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We focus on only facilities with multiple re-
sponding providers and include covariates that 
are both theoretically relevant for the depen-
dent variables described later in this article 
and related to the sampling weights (e.g., an 
indicator of the provider serving more than 
200 patients). Details about computation of 
the Medical Monitoring Project sampling 
weights for both providers and facilities are 
available on request.10 We scaled the final pro-
vider-level weights to sum to the sample sizes 
within each facility. A failure to do this would 
overstate actual sample sizes within each 
higher-level unit (facility), possibly resulting in 
biased estimates of model parameters.2,3,7

We fit multilevel logistic regression models 
to 2 binary dependent variables, indicating 
whether the responding provider delivered ad-
equate drug use risk reduction and sexual risk 
reduction services to patients (defined as de-
livering approximately 70% of recommended 
risk reduction services to most or all of the pa-
tients). The models included random inter-
cepts to capture between-facility variation in 
each proportion, in addition to fixed effects of 
several provider- and facility-level covariates 
of interest. We fit these models with the new 
GLIMMIX command11 in SAS/STAT version 
13.1 (SAS Institute, Cary, NC), which can fit 
multilevel models to complex sample survey 
data. Identical results can be obtained with 

Public-use survey data sets collected from 
large national samples, such as the National 
Health and Nutrition Examination Survey, 
also have become widely available.4 The sam-
ples underlying these data sets are often 
“complex” in nature for 2 reasons: (1) the use 
of stratified multistage cluster sampling to in-
crease sampling and cost efficiency and (2) 
unequal probabilities of selection from target 
populations for sampled elements, often as a 
result of oversampling of key subgroups (lead-
ing to the need to use weights for generating 
unbiased population estimates). Secondary 
analysts can accommodate these design com-
plexities statistically by using “design-based” 
analyses, which ensure that population infer-
ences are unbiased with respect to the sample 
design.4 However, these design-based ap-
proaches generally do not enable the types of 
cluster-specific inferences afforded by multi-
level models,2,3 and researchers are now con-
sidering multilevel models for complex sam-
ple survey data.

Multilevel modeling represents a “model-
based” approach to survey data analysis, in 
which dependencies in the data introduced 
by complex sampling features are generally 
accounted for by sound specification of the 
underlying probability model.5,6 Advocates of 
this approach argue that any information con-
tained in the sample design features should 

be accounted for in the model specification, 
making the sampling uninformative.5 
However, analysts may not have access to co-
variates capturing all of this information. In 
this case, the use of weighted estimation 
when fitting multilevel models provides some 
protection against potential biases introduced 
by informative sampling.6 Informed by recent 
methodological and computational develop-
ments in this area,1–3,6,7 we show that changes 
in inferences are possible when fitting multi-
level models to complex sample survey data 
and ignoring the sampling weights.

We analyzed data from the 2013 Medical 
Monitoring Project HIV Provider Survey, 
sponsored by the Centers for Disease Control 
and Prevention, for which a probability sam-
ple of HIV care providers was selected from 
outpatient HIV care facilities in 16 states and 
Puerto Rico.8,9 Briefly, the provider survey 
followed a 2-stage probability-proportionate-
to-size sample design, first sampling states 
and territories and then HIV facilities and se-
lecting all providers within a facility. Unbiased 
estimation of multilevel model parameters 
requires the use of weights at all levels of a 
given data hierarchy,7 so we used previously 
calculated sampling weights adjusted for 
nonresponse at the facility level and inverses 
of estimated response probabilities at the pro-
vider level.
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Recent advances in statistical software1 have enabled public health researchers to fit multilevel models to a vari-

ety of outcome variables. Multilevel models facilitate inferences regarding unexplained variability among randomly 

sampled clusters of units (e.g., hospitals) in outcomes of interest and identify covariates that explain the vari-

ance in a given outcome at each level of a particular data hierarchy (e.g., patients within hospitals).2,3 Models 

with random intercepts enable researchers to accommodate correlations within higher-level units resulting from 

longitudinal or clustered study designs, and models with random coefficients enable researchers to identify 

higher-level covariates that explain between-cluster variance in relationships of interest.2,3
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the new svy: melogit command in Stata ver-
sion 14 (StataCorp LP, College Station, TX).

We did not test whether the parameter dif-
ferences in the weighted and unweighted mod-
els were significant,12 but we did observe sev-
eral shifts in inference when using weighted 
estimation (Table A; available as a supplement 
to the online version of this article at http://
www.ajph.org). In both models, the intercept 
became more negative and significant, suggest-
ing that the probability of using adequate risk 
reduction was being overstated for the type of 
provider represented by zeroes on all of the 
covariates (which may not be entirely mean-
ingful in all models). For drug risk reduction, 
the coefficient for delivering care in a language 
other than English became nonsignificant. For 
the sexual risk reduction outcome, the male 
provider coefficient became significant, and the 
Black provider, nurse practitioner, and inte-
grated team effects became even stronger. Fi-
nally, the estimated variability of the random 
facility intercepts was clearly being overstated 
when ignoring the weights, and the weighted 
models explained more of the variance in the 
outcomes at each level.

The weights at each level were clearly infor-
mative about the parameters defining these 
models, and ignoring them in analysis would 
have led to erroneous inferences with respect 
to the sample design used. Notably, these re-
sults held despite the inclusion of available co-
variates related to the sampling weights in the 
models. In practice, covariates used to compute 
the weights or the weights at each level of the 
data hierarchy may not be available to the pub-
lic, making appropriate design-adjusted estima-
tion of multilevel models difficult or impossible. 
We encourage analysts fitting multilevel models 
to survey data to carefully examine the vari-
ables available for weighted estimation in 
these data sets, make use of the powerful soft-
ware1–3,11 that has been developed in this area, 
and (when possible) examine whether weighted 
estimation or adjustment for covariates related 
to the weights affects their inferences.  
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