 45]. Mostly, 
they considered the neural correlates necessary for detection of drowsiness [35, 40–46]. 
However, to avoid false alerts, the characteristics of the hemodynamic response due to 
drowsiness, along with the neuronal response, should also be studied. 

In this study, we investigate the feasibility of detecting the drowsy state via the 
hemodynamic brain activity for a passive BCI. The brain signals are measured from the 
prefrontal and dorsolateral prefrontal cortex regions. fNIRS is used to detect the drowsiness 
activity of the subjects in three different time windows for classification using eight different 
feature sets. Mean oxyhemoglobin, signal peak and sum of peaks are found to be the three 
features that allow the best classification performance. To the best of our knowledge, this is 
the first fNIRS investigation that has targeted the right dorsolateral prefrontal cortex to 
discriminate the unintentional drowsy state from the active / alert states using three features 
(i.e., signal mean, signal peak, and sum of peaks) for a passive BCI, which provide good 
classification accuracies. 

2. Methods 

2.1. Experimental procedure 

A total of 13 healthy adults were recruited (all male, mean age: 28.5 ± 4.8). Two among the 
selected participants were left handed. The subjects had not participated in any drowsy state 
detection experiment previously. Also, none of the participants reported a previous history of 
any psychiatric, neurological or visual disorder. All of them had normal or corrected-to-
normal vision, and all provided verbal consent after having been informed in detail about the 
experimental procedure. The experiment was conducted in accordance with the latest 
Declaration of Helsinki. 

Prior to the experiment, the subjects were deprived of almost ten hours of sleep. The 
subjects stayed awake during the night time, while the experiment was conducted in the 
morning. They were each seated in a comfortable chair and asked to relax. A screen was 
placed in front of them at a distance of almost 70 cm. The subjects were asked to drive a car 
in a virtual environment for an hour using a driving simulator (city car driving) while keeping 
the speed of the car within 40~60 km/hr. In order to avoid motion artifacts, the subjects were 
asked to keep their head and body movement to a minimum. A five minutes’ pretrial was 
performed for the subjects to familiarize with the simulator and to adjust the baseline for their 
brain signals. The subjects each drove the car for 30 ± 5 minutes while they were visually 
inspected. The car was driven on a given track with medium traffic density and light 
pedestrian movement. 

Three different criteria are used to determine the drowsy state in the data: The first 
criterion is to use a recorded marker(s) from the driving simulator data, in which the subjects 
are asked to maintain the car at a steady speed. If the subject makes any traffic violation or 
loses control of the car, a marker is placed at the time of violation or mistake. The second 
criterion is to inspect the subject during the driving session visually by eyes. Usually, the 
subject blinks rapidly in the drowsy state (see [30]). The time where the subject closes eyes 
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for more than 10 seconds or blinks rapidly is to be noted. The time interval of the first and the 
second criteria has been compared to set the labels of drowsiness. At the end of an 
experiment, the subjects are asked about their mental condition during the driving session. 
The questionnaire was used to assess the state of mind of the subjects when the mistakes were 
made. The three criteria were used together to give the label of the drowsy state in the data. 
The experiment was stopped if the subject was not able to drive, or requested a break, due to 
excessive fatigue. Actually, one experiment was halted due to the subject’s request, whose 
data were discarded. Figure 1 depicts a block diagram indicating the experimental protocol. 

2.2. Sensor configuration 

Figure 2 shows the optodes configuration in this work. The NIRS signals were acquired using 
7 sources and 16 detectors forming a combinational pair of 28 channels that were placed on 
the PFC and dorsolateral prefrontal cortex (DPFC) according to the International 10-20 
System [14, 30]. The data from the right DPFC were recorded through channels 1~8, and the 
data from the left DPFC were recorded by channels 21~28. Channels 1~8 are labeled as 
region A, channels 9~20 as region B, and channels 21~28 as region C, respectively. 

 

Fig. 1. The experimental scheme used for drowsiness detection. 
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Fig. 2. The placement of optodes over the prefrontal and dorsolateral prefrontal cortex regions. 

2.3. Signal acquisition and processing 

The brain signals were recorded using a continuous-wave imaging system (DYNOT, NIRx 
Medical Technologies, USA) with 760 and 830 nm wavelengths, respectively. The data were 
obtained at the sampling rate of 1.81 Hz. Gaussian filtering was used to remove the 
respiratory, heartbeat and other motion artifacts from the data [47–51]. The modified Beer-
Lambert law [52] was used to convert the raw intensity values to the oxygenated and 
deoxygenated hemoglobin concentration changes (i.e., ∆HbO and ∆HbR). The modified Beer-
Lambert law is given as 

 in

out

( )
( ; ) ln ( ) ( ) ( ) ,

( ; )

I
A t c l d

I t

λλ α λ λ λ η
λ

= = × × × +  (1) 
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where A is the absorbance of light (optical density), Iin is the incident intensity of light, Iout is 
the detected intensity of light, α is the specific extinction coefficient in μM−1cm−1, c is the 
absorber concentration in μM, l is the distance between the source and detector in cm, d is the 
differential path-length factor, and η is the loss of light due to scattering. 

2.4. Feature extraction and classification 

One important aspect in feature extraction is to determine the proper size of data in time, 
which is most appropriate in extracting the features of drowsiness and alert state. In this work, 
three different times windows (i.e., 0~5, 0~10, and 0~15 seconds) are investigated. For each 
time window, eight different features (i.e., mean ∆HbO, mean ∆HbR, skewness, kurtosis, 
slope, number of peaks, sum of peaks, and signal peak) are computed (using the averaged 
signal in each region): The signal means of ∆HbO and ∆HbR are calculated as follows. 
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where M is the mean value, the subscript k denotes the different window size (i.e., 0~5, 0~10, 
0~15 sec), N is the number of observations, and Xk represent the HbO or HbR data in the 
given window. The skewness is computed as follows. 
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where skew is the skewness, σ is the standard deviation of X in a single time window, and E is 
the expectation or expected value of X. The kurtosis is computed as follows. 

 
4

4

( )
,k

k

E X M
kurt

σ
−

=  (5) 

where kurt is the kurtosis. Once a window size is selected, the signal slope (SS) is calculated 
using the polyfit function in MATLAB 8.1.0 (MathWorks, USA), the number of peaks (NoP) 
is gauged by counting the total number of local maxima of the averaged ∆HbO signals, the 
sum of peaks (SoP) is computed by taking the sum of the maxima values, the signal peak (P) 
is estimated using the MATLAB max function, and the frequency of peaks (f) is determined 
by dividing NoP by the window size. It is remarked that NoP and f give the same information. 
All these features have been calculated for regions A, B and C separately. 

After the eight features discussed above are calculated for each time window, their values 
are then normalized and rescaled between 0 and 1 by the following equation. 
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a
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where a ∈Rn represents the feature value, a′  is the re-scaled value between 0 and 1, max a 
denotes the largest value, and min a indicates the smallest value. These normalized feature 
values are used in a two-class classifier for training and testing the data by using linear 
discriminant analysis (LDA) to find the optimal separation between the drowsy and alert 
states [53]. 

Let ix ∈ R2 (where i denotes the classification class; drowsiness and alert) denote the 
samples, μi be the sample mean of class i, and μ  be the total mean over all the samples. That 
is, 
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where ni is the number of samples of class i, and n is the total number of samples. The optimal 
projection matrix V for the LDA that maximizes the following Fisher’s criterion is 
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where SB and SW are the between-class scatter matrix and the within-class scatter matrix, 
respectively, given by 
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where the total number of classes are given by m. Equation (8) was treated as an eigenvalue 
problem to obtain the optimal vector V that corresponds to the largest eigenvalue. For training 
and testing of the data and to estimate the performance of the classifier, we used the 10-fold 
cross-validation method in [54]. 

3. Results 

Example signals of ∆HbO and ∆HbR in regions A, B and C are shown in Fig. 3. The data 
have been labelled into drowsy and alert state using the experimental procedure criteria (see 
Section 2.1). The first task is to determine the most active region among the three regions 
during the drowsy state since it is beneficial to use a small region for BCI for drowsiness 
detection (instead of the entire PFC). 

 

Fig. 3. ∆HbO and ∆HbR changes in the prefrontal and dorsolateral prefrontal brain regions 
(Subject 3): Region A consists of channels 1~8, region B channels 9~20, and region C 
channels 21~28. 

The data are segmented into windows and each window is labelled as a trial. For a 30 min 
data set, if the entire data is cut into 0~5 sec time window, we can compute 360 values (i.e., 
30 ×  60 / 5) for a feature. Similarly, 180 and 120 feature values if 0~10 sec and 0~15 sec 
window sizes are chosen. To label the drowsy status of each channel (i.e., to see the most 
observable features for drowsiness activity), the feature values during the drowsy period are 
averaged. By the same token, to label the alert status, the same procedure is carried out for the 
alert period. Tables 1, 2, and 3 show the comparison of eight features in the drowsy and alert 
state for three time windows in region A, respectively. 
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Table 1. Eight features in region A (before normalization): 0~5 sec window 

 Channel 1 Channel 2 Channel 3 Channel 4 
Feature Drowsy Alert Drowsy Alert Drowsy Alert Drowsy Alert 

M 2.3E-05 -6.7E-06 4.7E-05 -1.8E-04 5.2E-04 -6.0E-04 2.7E-04 -5.4E-04 
P 1.9E-04 1.4E-04 1.1E-04 -1.4E-04 5.9E-04 -5.2E-04 3.3E-04 -4.8E-04 

SoP 2.3E-05 0.0E+00 4.7E-05 7.6E-06 5.2E-04 -2.1E-05 2.7E-04 -8.2E-06 
NoP 1 0 24 3 79 30 63 16 

M* -4.0E-06 -5.9E-07 -9.7E-05 2.0E-04 1.4E-04 -9.2E-05 -4.7E-05 6.9E-05 
skew -1.3E-02 1.2E-02 -1.8E-02 -5.1E-02 3.2E-02 4.0E-02 -3.5E-02 5.7E-02 
kurt 2.1E+00 2.1E+00 2.1E+00 2.1E+00 2.1E+00 2.1E+00 2.1E+00 2.1E+00 

SS 1.0E-07 2.4E-07 -2.8E-08 -2.6E-08 2.2E-09 -2.1E-08 1.5E-09 -2.0E-10 
f 5.2E-04 0.0E+00 1.2E-02 4.7E-03 4.1E-02 4.7E-02 3.3E-02 2.5E-02 

 Channel 5 Channel 6 Channel 7 Channel 8 
Feat. Drowsy Alert Drowsy Alert Drowsy Alert Drowsy Alert 

M 4.2E-04 -5.0E-04 7.9E-05 4.4E-05 1.4E-03 -1.9E-03 3.7E-04 -5.4E-04 
P 4.8E-04 -4.3E-04 -1.9E-05 9.3E-05 1.5E-03 -1.8E-03 -2.8E-04 6.3E-04 

SoP 4.2E-04 0.0E+00 -7.9E-05 0.0E+00 1.4E-03 -5.2E-04 -3.7E-04 0.0E+00 
NoP 48 0 0 0 56 26 0 0 

M* 4.1E-05 -2.8E-05 -8.0E-05 1.4E-04 5.9E-05 -1.2E-04 -1.4E-04 2.3E-04 
skew 2.5E-02 2.8E-03 -1.5E-01 -6.5E-02 8.7E-03 1.4E-02 -3.2E-02 2.9E-02 
kurt 2.1E+00 2.1E+00 2.2E+00 2.2E+00 2.1E+00 2.1E+00 2.1E+00 2.2E+00 

SS 2.4E-10 6.4E-10 9.3E-11 2.9E-11 4.2E-12 -3.3E-12 -1.2E-12 6.1E-12 
f 2.0E-02 0.0E+00 0.0E+00 0.0E+00 3.0E-02 5.6E-02 0.0E+00 0.0E+00 

Note: All values are computed from ∆HbO, whereas M* is computed from ∆HbR. 

Table 2. Eight features in region A (before normalization): 0~10 sec window 

 Channel 1 Channel 2 Channel 3 Channel 4 
Feature Drowsy Alert Drowsy Alert Drowsy Alert Drowsy Alert 

M 2.2E-05 -6.0E-06 4.5E-05 -1.8E-04 5.3E-04 -6.0E-04 2.7E-04 -5.4E-04 
P 2.8E-04 2.4E-04 1.5E-04 -1.0E-04 6.5E-04 -4.5E-04 3.8E-04 -4.2E-04 

SoP 3.5E-05 1.2E-05 7.2E-05 0.0E+00 3.8E-04 -2.6E-04 8.5E-05 0.0E+00 
NoP 5 1 15 0 83 37 11 0 

M* -3.4E-06 -9.9E-07 -9.3E-05 2.0E-04 1.4E-04 -9.2E-05 -4.3E-05 6.9E-05 
skew -8.0E-02 2.4E-02 1.9E-02 5.2E-03 5.5E-02 1.2E-01 -2.8E-02 5.0E-02 
kurt 2.0E+00 2.1E+00 2.1E+00 2.3E+00 2.2E+00 2.2E+00 2.2E+00 2.0E+00 

SS -8.2E-07 -7.1E-07 4.6E-08 9.7E-09 1.9E-09 1.5E-08 -9.2E-10 -7.6E-10 
f 2.6E-03 1.6E-03 7.9E-03 0.0E+00 4.3E-02 5.8E-02 5.8E-03 0.0E+00 

 Channel 5 Channel 6 Channel 7 Channel 8 
Feat. Drowsy Alert Drowsy Alert Drowsy Alert Drowsy Alert 

M 4.3E-04 -5.0E-04 7.9E-05 4.4E-05 1.4E-03 -1.9E-03 3.1E-04 -5.4E-04 
P 5.4E-04 -3.7E-04 1.7E-05 1.3E-04 1.6E-03 -1.8E-03 -2.1E-04 7.1E-04 

SoP 3.6E-04 -2.8E-04 0.0E+00 0.0E+00 7.2E-04 -1.1E-03 0.0E+00 0.0E+00 
NoP 98 25 0 0 60 32 0 0 

M* 4.5E-05 -2.8E-05 -7.7E-05 1.4E-04 6.2E-05 -1.2E-04 -1.4E-04 2.3E-04 
skew 5.4E-02 1.2E-01 -1.7E-01 -1.1E-01 5.4E-03 -2.0E-02 2.9E-02 -3.6E-02 
kurt 2.3E+00 2.3E+00 2.3E+00 2.1E+00 2.2E+00 2.1E+00 2.3E+00 2.2E+00 

SS -5.1E-11 -3.3E-10 1.7E-11 1.2E-11 -4.3E-13 6.6E-13 -7.8E-14 -1.5E-13 
f 5.2E-02 7.0E-02 0.0E+00 0.0E+00 3.2E-02 5.6E-02 0.0E+00 0.0E+00 

Note: * indicates the mean value computed from ∆HbR. 
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Table 3. Eight features in region A (before normalization): 0~15 sec window 

 Channel 1 Channel 2 Channel 3 Channel 4 
Feature Drowsy Alert Drowsy Alert Drowsy Alert Drowsy Alert 

M 2.4E-05 -6.0E-06 4.6E-05 -1.4E-04 5.0E-04 -5.5E-03 2.5E-04 -5.4E-04 
P 3.6E-04 2.8E-04 1.9E-04 -6.1E-05 7.0E-04 -4.0E-04 4.2E-04 -3.9E-04 

SoP 9.4E-05 3.9E-05 1.8E-04 3.5E-05 5.6E-04 -4.0E-04 2.7E-04 -2.1E-05 
NoP 10 2 54 14 81 40 66 15 

M* -3.4E-06 -9.2E-07 -9.3E-05 2.0E-04 1.4E-04 -9.2E-05 -4.3E-05 6.9E-05 
skew 3.6E-02 2.9E-02 -1.1E-02 1.8E-01 2.5E-02 2.0E-01 2.8E-03 3.8E-02 
kurt 2.2E+00 2.1E+00 2.2E+00 2.0E+00 2.2E+00 2.1E+00 2.0E+00 2.0E+00 

SS -8.5E-07 6.6E-07 1.3E-07 -4.4E-09 4.5E-09 -5.3E-08 -6.6E-10 4.6E-10 
f 5.8E-03 3.2E-03 2.9E-02 2.2E-02 4.3E-02 6.3E-02 3.5E-02 2.4E-02 

 Channel 5 Channel 6 Channel 7 Channel 8 
Feat. Drowsy Alert Drowsy Alert Drowsy Alert Drowsy Alert 

M 4.1E-04 -4.5E-03 7.8E-05 4.3E-05 1.4E-03 -1.8E-03 3.7E-04 -5.1E-04 
P 5.8E-04 -3.2E-04 5.1E-05 1.5E-04 1.6E-03 -1.7E-03 -1.5E-04 8.1E-04 

SoP 5.4E-04 -4.3E-04 0.0E+00 0.0E+00 1.1E-03 -1.7E-03 0.0E+00 0.0E+00 
NoP 96 29 0 0 72 36 0 0 

M* 4.5E-05 -2.8E-05 -7.7E-05 1.4E-04 6.2E-05 -1.2E-04 -1.4E-04 2.3E-04 
skew -7.5E-05 8.9E-02 -2.2E-01 -2.3E-01 2.5E-02 8.3E-02 -3.6E-02 6.9E-02 
kurt 2.3E+00 2.2E+00 2.1E+00 2.1E+00 2.3E+00 2.1E+00 2.2E+00 2.0E+00 

SS 1.1E-10 2.1E-10 2.7E-12 -9.0E-12 -1.7E-14 -6.7E-13 5.2E-14 -2.2E-14 
f 5.2E-02 7.0E-02 0.0E+00 0.0E+00 3.2E-02 5.7E-02 0.0E+00 0.0E+00 

Note: * indicates the mean value computed from ∆HbR 

It is observed, from Tables 1-3, that the ∆HbO mean, peak value, sum of peaks, and 
number of peaks are distinguishable among eight features in each channel in region A. For 
regions B and C, instead of showing the entire data like the above (due to the space 
limitation), the subtraction of the feature value in the alert state from that of the drowsy state 
is compared to observe the differences in two states. Tables 4 and 5 show the difference of the 
feature values in the drowsy and alert state in region B and C, respectively. As shown in 
Tables 4 and 5, the difference between the drowsy and alert state in region B and C is not 
significant as compared to region A. Thus, it is concluded that region A is the most active 
during the drowsy state than region B and C. 

Table 4. Difference of the feature values between the drowsy and alert states (region B, 5 sec window) 

 Region B (drowsy – alert)
Feature Channel 9 Channel 10 Channel 11 Channel 12 Channel 13 Channel 14 

M 1.7E-03 -9.5E-04 4.7E-04 -8.6E-04 -3.4E-04 -8.1E-04 
P 1.7E-03 -9.7E-04 4.6E-04 -8.6E-04 -3.4E-04 -8.0E-04 

SoP 3.9E-04 0.0E+00 7.8E-05 0.0E+00 0.0E+00 0.0E+00 
NoP 17 0 28 0 0 0 

M* -1.1E-04 -4.6E-04 -3.0E-04 -3.8E-04 -4.5E-04 -3.1E-04 
skew -3.9E-02 1.4E-02 -3.2E-02 -1.3E-02 -1.4E-02 -3.7E-03 
kurt 3.7E-02 6.9E-02 -5.3E-02 5.5E-02 4.6E-02 -7.3E-02 

SS 1.7E-03 -9.7E-04 4.6E-04 -8.6E-04 -3.4E-04 -8.0E-04 
f 5.2E-14 4.0E-13 1.5E-14 2.2E-13 1.1E-13 1.7E-13 

 Channel 15 Channel 16 Channel 17 Channel 18 Channel 19 Channel 20 
Feat. 8.9E-04 -7.7E-04 1.3E-03 5.1E-04 2.5E-03 2.1E-03 

M 9.1E-04 -7.5E-04 1.3E-03 5.0E-04 2.6E-03 2.1E-03 
P 2.6E-04 0.0E+00 3.6E-04 0.0E+00 7.4E-04 6.9E-04 

SoP 33 0 22 0 19 21 
NoP -2.4E-04 -2.4E-04 -1.1E-04 -4.2E-05 4.1E-04 2.5E-04 

M* 1.7E-02 -5.8E-03 -1.9E-02 4.5E-02 8.3E-03 5.4E-02 
skew -7.7E-02 -1.8E-02 -1.6E-02 -2.0E-02 4.1E-02 -5.6E-02 
kurt 3.0E-13 -3.0E-11 -3.4E-12 -4.6E-13 3.3E-14 7.0E-15 

SS -1.7E-02 0.0E+00 -2.2E-02 0.0E+00 -2.6E-02 -3.3E-02 
Note: * indicates the mean value computed from ∆HbR. 
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Table 5. Difference of the feature values between the drowsy and alert states (region C, 5 sec window) 

Feature 
Region C (drowsy – alert) 

Ch. 21 Ch. 22 Ch. 23 Ch. 24 Ch. 25 Ch. 26 Ch. 27 Ch. 28 
M -1.2E-03 -1.3E-03 -1.6E-03 -1.9E-03 -3.7E-04 -1.3E-03 -3.2E-04 -1.6E-03 
P -1.2E-03 -1.3E-03 -1.8E-03 -2.0E-03 -3.8E-04 -1.3E-03 -3.2E-04 -1.6E-03 

SoP 0.0E+00 9.5E-04 0.0E+00 2.6E-04 0.0E+00 0.0E+00 0.0E+00 0.0E+00 
NoP 0 8 0 13 0 0 0 0 

M* -6.2E-04 -9.5E-04 -7.2E-04 -6.6E-04 -3.6E-04 -6.7E-04 -1.9E-04 -7.4E-04 
skew 8.1E-02 3.9E-03 -3.1E-03 -5.3E-02 6.4E-02 3.0E-02 7.0E-02 6.2E-02 
kurt -5.5E-02 -6.8E-02 5.8E-02 -1.9E-02 -5.4E-03 -2.5E-04 -9.4E-02 1.2E-02 

SS -1.1E-15 -2.7E-16 -7.4E-17 6.8E-19 3.0E-20 2.1E-20 1.0E-21 1.0E-21 
f 0.0E+00 -5.3E-05 0.0E+00 -6.1E-04 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

Note: * indicates the mean value computed from ∆HbR. 

Now, the spatial averaging of the signals in each region (i.e., A, B and C) is carried out: 
Eight channels from A, twelve channels from B, and another eight channels from C have been 
averaged to get Fig. 4. The spatial average also shows the fact that drowsiness is more 
prominent in region A. Although there are some variations in regions B and C corresponding 
to the drowsy state, the most significant changes are observed in region A. Figure 4 shows the 
hemodynamic changes in the three regions of Subject 3. 

In order to verify our observation that the drowsiness activity appears more significantly 
in region A, we compared the brain signal data of four subjects (Subjects 1, 3, 4 and 6), as 
shown in Fig. 5. For each subject, the spatial average of channel 1~8 is taken to obtain the 
results. The “Drowsy state” markers are placed in Fig. 5 using the experimental procedure 
criterion (see Section 2.1). It can be seen that the drowsy period may vary on the subject’s 
physiological condition. 

 

Fig. 4. Comparison of the regional averages in A, B, and C showing the drowsy and alert states 
(Subject 3). 
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Fig. 5. HbX corresponding to the drowsy state (Subs. 1, 2, 4 and 6; see Fig. 4 for Sub. 3, Sub. 5 
is omitted). 

Table 6. Accuracies obtained by a combination of two features (0~15 sec window, Subject 2) 

Features M* skew kurt SS NoP SoP P 
M 90.1 91.4 91 90.5 94.2 93.4 94.5**

M* - 50.9 51.2 50.1 52.7 72.2 92.2
skew - - 51.1 51.4 52.5 73.4 91.5
kurt - - - 50.3 53.5 72.8 90.7

SS - - - - 52.5 74.7 92.1
NoP - - - - - 72.6 91.6 
SoP - - - - - - 92

* The features calculated using ∆HbR signals. 
** The highest accuracy obtained. 

Table 7. Averaged accuracies over all the subjects (0~15 sec window) 

Features M* skew kurt SS NoP SoP P 
M 81.4 82.4 81.2 81 84.2 84.1 84.6

M* - 52 51.1 53.1 53.3 70.3 83.5
skew - - 50 54.3 53.2 66.2 78.3
kurt - - - 50.2 53.7 65.4 79.2

SS - - - - 56.4 66.5 80.1
NoP - - - - - 70.1 82.3 
SoP - - - - - 83.4

* The features calculated using ∆HbR signals 
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Figure 6 depicts 28 2-D feature spaces using a combination of two features (Subject 2). 
360 data points in Fig. 6 were generated by cutting the drowsy and alert period by 5 sec 
window (i.e., the number of data points will depend on the window size). It is clear that the 
mean of ∆HbO and signal peaks provide the best data separation. 

 

Fig. 6. 28 2-class feature spaces combining the mean ∆HbO, mean ∆HbR, skewness, kurtosis, 
slope, number of peaks, sum of peaks and signal peak for separating the drowsy and non-
drowsy states: The red triangle represents the non-drowsy (alert) state and the blue circle 
represents the drowsy state (Subject 2, region A, 0~5 sec time window). 

Table 8 tabulates the classification accuracies of the alert and drowsy states using only the 
best-performing features (i.e., the mean ∆HbO, signal peak, and sum of peaks). Figure 7(a) 
plots the average classification accuracy variations for each time window in the three 
segmented brain regions. It shows that the average accuracy in region A is higher than the 
others. Whereas the average accuracy in the 0~5 sec time window is lower than that in the 
0~15 sec time window, the difference is small, and the average accuracy is higher than 70%; 
thus the 0~5 sec time window can be considered to be most suitable out of three candidates 
for BCI. Table 9 compares the %-accuracy and its computation time for two classification 
methods: LDA and support vector machines (SVM). In is noted that the SVM classifier shows 
an improved classification accuracy by 1.9% over the LDA classifier. However, it is also 
noted that the computation time is almost 1 sec in the case of SVM. 
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Table 8. Classification accuracies (%) in three different brain regions  

 
 

Sub- 
jects 

Region A Region B Region C 

Win size 
0-5 sec 

Win size 
0-10 sec 

Win size
0-15 sec 

Win size
0-5 sec 

Win size
0-10 sec 

Win size
0-15 sec 

Win size
0-5 sec 

Win size 
0-10 sec 

Win size 
0-15 sec 

1 78.8 80.4 82.1 59.5 61.4 61 56.1 56.7 55.7 
2 91.5 91.8 94.5 59.8 58.9 57.2 62 62.2 61.9 
3 86.8 88.7 89.5 58.2 56.3 51.2 53.4 55.8 57.2 
4 85.9 87 89.8 56.9 54.2 58.1 60.4 59 58.4 
5 74.6 76.1 79.4 64.8 66.2 67.6 65.9 67.3 66.6 
6 78 79.2 80.7 66.4 69.2 71.2 67.1 69.9 71.4 
7 85.6 85.9 86.4 62.4 66.8 67.1 61.2 63.6 64.8 
8 91.3 90.1 90.4 76.2 78.9 79.1 77.8 79.2 78.6 
9 78.8 77.9 79 66.8 67.6 69 62.4 64.2 64.4 
10 82.2 82.8 83.6 69.1 70.4 71.8 68.7 70.4 71.2 
11 73.6 74.5 73.2 55.4 56.2 57.6 61.1 62.4 64 
12 85 86.4 85.8 67.9 69.2 70.4 65.3 67.4 68.6 
13 88.6 88.4 89.4 69.9 68.2 67.8 76 77.8 78.4 

Mean 83.1 83.4 84.9 64.1 64.8 65.3 64.4 65.8 66.2 
Note: The accuracies in this table were obtained using only mean ∆HbO, signal peak, and sum of peaks. 

 

 

Fig. 7. (a) The overall average of the classification accuracies over 13 subjects in different time 
windows; (b) the individual average accuracies and standard deviations of 13 subjects in 
regions A, B, and C; (c) the channel-wise number of occurrence of the drowsy state over 13 
subjects (i.e., four subjects showed the drowsy state in Ch. 1). 

Table 9.  Performance comparison of two classical classifiers (for region A) 

 
 

Subject 

LDA
(% accuracy/computation time, sec) 

SVM
(% accuracy/computation time, sec) 

Win size 
0-5 sec 

Win size
0-10 sec 

Win size
0-15 sec 

Win size
0-5 sec 

Win size
0-10 sec 

Win size 
0-15 sec 

1 78.8/ 0.06 80.4/ 0.03 82.1/ 0.02 80.3/ 1.2 83.3/ 0.7 84.3/ 0.4 
2 91.5/ 0.04 91.8/ 0.04 94.5/ 0.03 92.2/ 0.5 93.0/ 0.4 94.2/ 0.3 
3 86.8/ 0.05 88.7/ 0.03 89.5/ 0.03 88.6/ 0.7 90.1/ 0.4 91.3/ 0.3 
4 85.9/ 0.06 87.0/ 0.03 89.8/ 0.02 85.9/ 1.4 87.0/ 0.8 89.8/ 0.3 
5 74.6/ 0.06 76.1/ 0.04 79.4/ 0.02 75.5/ 0.9 77.7/ 0.6 83.6/ 0.5 
6 78.0/ 0.05 79.2/ 0.03 80.7/ 0.02 78.8/ 0.9 80.1/ 0.5 81.9/ 0.4 
7 85.6/ 0.06 85.9/ 0.03 86.4/ 0.02 88.4/ 1.6 89.2/ 0.9 90.8/ 0.6 
8 91.3/ 0.04 90.1/0.03 90.4/ 0.02 93.1/ 0.7 93.8/ 0.4 94.7/ 0.3 
9 78.8/ 0.06 77.9/ 0.04 79.0/ 0.02 79.0/ 0.8 79.8/ 0.4 80.1/ 0.2 
10 82.2/ 0.04 82.8/ 0.03 83.6/ 0.02 83.4/ 0.8 84.6/ 0.5 85.6/ 0.3 
11 73.6/ 0.06 74.5/ 0.04 73.2/ 0.03 75.8/ 1.0 77.4/ 0.6 78.9/ 0.4 
12 85.0/ 0.05 86.4/ 0.03 85.8/ 0.02 87.4/ 0.8 88.3/ 0.5 89.4/ 0.3 
13 88.6/ 0.05 88.4/ 0.03 89.4/ 0.02 89.1/ 0.9 90.3/ 0.5 91.0/ 0.3 

Mean 83.1/ 0.05 83.4/ 0.03 84.9/ 0.02 84.4/ 0.9 85.7/ 0.6 87.3/ 0.4 
Note: The accuracies were acquired using only three features (mean ∆HbO, signal peak, and sum of peaks). 
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Figure 7(b) shows the mean and standard deviation for each subject in the three segmented 
regions. The results were obtained by taking the average of the three time windows for each 
subject in regions A, B and C, respectively. Overall, region A can be deemed to be better 
suited for drowsiness activity detection. Figure 7(c) plots the data variations in each channel 
(over all the subjects); those channels with higher signal variation are found in region A. 

4. Discussion 

According to the previous study on vigilance using NIRS [55], a significant peak occurs in the 
event-related hemodynamic response between 5 and 8 seconds of reaction time. Here in this 
study, the 0~5 second window could detect the vigilance activity, thus reducing the time 
necessary for generation of a warning signal command. Also, it was observed that the brain 
activity of a drowsy person shows a ∆HbO increase in the PFC region. The opposite (i.e., the 
mean ∆HbO is low in the drowsy state) was reported in the previous work [56] that analyzed a 
reduction in brain activity during non-rapid eye movement (NERM) sleep and compared it 
with wakefulness. A point to be noted here is that none of participants went into NERM sleep 
during the experiment; instead, they focused on steering the car. This escalation in ∆HbO is 
the result of the increased attention level devoted to driving. Moreover, the subjects reported 
that they had to focus more when making turns. Thus, it can be deduced that a drowsy subject 
requires increased activity to focus and monitor surroundings; furthermore, the increase in the 
∆HbO level suggest that the results are consistent with other literature [30, 55, 57]. 

The most common features used for fNIRS are the mean of ∆HbO/∆HbR and the signal 
slope [7, 58, 59]. The mentioned features are used for the active type BCI tasks where the 
stimuli are given for a fixed time interval followed by a resting period. The present study 
focused on detecting a passive activity using fNIRS. Since the passive activity of drowsiness 
is an arbitrary activity generated without any subjective control [13], the trend of drowsy data 
showed a significant increase in ∆HbO as the subject focused more on driving in drowsy 
condition. There were no consistent trends in the drowsy state (see [57]), therefore the signal 
slope, kurtosis and skewness are not well differentiated. The mean ∆HbO has a higher value 
in the drowsy state than in the alert state. Also, the observed peak values of ∆HbO are higher 
during the drowsy state. The sum of peaks in each time window is higher than the sum of the 
peaks in the alert state (see Tables 1, 2, 3 ,4, and 5). Therefore, the best features for the 
passive activity are the mean of ∆HbO and the peak values. The sum of peaks can also assist 
in increasing the accuracy as they are also discriminated during the drowsy state. We did not 
use the frequency of peaks as a feature for classification; as this is calculated by dividing the 
number of peaks by the window size; this information is redundant for the classifier. 

Although there were variations in the hemodynamic responses of the subjects due to trial-
to-trial variability [60], the average classification results for the right and left PFCs 
definitively established that the right region is more active. A similar result was reported in an 
fMRI study [61], where an increased cerebral blood flow was observed in the right frontal 
lobe when sleep preceded self-awakening. It should also be noted that the participants 
recruited for the present experiment were not professional drivers, and had only limited 
experience in driving a vehicle. The results might differ when using the brain activity of 
professional drivers. 

This study showed that classification of drowsiness and the alert state over the right DPFC 
yields higher classification results than the PFC and left DPFC regions. The average accuracy 
varied between 84.9 and 64.4% from right to left in the PFC region in the 0~15 to 0~5 second 
windows. The significances of the obtained accuracies were computed by t-test. The accuracy 
obtained in region A was compared with those obtained in region B and region C, 
respectively. The p-values obtained using the accuracies for region A vs. region B and region 
C in the 0~5 second window were 0.0001. For the 0~10 second window, the p-values also 
were 0.0001. This showed that the results obtained are significant, and also, that channels 1~8 
are more active in the drowsy state than are the other channels. Additionally, there were no 
significant variations in the average accuracies among the three time windows, see Fig. 7(a); 
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thus the minimum time window, 0~5 seconds, can be used for drowsiness detection using 
fNIRS. 

The previous EEG studies have shown the feasibility of detection of driver vigilance and 
fatigue using neural correlates [35, 42–44]. In the study of EEG [41], 19 features were used to 
detect the drowsiness state. Seven parameters were trained using a neural network classifier to 
get 83.6% accurate drowsiness detection. In the current work, the SVM classifier was able to 
achieve 87.3% accuracy using only 3 features. Another study [44] using a vision based 
method (i.e., eyelid closure degree) combined with EEG had demonstrated 87.5% and 70% 
accuracies for male and females, respectively. Also, in [45], EEG was combined with 
electrooculography (EOG) to acquire 89% accurate detection. Though the accuracies using 
ECD and EOG were higher than that of the current method, the results of the current study 
can further be improved by combining it with EEG, EOG, and/or an eye tracking system. 
Moreover, to the best of our knowledge, this is the first passive fNIRS-BCI study to perform a 
classification of the alert and drowsy states using the hemodynamic response. Also, this is the 
first work that has used the spatial filtering by segmenting the prefrontal brain region to 
identify the region of interest for drowsiness detection. The results using the eight features are 
significant for a passive BCI. Also, the features providing the best performance for fNIRS 
signals in the drowsy state are selected. However, the command is generated in a minimum 5 
second window. This delay in time can be further reduced to within 2 seconds using the initial 
dip as a feature [7]. 

5. Conclusions 

This study investigated the feasibility of detecting the drowsy state using functional near-
infrared spectroscopy (fNIRS) for a passive brain-computer interface (BCI). Drowsiness was 
detected by monitoring the brain activity for a driving task using eight features and three time 
windows. Mean of oxyhemoglobin and signal peak were found to be best suited for 
classification of the drowsy state. The classification results showed that the right prefrontal 
region is more active during the drowsy condition while driving. 
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