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Abstract RNA interference is a conserved homology-

dependent post-transcriptional/transcriptional gene silenc-

ing mechanism in eukaryotes. The filamentous fungus

Neurospora crassa is one of the first organisms used for

RNAi studies. Quelling and meiotic silencing by unpaired

DNA are two RNAi-related phenomena discovered in

Neurospora, and their characterizations have contributed

significantly to our understanding of RNAi mechanisms in

eukaryotes. A type of DNA damage-induced small RNA,

microRNA-like small RNAs and Dicer-independent small

silencing RNAs were recently discovered in Neurospora. In

addition, there are at least six different pathways responsible

for the production of these small RNAs, establishing this

fungus as an important model system to study small RNA

function and biogenesis. The studies in Cryphonectria,

Mucor, Aspergillus and other species indicate that RNAi is

widely conserved in filamentous fungi and plays important

roles in genome defense. This review summarizes our cur-

rent understanding of RNAi pathways in filamentous fungi.
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Introduction

RNA interference (RNAi) is a conserved eukaryotic gene

silencing mechanism at both post-transcriptional and

transcriptional levels. It is mediated by small noncoding

RNAs (sRNAs) of about 20–30 nucleotides [1–4]. In RNAi

pathways, the RNase III domain-containing Dicers gener-

ate the small RNA duplexes from double-stranded RNA

(dsRNA) precursors, then the small RNA duplexes are

loaded onto the RNA-induced silencing complex (RISC) in

which an Argonaute family protein functions as the core

catalytic component. Following the removal of the pas-

senger strand of the small RNA duplex, the RISC is

activated and uses the remaining single-stranded small

RNA as a guide to silence the target RNAs [5–11].

In addition to the Dicer-dependent microRNAs (miRNAs)

and small interfering RNAs (siRNAs), Dicer-independent

small RNAs such as PIWI-interacting RNAs (piRNAs)

were also discovered (see reviews in [3, 4, 7, 12–14]).

miRNAs are processed from single-stranded RNA precur-

sor transcripts containing hairpin structures, and can

function by mediating mRNA degradation, translational

repression or transcriptional gene silencing. siRNAs are

generated from dsRNA precursors, and can act through

post-transcriptional gene silencing pathways and tran-

scriptional gene silencing pathways. The animal piRNAs,

which are derived mainly from repetitive elements, trans-

posons and large piRNA clusters, may function to protect

germline integrity, although the functions of many piRNAs

are still not known.

The filamentous fungus N. crassa is one of the first

eukaryotic model system for RNAi studies, and RNAi

pathways in filamentous fungi have been most extensively

studied in N. crassa. As an excellent experimental model

system for more than 70 years, N. crassa has contributed

significantly to the understanding of RNAi. RNAi is widely

present in filamentous fungi, and studies and applications

of RNAi in filamentous fungi have resulted in better

understanding of gene regulation and RNAi functions in
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these organisms. This review will mainly focus on the

mechanisms of the RNAi in Neurospora and discuss the

studies and the applications of RNAi in other filamentous

fungi.

The quelling pathway and dsRNA triggered gene

silencing

Discovery of quelling

Quelling, the first transgene-induced gene silencing phe-

nomenon described in fungi, was discovered in N. crassa

by Macino and colleagues [15, 16], soon after the discov-

ery of co-suppression in plants. It is the second post-

transcriptional gene silencing mechanism reported in

eukaryotes. Quelling was originally found by transforming

exogenous albino-1 (al-1) or albino-3 (al-3) sequences,

two of the structural genes required for biosynthesis of

carotenoids, into an orange wild-type strain, which resulted

in silencing of the endogenous al-1 or al-3 genes indicated

by the albino (white)/pale yellow phenotype in some of the

transformants and reduced al mRNA levels [15, 17, 18].

This silencing phenomenon is spontaneously reversible, as

some of the albino transformants could revert back to wild-

type or intermediate phenotypes, likely due to the reduction

of the copy number of the exogenous sequences [15].

Although quelled strains can contain only a few ectopic

copies of transgenes, high copy numbers of tandem repeats

of the transgenes seem to correlate with the efficiency and

stability of quelling [15, 17–20].

Quelling silences both the transgene and homologous

endogenous gene in vegetative tissues with the minimum

length requirement of the transgene of *130 nt. How-

ever, the promoter region is not required for and cannot

induce quelling, suggesting that silencing is mediated

post-transcriptionally [15, 17, 18]. Mutations of al genes

are generally recessive, but most of the al quelled

transformants were heterokaryons and were dominant

over wild-type strains [17]. These results indicate that

silencing by quelling is not nucleus-limited and can act

in-trans by diffusible molecules [17]. Consistent with

this notion, a transgene-derived sense RNA derived from

promoter-less al-1 transgenes was specifically found in

quelled strains but absent in the reverted strains, sug-

gesting that the transcription of transgene is required for

quelling [17]. The observation of the transgene-specific

sense RNA led to the hypothesis that production of

aberrant RNA (aRNA) in the presence of transgenes

causes post-transcriptional gene silencing. This was one

of the earliest studies that suggested that the production

of aberrant RNA (aRNA) is involved in gene silencing

mechanisms.

Cloning of the quelling deficient genes

Using a stably al-1 quelled strain, Cogoni and Macino [18]

isolated 15 quelling deficient (qde) mutants, belonging to

three distinct genetic loci: qde-1, qde-2 and qde-3. The

corresponding genes were subsequently cloned and were

found to encode three key components in the quelling

pathway and demonstrated that quelling is an RNAi-related

phenomenon [18, 21–23]. QDE-1 (quelling deficient-1) is

the first RNAi gene ever identified, which encodes a cel-

lular RNA-dependent RNA polymerase (RdRP) [21]. The

cloning of QDE-1 soon after the landmark study by Fire

et al. [24] provided the first experimental evidence that an

RdRP is involved in PTGS and suggested a model that

aRNAs produced from transgenes are used as templates by

an RdRP to produce dsRNA [20, 21]. The wide presence of

QDE-1 homologues in plants, fungi and C. elegans indicate

that a conserved PTGS mechanism involving RdRP may

exist in all these organisms. Indeed, it was later shown that

RdRPs in Arabidopsis and C. elegans are required for

RNAi [25–27].

The cloning of qde-2 revealed that it encodes for an

Argonaute protein that is homologous to the rde-1 gene in

C. elegans, which is required for the dsRNA-induced

silencing [23]. This result provided the first experimental

evidence that RNAi and transgene-induced PTGS have a

common genetic component and that they evolved from the

same ancestral mechanism. Together with the requirement

of an RdRP in PTGS, these results demonstrate that

quelling Neurospora and RNAi in plants and animals are

mechanistically linked gene silencing phenomena [28].

The qde-3 gene encodes for a RecQ DNA helicase

homologous to the human Werner/Bloom’s syndrome

proteins [22], suggesting that regulation of DNA structure

is a critical step in quelling. Although the exact role of

QDE-3 in quelling is still largely unknown, it was thought

to act upstream of the dsRNA formation and is important

for the generation of aRNA/dsRNA from the transgenic

loci [22, 29]. QDE-3 and another RecQ DNA helicase

RecQ-2 also play roles in DNA repair, although the rela-

tionship between DNA repair and quelling is not clear [22,

30, 31]. OsRecQ1, a QDE-3 homologue in rice, was later

found to be required for RNA silencing induced by the

introduction of inverted-repeat DNA, but not for dsRNA

induced RNA silencing, which is similar to QDE-3 [32].

rRecQ-1, a homologue of QDE-3 in rats was reported to be

associated with piRNA-binding complex [32–34].

Catalanotto et al. [35] later showed that small RNAs of

about 25 nt were found to be specifically involved in

quelling and were associated with QDE-2. The production

of these small RNAs required qde-1 and qde-3, but not qde-

2. Genes for two partially redundant Dicer proteins DCL-1

(Dicer-like-1) and DCL-2 (Dicer-like-2) were further
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identified and characterized by reverse genetics as a result

of the release of the whole genome sequence of N. crassa

[36, 37]. In 2007, our lab identified QIP, a QDE-2-inter-

acting exonuclease, as another key component required for

RNAi in Neurospora [8].

Mechanism of quelling and production of dsRNA

Though RNAi pathways triggered by dsRNA has been

extensively studied in several systems, how repetitive

sequences/transgenes are distinguished from endogenous

genes and how endogenous dsRNA are made is not clear. It

is believed that aRNA synthesis and its specific recognition

by RdRPs result in the production of dsRNA. In N. crassa,

QDE-1 and QDE-3 were proposed to be required for aRNA

and dsRNA production.

The RdRP activity of QDE-1 was confirmed in vitro and

the crystal structure of its catalytic core was solved [33,

38–40]. The QDE-1 RdRP activity further confirmed that

QDE-1 uses aRNAs as templates to make dsRNA. One

surprising feature revealed by the structural study is that

the catalytic core of QDE-1 is structurally similar to

eukaryotic DNA-dependent RNA polymerases but not to

viral RdRPs [39]. It was originally postulated that the

transcription of a transgene by RNA polymerase II pro-

duces aRNA, which is used as the substrate by QDE-1 to

generate dsRNA [33]. Recent evidence suggests that

QDE-1 is both an RdRP and a DNA-dependent RNA

polymerase and is involved in making aRNA together with

QDE-3 ([41], see below).

The efficiency of transgene-induced quelling is usually

around 20–30% of the total transformants [15, 33]. How-

ever, overexpression of QDE-1 could dramatically elevate

the quelling efficiency. Furthermore, a few copies of

transgenes were sufficient to induce silencing when QDE-1

was overexpressed. These results suggest that dsRNA

production is the limiting factors for quelling. On the other

hand, the activation and maintenance of transgene-induced

silencing may depend on both the cellular level of QDE-1

and the copy number of the integrated transgenes, which

can influence the amount of dsRNA produced [29, 33, 42,

43].

Nolan et al. [44] showed that QDE-1 interacts with

RPA-1, the Neurospora homologue of the largest subunit

of Replication Protein A, a single-stranded DNA-binding

protein important for DNA replication, repair and recom-

bination. In addition, QDE-1 was found to be enriched at

the transgenic al-1 locus, demonstrating that QDE-1 is

recruited to the transgenic locus [44]. The accumulation of

siRNAs appears to be DNA synthesis dependent, as

hydroxyurea treatment of mycelia, which inhibits DNA

replication, abolished siRNAs accumulation [44]. Thus, it

was proposed that, during replication, repetitive transgenes

were distinguished by QDE-1 and RPA-1 from endogenous

genes and then were targeted for silencing [44]. However,

the physiological importance of RPA in gene silencing is

not clear because rpa-1 is an essential gene.

We have recently shown that QDE-1 is both an RdRP

and a DNA-dependent RNA polymerases (DdRP) and is

required for aRNA production as QDE-3 (see below and

[41]). This raises the possibility that QDE-3, the DNA

helicase, and RPA may facilitate QDE-1 to bind to ssDNA

at the transgenic region (QDE-3 may resolve the complex

DNA structures at the transgenic locus and RPA could

recruit QDE-1 to ssDNA). Afterwards, QDE-1 could act as

a DdRP to generate aRNA which will be further converted

into dsRNA by the RdRP activity of QDE-1 [33, 41, 44].

Future genetic and biochemical studies will be needed to

test this hypothesis.

Despite the importance of QDE-1 and QDE-3 in quell-

ing, they are not required for dsRNA-induced gene

silencing [29, 41, 45]. Expressing an inverted repeat-con-

taining transgene, which can result in the production of

dsRNA, can totally bypass QDE-1 and QDE-3 to induce

gene silencing with high efficiency [29, 41]. In addition,

unlike some RdRPs in some other organisms, QDE-1 is not

involved in the amplification and production of secondary

small RNAs [41]. These results further support the notion

that dsRNA is a necessary intermediate for quelling and

that QDE-1 and QDE-3 both function upstream of the

dsRNA production pathway. On the other hand, QDE-2

and DCLs are essential for gene silencing induced by

dsRNA [29].

Generation of siRNA and the activation of RISC

Neurospora has two partially redundant Dicer proteins:

Dicer-like-1 (DCL-1) and DCL-2. Both DCLs can process

dsRNA into about 25-nt small RNAs in an ATP-dependent

manner [36]. The double mutant of dcl-1 and dcl-2 com-

pletely abolished quelling and disrupted the processing of

dsRNA into siRNA in vivo and in vitro, but the single dcl

mutants had comparable quelling frequencies to the wild-

type. These results suggest that the two Dicers are func-

tionally redundant, explaining why they escaped the earlier

screening for quelling defective mutation [18, 36]. How-

ever, the accumulation of siRNA was significantly reduced

in the dcl-2 mutant compared to that of the wild-type,

indicating that the DCL-2 is the major dsRNA processing

enzyme [36].

The Argonaute protein QDE-2 is the core component of

the RISC complex and is associated with siRNA [23, 35].

The siRNA associated with QDE-2 in siRNA duplex form

and the RISC is inactive [8]. To activate the RISC, the

passenger strand of the siRNA duplex needs to be removed.

We showed that QDE-2 and its slicer activity are required
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for gene silencing and the generation of single-stranded

siRNA from siRNA duplexes in vivo [8]. While the wild-

type QDE-2 was associated with single-stranded siRNA,

mutation of the qde-2 gene or the catalytic residue of

QDE-2 abolished gene silencing and single-stranded

siRNA production. These results provide the first in vivo

experimental evidence that the cleavage of the passenger

strand by Argonautes is required for single-stranded siRNA

generation and RISC activation.

However, QDE-2 cleavage of the passenger strand alone

is not sufficient for single-stranded siRNA production and

RISC activation. Purification of QDE-2 leads to the iden-

tification of QIP, a QDE-2-interacting protein with an

exonuclease domain [8]. Disruption of the qip gene resul-

ted in the accumulation of siRNA duplexes and impairment

of gene silencing. Further analyses showed that QIP

functions as an exonuclease by removing the nicked

passenger strand from the siRNA duplex in a QDE-2-

dependent manner [8]. Thus, QIP is a critical player in

dsRNA-induced gene silencing and is also the first identi-

fied eukaryotic exonuclease required for efficient RNAi.

These results established that both the cleavage and

removal of the passenger strand from the siRNA duplex are

important steps in RNAi pathways. Recently, a Drosophila

ribonuclease C3PO was demonstrated biochemically to

activate RISC by removing the cleaved siRNA passenger

strand in a manner that is very similar to QIP [46].

Based on these studies, a model for the Neurospora

RNAi pathway was proposed [8]: dsRNA is processed into

siRNA duplexes by Dicer protein(s), which are loaded onto

the RISC; the Argonaute protein QDE-2 cleaves the pas-

senger strands of the siRNA duplexes, and the exonuclease

QIP removes the nicked passenger strands with the guide

strands remaining in the RISC complexes; and the acti-

vated RISCs guided by the single-stranded siRNA cleaves

homologous mRNAs, resulting in gene silencing (Fig. 1).

Meiotic silencing by unpaired DNA

Discovery of MSUD

Another RNAi-related mechanism in N. crassa is the

meiotic silencing by unpaired DNA (MSUD) discovered by

Metzenberg and colleagues. MSUD is similar to quelling

but only occurs during meiosis [47–49]. N. crassa is gen-

erally haploid, although a transient diploid ascus cell is

present when the two nuclei of opposite mating types fuse

(karyogamy) [50]. The diploid cell quickly goes through

two rounds of meiosis and then one round of mitosis,

resulting in eight ascospores each containing one nucleus

[47, 49, 50]. MSUD functions in the first meiotic prophase

by silencing all copies of the unpaired gene during the

pairing of homologous chromosomes, though the silencing

Fig. 1 A model for the quelling

and qiRNA pathway in

vegetative cells in N. crassa
repetitive transgenes (quelling)

or the rDNA locus after DNA-

damage induce the synthesis of

aberrant RNAs by the DdRP

activity of QDE-1 facilitated by

QDE-3. The aberrant RNA is

converted into dsRNAs by the

RdRP activity of QDE-1. The

Dicer proteins DCL-1 and

DCL-2 cleave the dsRNAs into

siRNAs or qiRNAs, which are

then loaded onto the RNA-

induced silencing complex

(RISC) containing QDE-2 and

QIP. QDE-2 and QIP convert

the siRNA duplex into the

mature siRNA, resulting in

RISC activation and gene

silencing of homologous RNAs

3852 L. Li et al.



effects seem to be contained within the ascus (or asci)

where the unpaired DNA is present [48, 49]. MSUD was

originally named meiotic transvection (or meiotic trans-

sensing), referring to the phenomenon that proper function

of the ascospore maturation 1 gene asm-1 and the proper

maturation of ascospores requires asm-1? being in prox-

imity or paired to its allelic counterpart in the transient

diploid zygote [47, 48, 51–53]. Further experiments dem-

onstrated that the absence of unpaired copies of asm-1? in

the genome is required for ascospore maturation, thus the

renaming of the phenomenon as MSUD [48, 53]. It was

recently proposed that meiotic trans-sensing and meiotic

silencing are two different steps in MSUD: the trans-

sensing mechanism scans the presence or absence of paired

homologous genes and the presence of unpaired gene

results in the meiotic silencing of all homologous copies

present in the genome [54]. This proposal is supported by

the observation that DNA methylation affects meiotic

trans-sensing without influencing meiotic silencing [55].

Mechanism of MSUD

MSUD appears to be a pathway that is parallel to quelling

and only functions during meiosis. To understand the

mechanism of MSUD, UV mutagenesis was carried out

and the resulting mutants were crossed with a strain with

unpaired asm-1? to identify mutants with impaired MSUD

[48, 49]. Sad-1 (suppressor of ascus dominance-1) was the

first mutant identified. The cloning of sad-1 revealed that it

encodes a paralog of qde-1. The mutations of sad-1 by UV

mutagenesis, repeat-induced point mutation or homologous

deletion suppress MSUD [48, 49]. SAD-1 shares high

identities with cellular RdRPs involved in gene silencing.

In addition, an unpaired DNA can trigger silencing of

paired copies as well as the unpaired copy. These results

indicate that MSUD is an RNAi-related phenomenon and

dsRNA synthesis is required for MSUD [48].

sms-2 (suppressor of meiotic silencing-2) was identified

from the Neurospora genome based on its homology to the

Argonaute proteins and was demonstrated to be required

for MSUD by analyzing the sms-2 loss-of-function mutants

[37, 56].

sad-2, another dominant suppressor of meiotic silencing,

is required for the proper localization of SAD-1 and the

mutation of sad-2 suppresses MSUD [57, 58]. SAD-1 and

SAD-2 co-localize in the perinuclear region, and most likely

interact with each other physically in vivo based on the

bimolecular fluorescence complementation (BiFC) analysis

[57, 58]. Because the localization of SAD-2 in the perinu-

clear region is independent of SAD-1, SAD-2 may function

by recruiting SAD-1 to the perinuclear region [57, 58].

DCL-1 (also called SMS-3) is one of the two Dicer

proteins in N. crassa. Although it is not a dominant meiotic

silencing suppressor, it is found to be required for MSUD

[37, 54, 59]. A homozygous cross of dcl-1 deletion mutants

is barren (the dcl-2 deletion mutants is normal), which is

also true for the homozygous cross of sad-1 and sad-2

mutants, respectively [48, 57, 59]. However, although asci

were observed for the homozygous cross of sad-1 and

sad-2 mutants, no perithecium was observed for the dcl-1

mutants, indicating that sexual development is defective at

an earlier stage for the dcl-1 mutant compared to sad-1 and

sad-2 mutants [59]. Single mutants of sad-1 and sad-2

function as dominant suppressors of meiotic silencing, but

none of the dcl-1 deletion mutant, the dcl-2 deletion

mutant, or the dcl-1 dcl-2 double mutant could function as

dominant suppressors of meiotic silencing [48, 57, 59]. By

expressing dcl-1 at an early stage in the sexual cycle but

not at later stages, Alexander et al. [59] demonstrated that

the dcl-1 deletion mutation, but not the dcl-2 deletion

mutation, suppressed the silencing of unpaired hH1-gfp,

thus establishing an important role of DCL-1 in MSUD.

Interestingly, for quelling, although DCL-2 is responsible

for the production of most of the siRNA, DCL-1 and

DCL-2 play a redundant role. In contrast, MSUD only

requires DCL-1 but not DCL-2, suggesting that DCL-1 but

not DCL-2 is specifically expressed during meiosis [59].

Thus, different sets of RNA-related proteins are required

for MSUD and quelling, respectively, supporting the notion

that two separate RNAi pathways are present in N. crassa

[37, 60].

DCL-1, SMS-2, SAD-1 and SAD-2 were demonstrated

to co-localize in the perinuclear region where siRNAs were

shown to be accumulated in other organisms, suggesting

that the perinuclear region is an active center for MSUD

and small RNAs might be involved in MSUD [57, 59]. On

the other hand, the requirement of the RdRP SAD-1, the

Argonaute protein SMS-2 and the Dicer DCL-1 indicates

that dsRNA and small RNAs are involved in the MSUD

[54, 59].

Lee et al. [61] demonstrated that only the unpaired

regions with homology to the reporter transcript could

trigger the meiotic silencing of the reporter gene, and

efficiency of silencing increases as the size and homology

of the unpaired region increase. In addition, there was an

unpairing-dependent loss of a reporter transcript correlated

with the induction of meiotic silencing, further supporting

that MSUD is post-transcriptional. Although a lot more

work is needed to understand the MSUD pathway, a simple

model can be proposed for MSUD [54, 59, 60] (Fig. 2): an

unpaired DNA is a signal to initiate the transcription of

aRNAs from the unpaired DNA region during meiosis, and

the RdRP SAD-1 converts aRNA into dsRNA, which is

processed by DCL-1 into small RNAs. Small RNAs are

then loaded onto a SMS-2-based RISC complex, which

then results in the post-transcriptional silencing of
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homologous genes. SAD-2 may function in the MSUD

pathway by recruiting SAD-1 to the proper location to

perform its activity. The future identification of small

RNAs associated with SMS-2 and the understanding of the

meiotic sensing mechanism will be critical to the under-

standing of MSUD.

Functions of RNAi in Neurospora

RNAi play roles in genome defense against viruses and

transposons, development regulation and chromosomal

segregation in animals and plants [2, 3, 62, 63]. Quelling in

Neurospora can function in silencing the transgenes by

detecting and targeting the transgenic DNA, and thus is a

potent mechanism that represses the expression and

expansion of transposons [64, 65]. siRNAs against trans-

posons were detected in N. crassa, and the transcript levels

and copy number of the LINE1-like transposon Tad were

significantly elevated in qde-2 mutants. In addition, the Tad

transcripts were also found to be up-regulated in the dcl-1

dcl-2 double mutants. Similarly, MSUD may also function

as a mechanism that silences transposon expansion during

meiosis because the replication of transposon will generate

unpaired DNA.

RNAi has been shown to be involved in heterochro-

mation formation and/or DNA methylation in fission yeast,

plants and animals [13, 66–69]. However, the known RNAi

components in Neurospora, including three RdRPs (QDE-1,

SAD-1 and RRP-3), two Argonaute proteins (QDE-2 and

SMS-2), two dicer-like proteins (DCL-1 or SMS-3, DCL-2)

and two RecQ helicases (QDE-3 and RecQ-2), are not

required for the initiation or maintenance of heterochro-

matin formation and DNA methylation [70]. Chicas et al.

[64] also demonstrated that the transgenic siRNA produc-

tion/quelling is also not required for histone H3 Lys9

methylation. Thus, the RNAi pathway does not appear to

function in transcriptional gene silencing in Neurospora.

However, the mutation of the histone Lys9H3 methyl-

transferase gene dim-5 caused a low quelling efficiency and

frequent reversion of the quelled transformants due to rapid

loss of the integrated transgenic copies [64]. Thus, DIM-5

and histone methylation play an important role in stabi-

lizing tandom copies of the transgene.

More recently, it was reported that the rDNA gene copy

numbers in the quelling mutants qde-1, qde-2 and qde-3 are

all reduced comparing to the wild-type strain, suggesting

that quelling may play a role in maintaining the rDNA

locus integrity and stability [71].

A dsRNA-induced transcriptional program

important for RNAi

In vertebrates, dsRNA is known to trigger the transcription-

based antiviral interferon response, an important part of

innate immunity. We have shown that a similar response

exists in Neurospora and that the expression of dsRNA in

Neurospora can significantly induce transcriptional acti-

vation of key RNAi components including qde-2 and dcl-2

[72]. Such a transcriptional response was regulated by

dsRNA instead of siRNA, as the transcriptional activation

of dsRNA-activated genes (DRAGs) was maintained in the

dcl double mutant, in which siRNA production was com-

pletely abolished. In addition, QDE-1 and QDE-2 are not

required for the induction of DRAGs by dsRNA. However,

dsRNA regulates QDE-2 both transcriptionally and post-

transcriptionally. In the dcl double mutant, despite the

induction of qde-2 mRNA by dsRNA, QDE-2 protein level

Fig. 2 A model for meiotic silencing (MSUD) in N. crassa. During

the first meiotic prophase, an unpaired DNA triggers the transcription

of aberrant RNAs from an unpaired DNA region, and the RdRP

SAD-1converts aberrant RNA into dsRNAs, which are processed by

DCL-1 into small RNAs, and small RNAs are then loaded onto a

RISC complex with the Argonaute SMS-2 as the core component.

The activation of the SMS-2 complex results in the silencing of

homologous RNA. SAD-2 may function in the pathway by recruiting

SAD-1 to its proper location to perform its activity
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stayed at a low level, suggesting that the production of

siRNA or the association of siRNA with QDE-2 is

important for QDE-2 stabilization [72]. In mutants where

qde-2 expression cannot be induced by dsRNA, gene

silencing efficiency is reduced, indicating that this response

is important for the efficiency of dsRNA-triggerred gene

silencing [72].

Genome-wide analyses by microarray and quantitative

PCR showed that dsRNA could activate the expression of

*60 genes, including additional RNAi components and

homologs of antiviral and interferon-stimulated genes. The

induction of the latter genes by dsRNA suggests that the

dsRNA-induced activation of RNAi components is part of

a conserved ancient host defense response to counter

against viral infection and transposons [72]. The signaling

pathway in Neurospora responsible for the dsRNA

response is not known. Since the key RNAi genes are not

required for the dsRNA-induced transcriptional activation

of DRAGs and Neurospora does not encode homologs of

the known mammalian dsRNA sensors, there should be a

novel dsRNA-sensing and transcriptional activation path-

way in Neurospora [72]. Interestingly, dcl-2 and agl2

expression levels were also found to be significantly

increased in response to viral infection and expression of

hairpin RNA in the chestnut blight fungus Cryphonectria

paracitica [73, 74], suggesting that the dsRNA-induced

transcriptional response is conserved in filamentous fungi.

The DNA damage-induced qiRNA and its relationship

with quelling

In addition to the dsRNA-induced qde-2 expression, we

found that the treatment of Neurospora culture with vari-

ous DNA damage agents resulted in significantly elevated

levels of qde-2 mRNA and QDE-2 protein [41]. The

induction of QDE-2 expression by DNA damage regents

requires functional QDE-1 and QDE-3. In addition, QDE-2

levels were found to be elevated to high levels in many

DNA repair mutants in the absence of DNA damage

agents. Since dsRNA can induce the expression of QDE-2,

and QDE-1 and QDE-3 are required for dsRNA generation

from transgenes in quelling, DNA damage should induce

the production of endogenous dsRNA and sRNAs which

result in the induction of QDE-2 expression [41, 72].

Analysis of QDE-2-associated small RNAs uncovered a

novel class of *21-nt-long small RNAs that is signifi-

cantly induced by DNA damage [41]. The levels of these

small RNAs were low under normal growth conditions and

were induced robustly after the treatment with DNA-

damaging agents. These small RNAs are shorter than the

regular 25-nt siRNAs and were named qiRNAs for their

interaction with QDE-2. qiRNAs originate mainly from the

highly repetitive rDNA locus, have a strong 50 uridine

preference and a 30 preference for adenine, and depend on

QDE-1, QDE-3 and the Dicers for their production, indi-

cating that qiRNAs are not nonspecific degradation

products of rRNAs[41].

qiRNAs correspond to both sense and antisense rDNA

strands and their long precursor RNAs accumulated to high

levels in the dcl-1 dcl-2 double mutant, indicating that

qiRNAs are processed from long dsRNAs. Although DNA

damage induces the expression of QDE-2, qiRNA pro-

duction is not dependent on QDE-2. In addition, qiRNAs

not only match to the transcribed rRNA regions they also

match to normally untranscripted intergenic spacer regions,

suggesting that qiRNAs originate from aRNAs. Indeed,

aRNA transcripts with sizes from a few hundred nucleo-

tides to about 2 kb from the intergenic spacer regions were

found to be robustly induced by DNA damage. Surpris-

ingly, a potent inhibitor (thiolutin) of RNA polymerases I,

II and III did not block the induction of aRNA by DNA

damage, suggesting that aRNAs are produced by another

polymerase. In contrast, aRNA was completely abolished

in both qde-3 and qde-1 mutants, indicating that the RecQ

DNA helicase QDE-3 and the RdRP QDE-1 are required

for the synthesis of the DNA damage-induced aRNA [41].

Using partially purified QDE-1 from Neurospora showed

that QDE-1 can produce RNA products using either ssRNA

or ssDNA as a template, indicating that QDE-1 is both an

RdRP and DdRP [41]. These results suggest that, in addi-

tion to its role in converting aRNA into dsRNA, QDE-1 is

also an RNA polymerase that generates aRNA.

QDE-3 was previously shown to play a role in DNA

damage response [22, 30, 31]. In addition, other RNAi

mutants in which qiRNA production is abolished were also

shown to have increased sensitivity to DNA damage [41].

These results suggest that qiRNAs may contribute to the

DNA damage response by inhibiting protein translation.

Both quelling and the qiRNA production pathway share

the same key components, such as QDE-1, QDE-2, QDE-3,

and Dicers, and both require aRNA production and dsRNA

production, suggesting that these two pathways are mech-

anistically linked. Although quelling is triggered by

repetitive transgene and qiRNA is induced by DNA dam-

age, both the transgene specific siRNA and qiRNA

originate from highly repetitive DNA loci. In a normal

wild-type Neurospora strain, the rDNA locus is the only

highly repetitive DNA locus and the transgene-mediated

quelling generates a second such locus. Therefore, the

repetitive nature of the rDNA and transgene loci is very

likely to be the common trigger for aRNA and small RNA

production for both processes. Since DNA damage induces

qiRNA from the rDNA region and repetitive transgenic

locus is known to have frequent recombination and rear-

rangement [41, 65], the generation of aRNA and siRNA
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from the quelled loci is also likely the result of DNA

replication stress caused by the repetitive transgene,.

miRNA-like RNA and diverse sRNA biogenesis

pathways in Neurospora

miRNA-like RNAs

miRNAs are small non-coding RNAs originated from

single-stranded RNA precursor containing hairpin struc-

tures [63, 75]. miRNAs have been found in animals, plants,

and algae [76–82], and have been widely considered to be

absent in the fungal kingdom. However, our recent studies

of Neurospora QDE-2-associated sRNAs have led to the

discovery of miRNA-like RNAs (milRNAs) in this fila-

mentous fungus [83], indicating that the miRNA-like gene

regulatory mechanism evolved early in the eukaryotic

lineage.

By analyzing the QDE-2-associated sRNAs, at least 25

potential milRNA-producing loci were discovered [83].

These milRNAs share many similarities with conventional

miRNAs from animals and plants: they come from highly

specific stem-loop RNA precursors; most of the milRNAs

require Dicer for the biogenesis; and milRNAs may silence

endogenous targets with imperfect complementarity as the

animal miRNAs. For each milRNA locus, the vast majority

of small RNA sequences matched one arm of the hairpin

(called the milRNA arm) and much lower numbers of

sRNA matched to the complementary arm (named as

milRNA*). Although nearly all milRNAs from each locus

share the same 50 U position, there is heterogeneity at 30

termini of milRNAs as miRNAs in other eukaryotes [84].

Diverse milRNA production pathways

The most surprising finding of this study is the discovery of

diverse pathways for milRNA biogenesis. The animal/plant

miRNAs are known to be produced by a well-defined

Dicer-dependent pathway [63, 75]. However, our close

examination of four milRs uncovered four different path-

ways for milRNAs production and revealed an important

role of Argonaute proteins in sRNA production [83]

(Fig. 3). Unlike qiRNAs, production of milRNAs is inde-

pendent of QDE-1 and QDE-3. Among these four milRs,

only the biogenesis of milR-3 milRNAs resembles that in

plants, which require only Dicers for pre-milRNA and

milRNA processing [85]. On the other hand, milR-4

milRNAs biogenesis is only partially dependent on Dicer,

indicating the existence of a novel nuclease.

The milR-1 milRNAs production pathway is currently

the best understood [83]. Although it is completely

dependent on Dicers for the production of pre-milRNA and

mature milRNAs production, the biogenesis of mature

milRNAs requires QDE-2 (but not its catalytic activity)

and the exonuclease activity of QIP. These results and the

association of pre-milRNA with QDE-2 led to the fol-

lowing model for milR-1 biogenesis: the pri-milRNA is

first processed by Dicer to generate double-stranded pre-

milRNAs, and afterwards QDE-2 binds to pre-milRNA and

recruits the exonuclease QIP to process the pre-milRNAs

into mature milRNAs. This study established a novel

sRNA biogenesis pathway in which the Argonaute protein

functions as an adaptor by binding to pre-milRNA and

recruiting other factor(s) to mediate milRNA maturation.

Although the production of milR-1, milR-3 and milR-4

milRNAs is completely or partially dependent on Dicer,

Fig. 3 A diagram depicting six

endogenous small RNA

production pathways in

vegetative tissues of

Neurospora crassa. There are at

least six different endogenous

sRNA biogenesis pathways in

N. crassa: a Dicer, QDE-2 and

QIP-dependent pathway for

milRNA-1; b Dicer-

independent, Argonaute QDE-

2-dependent pathway for milR-

2; c Dicer-dependent pathway

for milR-3; d partially Dicer-

dependent pathway for milR-4;

e DNA damage-induced Dicer-

dependent pathway for qiRNA;

f Dicer and QDE-2-independent

pathway for disiRNA
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surprisingly, the biogenesis of milR-2 milRNAs is com-

pletely independent of Dicer. Instead, its biogenesis

requires QDE-2 and its catalytic activity. The predicted

milR-2 pri-milRNA forms a hairpin structure with both

milRNA strand and milRNA* on the stem that is close to

the loop. In addition to the mature milRNAs, its pre-

miRNAs are associated with QDE-2. These results suggest

that, for milR-2, QDE-2 binds to a long pre-milRNA and

cleaves the milRNA* strand of the pre-milRNAs. After-

wards, another unknown nuclease is involved in the further

cleavage and maturation of milRNAs. The milR-2 pathway

is the first known example of Dicer-independent but Arg-

onaute-dependent mechanism for small RNA biogenesis,

and it extends the boundary of miRNA since all miRNAs

are previously regarded as Dicer-dependent.

The mechanistic diversity observed for milRNA biogen-

esis in Neurospora stands in stark contrast with the well-

defined miRNA production pathways in animals and plants.

Our results suggest that eukaryotic small RNA generation

mechanisms are more diverse than previously thought. Soon

after the publication of our study, the mouse miR-451 was

shown to be produced by a Dicer-independent but Argonaute-

dependent mechanism that is very similar to that of milR-2

[86, 87], suggesting that the other novel sRNA biogenesis

pathways in Neurospora may also exist in other eukaryotes.

Our results also raise the possibility that miRNA-like RNAs

may also be found in eubacteria and archea, which lack

homologs of Dicer but encode Argonaute-like proteins [88].

An RNAse III domain-containing protein MRPL3

in milRNA processing

The presence of Dicer-independent mechanisms for mil-

RNA generation indicates the involvement of novel

nucleases in milRNA biogenesis. We demonstrated that the

Neurospora homolog of the yeast mitochondrial ribosomal

protein MRPL3 is an important factor in milRNA pro-

duction [83]. MRPL3 contains a putative RNAse III

domain and a dsRNA recognition motif, although its

RNAse III domains has little sequence similarity to those

of Dicers and Drosha. In both a heterokaryotic knock-out

strain and a mrpl3 knock-down strain in which mrpl3 is

silenced by dsRNA, the production of milR-1 and milR-4

milRNAs were significantly decreased. In addition, the in

vitro miRNA cleavage activity was also reduced in these

mutants. These results indicate that the putative nuclease

MRPL3 is an important component for the production of

some milRNAs, although its mode of action is still unclear.

milRNAs mediate gene silencing in Neurospora

Like the animal/plant miRNAs, milRNAs regulate gene

expression in Neurospora [83]. By introducing a milRNA

reporter construct into a wild-type and qde-2 strains, we

showed that milR-1 expression resulted in robust gene

silencing of its complementary target. However, despite the

dramatic up-regulation of the reporter expression at

the protein level, only a modest effect was observed at the

mRNA level, suggesting that milRNA may mostly mediate

gene silencing by repression of translation. In addition, the

mRNA levels of several predicted targets of the milRNAs

are up-regulated in the dcl and qde-2 mutants. Furthermore,

QDE-2 was found to specifically associate with the mRNA

of these target genes, suggesting that milRNAs directly

regulate their expression in vivo. However, milRNAs do

not appear to play a prominent role in cell growth/devel-

opment in Neurospora as miRNAs in animals and plants

since the disruption of key RNAi components does not

result in severe phenotypes. Future studies are still needed

to establish the physiological importance of milRNAs in

Neurospora.

Dicer-independent small interfering RNAs (disiRNAs)

In addition to milRNAs, disiRNAs was shown to be another

novel type of sRNA in Neurospora [83]. disiRNAs were

symmetrically matched to both strands of DNA, and are

averaged about 22 nt long with a strong 50 U preference.

They are derived from *50 non-repetitive DNA loci which

contain genes and intergenic regions with no apparent shared

sequence motifs. Interestingly, based on available EST data,

nearly 80% of the disiRNA loci have overlapping sense and

antisense transcripts, which suggests that these disiRNAs are

likely processed from dsRNA made from naturally occurring

complementary sense and antisense transcripts.

disiRNAs do not depend on QDE-1, QDE-2, or QDE-3

for the biogenesis, and surprisingly, their levels were not

significantly changed in the dcl-1/dcl-2 double mutant, thus

they are a class of Dicer-independent sRNAs. Moreover,

their levels were not affected by mutations of Argonaute

genes or other known RNAi genes. These results indicate

that disiRNAs are distinct from the animal Dicer-inde-

pendent piRNAs and are produced by a novel sRNA

biogenesis pathway. Although the functions of disiRNAs

are not known, these small RNAs interact with QDE-2, the

core component of the RISC, suggesting that they may

function via the RNAi pathway.

RNAi studies in Cryphonectria, Aspergillus and Mucor

In addition to N. crassa, Cryphonectria paracitica,

Aspergillus nidulans and Mucor circinelloides are also

important model organisms for studying RNAi pathways

and their functions in filamentous fungi.
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RNAi is an antiviral defense mechanism

in Cryphonectria paracitica

Although RNAi is known as a key innate immunity

mechanism in antiviral defense for plant and animal viru-

ses, the antiviral role of RNAi in fungi was only shown

quite recently [2, 89–92]. RNAi pathways in filamentous

fungi are best understood in Neurospora, but there is no

experimental viral system that can infect this organism.

The filamentous Ascomycete fungus C. paracitica, the

chestnut blight fungus, has a well-established experimental

system for the study of hypoviridae family of mycoviruses

that reduces its pathogenicity and can support the viral

replication of five different RNA virus families. These

make C. paracitica an ideal model organism to study the

role of RNAi silencing as an antiviral defense mechanism

in fungi [93, 94].

p29 is a papain-like protease encoded by the mycovirus

Cryphonectria hypovirus 1 (CHV1), which is similar to the

plant potyvirus-encoded suppressor of RNA silencing

HC-Pro [95–98]. Using the CHV1-EP713/C. parasitica

system, Segers et al. demonstrated that p29 suppressed the

hairpin RNA-induced silencing in C. parasitica. In addi-

tion, p29 also suppressed both the virus-induced and

agroinfiltration-induced RNA silencing and systemic

spread of silencing in GFP-expressing transgenic Nicotiana

benthamiana [96]. These results suggest that the antiviral

defense mechanism of RNA silencing is conserved in both

fungi and plants [96].

Segers et al. [93] further cloned the dicer-like genes

dcl-1 and dcl-2 in C. parasitica, which are homologous to

the Neurospora dcl-1 and dcl-2, respectively. Although the

single mutants of dcl-1 and dcl-2 have no obvious pheno-

type compared to the wild-type C. parasitica, the dcl-2 and

dcl-1/dcl-2 mutant strains are highly susceptible to the

infection of hypovirus CHV1-EP713 or reovirus MyRV1-

Cp9B21. On the other hand, infection of the dcl-2 mutant

by a hypovirus CHV1-EP713 mutant lacking the suppres-

sor of RNA silencing p29 and the wild-type reovirus

MyRV1-Cp9B21 exhibited elevated viral RNA levels

compared to the wild-type. These results demonstrate that a

fungal Dicer can function to regulate virus infection and

RNAi plays an important role in antiviral defense in fungi

[93, 96]. This conclusion is further supported by the find-

ings that dcl-2 is required for defective viral RNA

production and recombinant virus vector RNA instability

for hypovirus [73]. In addition, the dcl-2 expression levels

are significantly increased after viral infection and are

further increased when the suppressor p29 is mutated in the

virus. Moreover, the DCL-2 processes hypovirus RNAs

into virus-derived small interfering RNAs (vsRNAs) as

part of an inducible RNA silencing antiviral response

[73, 74].

There are four Argonaute-like proteins (AGL1, AGL2,

AGL3 and AGL4) in C. parasitica, but only AGL2 is

required for the antiviral defense response [94]. Similar to

dcl-2, the agl2 transcriptional level is also induced in

response to viral infection [94]. In addition, agl2 and dcl2

transcripts were accumulated to much higher levels in

response to infection by a mutant CHV1-EP713 hypovirus

without p29, further supporting that a virus-encoded RNA

silencing suppressor suppresses the RNA silencing com-

ponents. Similar to the dsRNA-induced response in

Neurospora, expression of a hairpin RNA also significantly

induces the expression of agl2 and dcl2 to high levels [94],

consistent with the notion that the dsRNA-induced

response is part of the host defense mechanism [72].

Interestingly, the viral infection induced dcl-2 expression is

blocked in the agl2 mutant [94], suggesting that AGL2

plays a regulatory role in the activation of the RNA

silencing pathway.

In addition to the role of RNAi components in sup-

pressing viral RNA replication, they also promote viral

RNA recombination that generates internally deleted

mutant RNAs, called defective interfering (DI) RNAs [73,

74, 94], DI RNAs are derived from the parental viral

genomic RNA by recombination and can function to sup-

press viral RNA accumulation, leading to the instability

and deletion of foreign viral RNA vectors. While DI RNAs

were observed in the wild-type C. parasitica, in both dcl-2

and agl2 mutants, the hypovirus defective-inferencing (DI)

RNAs were abolished and the hypovirus vector expressing

EGFP became stable. These results demonstrate that the

host RNAi pathway can also control a single-strand posi-

tive sense RNA virus by promoting viral recombination

and DI RNA formation [73, 74, 94]. Although how RNAi

pathway functions to promote viral recombination is not

known, future studies will shed light on the mechanism of

new virus emergence and the mechanisms of virus–host

interaction [73, 74, 94].

RNAi as a viral defense mechanism in A. nidulans

Expression of inverted repeat-containing transgene also

results in robust RNA silencing in A. nidulans, demon-

strating that dsRNA-triggered RNAi is present in this

model filamentous fungus [99, 100]. Interestingly, this

fungus has only one intact Dicer and Argonaute, respec-

tively, which are both required for RNAi. A. nidulans

contains two genes encoding for RdRPs but they are not

required for the inverted repeat triggered RNAi, suggesting

that, as in Neurospora, RdRPs are not involved in siRNA

amplification [99, 101]. By stable infection of A. nidulans

with three mycoviruses, Hammond and Keller demon-

strated that the Aspergillus virus 1816 could suppress the

inverted repeat transgene-induced RNA silencing.
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Although the mechanism for the suppression is not clear,

this result suggests the existence of an RNA silencing

suppressor encoded by this virus. On the other hand, the

virus 341-derived siRNA was detected at a high level in an

Argonaute mutant, indicating that this virus is targeted and

processed into siRNA by the RNA silencing machinery.

Together, these results suggest that there is an antagonistic

relationship between mycoviruses and RNA silencing

mechanism in A. nidulans and RNAi functions as a viral

defense mechanism.

RNAi and small RNA studies in M. circinelloides

Compared to Cryphonectria and Aspergillus, M. circi-

nelloides, a basal fungus of the clade zygomycete, is

distantly related to Neurospora and has emerged as an

important fungal model system to study RNA silencing

mechanism. Both transformation of M. circinelloides with

self-replicative plasmids and expression of inverted-repeat

transgenes result in post-transcriptional gene silencing

[102, 103]. Two Dicer genes (dcl1and dcl2) and two RdRP

genes (rdrp1 and rdrp2) were identified and characterized

in M. circinelloides [102–105]. RNA silencing results in

the production of both sense and antisense small RNAs,

with two different size classes, 21 and 25 nt, respectively.

Unlike in Neurospora, secondary sense and antisense

RNAs were detected in M. circinelloides, suggesting a

sRNA amplification step is present for RNA silencing in

this fungus. DCL-2 is the major player in the transgene-

induced silencing and the production of the two classes of

antisense siRNAs [103]. On the other hand, RdRP1, but not

RdRP2, is important for the transgene-induced silencing

[104].

Most recently, by small RNA sequencing, four classes

of endogenous small RNAs have been identified in this

fungus. Most of these sRNAs match to exons and regulate

mRNA levels of many protein coding genes [104].

The biogenesis of the largest class of these exonic-siRNAs

(ex-siRNA) requires both RdRP1 and DCL-2, indicating

RdRP1 converts the corresponding mRNA into dsRNA

which is then further processed by DCL2. They target the

protein-coding mRNAs where they are produced. A second

group of exonic-siRNAs requires DCL-2 and RdRP2 but

not RdRP1 for the biogenesis. The third group requires

both RdRP1 and RdRP2 for the biogenesis, and the two

Dicers seem to play redundant roles. For the fourth group,

the small RNA production is mainly DCL-1- but not DCL-

2-dependent, although both RdRPs are required for their

biogenesis. In addition to ex-siRNAs, some Dicer-depen-

dent endogeneous small RNAs were also mapped to

transposons or repetitive sequences, but no miRNA-like

RNAs were found [104]. The lack of miRNA-like RNAs

suggests that either they are not present in this fungus or

are not expressed abundantly under the experimental con-

dition used. The discovery of these endogenous sRNAs

from M. circinelloides further indicates the diversity of

small RNA bigenesis pathways in the filamentous fungus.

RNAi studies and applications in other

filamentous fungi

RNAi has been shown to function in most filamentous

fungi examined and has been frequently used as a tool to

study gene function [60, 106, 107]. A co-suppression

phenomenon like that in plants and Neurospora was

observed in Cladosporium fulvum in 1998 [60, 108]. In

addition, a homology-dependent silencing phenomenon

was found in Schizophyllum commune [109]. On the other

hand, gene silencing by utilizing a dsRNA-expressing

system containing inverted repeats and/or two opposing

promoters has been successfully applied in many patho-

genic and non-pathogenic fungi including Ascomycota,

Basidiomycota, and Zygomycota, such as Magnaporthe

oryzae [110, 111], Sclerotinia sclerotiorum [112], Asper-

gillus fumigatus [113–116], Aspergillus oryzae [110, 117],

Aspergillus flavus [118], Aspergillus parasiticus [118],

Bipolaris oryzae [119], Colletotrichum lagenarium [120],

Colletotrichum gloeosporioides [121], Coprinus cinereus

[122], Fusarium graminearum [118], Fusarium solani

[123], Fusarium verticillioides [124], Moniliophthora

perniciosa [125], Coniothyrium minitans [126], Stagonos-

pora nodorum [127], Ophiostoma floccosum and

Ophiostoma piceae [128], Botrytis cinerea [129], Penicil-

lium chrysogenum [130, 131], Venturia inaequalis [132],

Coprinopsis cinerea [133], Cryptococcus neoformans

[134] and S. commune [60, 106, 107, 109, 135].

As more fungal genomes being sequenced, homologues of

RdRP, Argonaute and Dicer proteins in various filamentous

fungi from Ascomycota, Basidiomycota, and Zygomycota

were identified although they seem to be absent in the basid-

iomycete Ustilago maydis [60, 106]. Genes involved in the

RNA silencing in the ascomycete fungi usually have three

RdRPs, two Argonautes and two Dicer-like proteins. Basid-

iomycete fungi have similar numbers of the protein classes

involved in RNAi to the ascomycetes, although they have a

wider diversity and more extensive gene expansion. In the

zygomycete Rhizopus oryzae, five RdRP genes were identi-

fied, indicative of more extensive gene expansion and diverse

roles of RdRP in silencing mechanisms.

Conclusions

Neurospora crassa is one of the first eukaryotic model

organisms for RNAi studies. The discoveries of quelling and
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meiotic silencing by unpaired DNA demonstrated the

importance and diversity of RNAi phenomenon. The identi-

fication and characterization of components in these two

pathways have contributed significantly to our understanding

of the RNAi mechanism in general and will continue to do so

in the future. The recent discovery of qiRNAs, milRNAs and

disiRNAs and the demonstration of diverse small RNA bio-

genesis pathways in Neurospora established this organism as

an important eukaryotic model system for studying sRNA

production. Future studies on these sRNAs will shed lights on

the mechanism and evolutionary origins of eukaryotic sRNA

production. On the other hand, the demonstration and under-

standing of RNAi functions in viral or transposon defense

in Neurospora, Cryphonectria and Aspergillus or M. circi-

nelloides indicate that filamentous fungi are also important

eukaryotic systems to uncover RNAi functions.
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