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The receptor of advanced glycation end products (RAGE) and its ligands are linked to the pathogenesis of coronary artery disease
(CAD), and circulating soluble receptor of advanced glycation end products (SRAGE), reflecting the RAGE activity, is suggested
as a potential biomarker. Elevated sSRAGE levels are reported in relation to acute ischemia and this review focuses on the role of
SRAGE as a biomarker for the acute coronary syndrome (ACS). The current studies demonstrated that sSRAGE levels are elevated
in relation to ACS, however during a very narrow time period, indicating that the time of sampling needs attention. Interestingly,
activation of RAGE may influence the pathogenesis and reflection in SRAGE levels in acute and stable CAD differently.

1. Introduction

Worldwide, cardiovascular disease (CVD) is a prominent
cause of increased morbidity and mortality with a heavy bur-
den on the health care system [1]. Even though improvements
in prevention, diagnosing, and treatment of the disease have
increased substantially during the last decades, more atten-
tion is needed. It is believed that inflammatory mechanisms
are involved in the development of CVD [2, 3], though the
detailed pathogenic role of the inflammation system is still
under investigation. The receptor of advanced glycation end
products (RAGE) is found to play an important role in the
development of CVD [4], and the soluble RAGE (sRAGE)
may to some extent reflect RAGE activity, thus increasing the
value of sSRAGE as a biomarker [5, 6]. This review focuses
on the role of SRAGE as a biomarker for the acute coronary
syndrome (ACS).

2. Receptor for Advanced Glycation
End Products (RAGE)

RAGE is a transmembrane receptor of the immunoglobulin
superfamily composed of three domains: an extracellular
domain binding to ligands, a hydrophobic membrane span-
ning domain, and a highly charged cytoplasmic domain

essential for the intracellular signaling. RAGE is expressed
in many cell types including endothelial cells, lymphocytes,
monocytes, and vascular smooth muscle cells. RAGE expres-
sion is minimal under normal conditions but increases
significantly during cellular stress [7, 8].

RAGE was first described as a receptor for advanced
glycation end products (AGEs) and it was initially linked
to hyperglycemia, diabetes, and diabetic complications [9].
However, RAGE is now characterized as a multiligand recep-
tor [10], and, apart from AGEs, RAGE interacts with other
ligands, such as the S100 proteins [11], high mobility group
box 1 (HMGBI) [12, 13], and amyloids [14]. Ligand binding is
described to increase RAGE activity [15, 16], which mediates
proinflammatory responses [17-19] and generates oxidative
stress [15, 18, 20] that may contribute to the pathogenesis
of CVD. Still, the exact function in vascular pathogenesis is
unclear.

Mechanistic studies showed that cardiomyocytes upreg-
ulated both RAGE and AGE:s after exposure to hypoxia fol-
lowed by reoxygenation. Furthermore, cardiomyocytes iso-
lated from genetic RAGE knockout or from mice pretreated
with sSRAGE showed protection against cellular damage [21].
Similarly, RAGE expression increased in mice myocardium
after a temporary occlusion of the left anterior descend-
ing artery compared to sham-operated animals and RAGE
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colocalized with apoptotic cardiomyocytes [22]. The infarct
sizes diminished in RAGE knockout mice hearts exposed
to I/R injury [23] and precursors of RAGE ligands were
reduced [24]. Furthermore, RAGE knockout mice or mice
treated with RAGE inhibitors had less impaired cardiac
function [12, 23-25] and diminished atherosclerosis [18, 26].
Moreover, administration of SRAGE reduced atherosclerotic
lesions in atherosclerotic and diabetic mice models [4, 27, 28].
Inhibition or deletion of RAGE suppressed proinflammatory
activity and oxidative stress [12, 24, 29, 30]. Additionally,
RAGE ligands are reported to be involved in monocyte
migration and cholesterol efflux from macrophages, and
the effect was diminished through anti-RAGE antibodies or
sRAGE [3, 32].

In human settings, RAGE was highly expressed in
plaques, retrieved after carotid endarterectomy, from diabetic
patients compared to plaques from the nondiabetic patients
[33] and RAGE was primarily associated with apoptotic
smooth muscle cells and macrophages together with an
increased proinflammatory response [33, 34]. Furthermore,
increased RAGE mRNA was found in mononuclear cells also
from patients with premature CAD when compared to cells
from healthy controls [35]. Together these experimental and
morphological studies point towards RAGE activation in I/R
injury and atherosclerosis.

3. Soluble RAGE (sRAGE)

Soluble isoforms of RAGE are found in the circulation
and may act as regulators of RAGE activity by competitive
inhibition. These isoforms lack the intramembranous and
intracellular parts of the receptor, which devoid intracellular
signaling [36]. Soluble RAGE is produced in two different
ways, either as a splice variant, esSRAGE, from a truncated
RAGE mRNA [6, 37] or as a cleaved variant. Metallopro-
teinases cleave SRAGE from the full-length RAGE from the
cell membrane [5, 38, 39]. So far, the concentrations of
soluble RAGE have been determined as esRAGE or as the
total amount of SRAGE, which are positively correlated [40,
41], and esRAGE constitutes 20% of total sSRAGE [41, 42].
Different functions of the secreted and the cleaved sSRAGE
have not yet been demonstrated. Furthermore, SRAGE may
reflect enhanced activity in the RAGE system since the effects
of ligand stimulation mediate SRAGE upregulation [5] and
sRAGE is secreted in parallel with RAGE [5, 6]. This property
makes SRAGE a valuable biomarker.

4. sRAGE in Patients with Acute
Coronary Syndrome (ACS)

SRAGE levels in patients with ACS, defined as unstable
angina, non-ST-segment elevation myocardial infarction
(STEMI), and STEMI, have been presented in twelve pub-
lished cohorts with diverging results (Table 1). Cai et al. and
Park et al. reported elevated levels of sSRAGE in patients
with ACS when compared with healthy controls [43, 44].
The study by Basta et al. did not find different SRAGE
levels in non-STEMI patients compared to patients with
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stable CAD. However, SRAGE concentrations were higher in
patients with elevated cardiac Troponin I (Tnl), a specific and
approved biomarker of acute myocardial infarction (AMI)
[45]. In the study by Raposeiras-Roubin et al., plasma samples
were collected within 12 hrs after symptoms in relation to
percutaneous coronary intervention (PCI) [46], whereas Cai
et al. and Basta et al. collected the blood samples at a
later time point [43, 45]. Raposeiras-Roubin et al. reported
similar SRAGE levels in STEMI and non-STEMI patients, but
increased sSRAGE levels were associated with poor in-hospital
prognosis [46]. The time of blood sampling was not reported.
Fukushima et al. found equal sSRAGE levels in patients with
ACS at baseline and at 8-12 months follow-up [47]. The time
of baseline sampling is not described in detail, but one could
speculate that blood was drawn at randomization for different
statin treatment 72 hrs after PCL

In two different cohorts of STEMI patients, samples were
drawn within 12 hrs after onset of symptoms and before PCI.
We recently reported a fourfold increase in sSRAGE levels in
these STEMI patients as compared to 100 healthy individuals
(described in Figure 1) [48, 49]. Successive blood samples
were drawn during and after treatment of one of the STEMI
cohorts, and sRAGE levels reduced almost threefold the day
after PCI and decreased even further two days after PCI
[49]. Interestingly, the increase of SRAGE was seen prior to
Tnl. The rapid decrease in sSRAGE levels the day after PCI
may provide valuable information in relation to diagnosis
of reinfarction. Our results support the fact that SRAGE
levels are elevated particularly in relation to acute ischemia,
which may indicate SRAGE as an additional biomarker of
AML. In addition, the repeated measurements elucidate that
SRAGE levels change over a very narrow time span in
relation to acute disease. Therefore, attention to time point
of SRAGE measurement is important when interpreting the
results.

In contrast to the above studies, Falcone et al. found
significantly decreased SRAGE levels in patients with ACS as
compared to stable angina [55]. Blood samples were collected
before the revascularization. Similarly, McNair et al. found
lower levels of sSRAGE in patients with non-STEMI compared
to the controls, and time of blood sample collection was not
indicated [51-54].

Only few studies have evaluated the effect of diabetes on
the sSRAGE levels in patients with ACS. In a group of patients
(50% with type 2 diabetes (T2D)), Park et al. reported higher
plasma sRAGE levels in patients with AMI than in controls,
however, regardless of the presence of diabetes [44]. Similarly,
Fukushima et al. reported no differences in SRAGE levels
in diabetic ACS patients (30%) compared to nondiabetics
with ACS [47]. Our two studies of STEMI patients included
6% and 9% diabetics and no difference in SRAGE levels was
found due to diabetes [48, 49].

The ambiguity in the studies may be explained by incom-
parable conditions between studies; of particular importance
is the time point of blood sample collection and age. A differ-
ent ratio of diabetic patients within the studies described in
Table 1 may also contribute to the inconclusive results as the
data in diabetics with ACS are sparse.
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TaBLE 1
Patients SRAGE  Description of main results Reference
STEMI treated with PCI Increased sSRAGE levels with higher NYHA classification.
with/without remote ischemic T No effect of remote ischemic conditioning on SRAGE levels and  Jensen et al., 2015 [48]
conditioning (n = 191) association between SRAGE and salvage index.
Consecutive samples show high sSRAGE levels prior to and
immediately after PCI followed by decreased levels day 1 and
STEMI treated with PCI (n = 80) T day 2 after PCI. Jensen et al., 2015 [49]
sRAGE was an independent predictor of cardiac dysfunction
assessed by decreased LVEE
No difference in SRAGE levels at baseline and after 8-12 months
after PCIL. Fukushima et al., 2013
ACS (n = 208) - Baseline sSRAGE levels were not associated with plaque [47]
progression 8-12 months after PCL.
ACS (n = 330), stable angina I Significantly decreased sSRAGE levels in ACS compared with Falcone et al., 2013
(n = 530) stable angina. [55]
STEMI (1 = 102), non-STEMI No difference in SRAGE levels b'etween .STI.EMI anc.l non—STEMI. Raposeiras-Roubin et
- Elevated sSRAGE level was associated with in-hospital cardiac
(n=113) events al., 2013 [46]
Non-STEMI (1 = 190), stable No filfference in SRAGE levels between non-STEMI and stable
angina (1 = 75) —1  angina. Basta et al., 2011 [45]
& Increased sSRAGE in patients with elevated Tnl.
ACS (n = 420), stable angina . . .
(n = 211), controls (1 = 251) T Increased sSRAGE levels in ACS compared with controls. Cai et al., 2011 [43]
Increased sRAGE levels in patients with AMI. Diabetic patients
AMI (n = 54), controls (n = 54) T with AMI had higher sSRAGE levels than diabetic patients Park et al., 2011 [44]
without AMI.
Non-STEMI (n = 36), controls L Lower sRAGE levels in non-STEMI compared to controls. M&hl?\}ziit;l;lzozl(ln[gl]
(n = 30) Negative correlation between sSRAGE and cTnl. [52] v
B Lower sRAGE levels in non-STEMI compared to controls. )
aoil_zs (;F)EMI (n = 46), controls Non-STEMI with post-PCI restenosis had lower post-PCI McNalr[g';]a L, 2010
B SRAGE levels than pre-PCI levels.
B Lower sRAGE levels in non-STEMI compared to controls. .
Non-STEMI ( = 46), controls l SRAGE levels were inversely associated with the number of McNair et al, 2009

(n=28)

diseased vessels.

(54]

ACS: acute coronary syndrome; AMI: acute myocardial infarct; NYHA: New York Heart Association classification; LVEF: left ventricular ejection fraction;
PCI: percutaneous coronary intervention; SRAGE: soluble receptor of advanced glycation end products; STEMI: ST-segment elevation myocardial infarction;

Tnl: Troponin I.

The major source of sSRAGE in relation to ACS is still
not clear, but it is highly probable that it originates from the
cardiomyocytes or the vascular cells in the damaged myocar-
dium.

5. SRAGE in Patients with Stable CAD

Opposite to the patients with ACS, patients with stable CAD
had low plasma sRAGE levels when compared to controls
[35, 50, 56-58]. In a large population study including 2,571
individuals, high coronary calcium score, a risk marker of
CVD, was more prevalent in the group with low sSRAGE levels
[59]. Furthermore, in a small prospective study of patients
with suspected CAD, low sRAGE levels were predictive of
future cardiovascular events after 48 months of follow-up
[60]. In support, low sSRAGE levels in the Atherosclerosis Risk
in Communities (ARIC) Study were an indicator of future

CAD after 18 years of follow-up [61]. One might speculate
that the low levels of SRAGE in nondiabetic patients with
stable CAD may reflect a local release of RAGE from the
atherosclerotic vessels. SRAGE may capture RAGE ligands
and thereby reduce measurable sSRAGE in the circulation and
furthermore reduce the activity in the RAGE axis.

Patients with T2D and stable CAD had significantly
higher levels of sSRAGE than the nondiabetic CAD patients
[58, 62], and the T2D patients with high sSRAGE concentra-
tions had increased risk of CAD [63]. sSRAGE levels were able
to predict future CAD in T2D patients after approximately
4 years of follow-up [40]. In addition, high sSRAGE levels
were associated with an increased cardiovascular morbidity
and mortality in T1D during follow-up [64, 65]. It may be
speculated that the persistent high levels of SRAGE in diabetic
patients may reflect an ongoing inflammatory and RAGE
activity related to diabetes.
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FIGURE 1: sSRAGE concentrations in 100 healthy individuals. Healthy individuals are divided by gender (female (n = 50) and male (n = 50))

or by age (below 50 years (n = 50) and above 50 years (n = 50)).

6. Measurement and Variation in
SRAGE Levels

As a potential biomarker, SRAGE may be influenced by
detection methods and various factors such as gender, age,
and ethnicity as well as diseases and medications. In the
majority of published studies, sSRAGE levels have been deter-
mined with a human sRAGE enzyme-linked immunosorbent
assay (ELISA) (DRGO00, R&D Systems). In the enclosed
datasheet, mean of SRAGE levels was 1,655 (693 (SD)) ng/L
in EDTA plasma and 1,794 (£693 (SD)) ng/L in serum in
apparently healthy volunteers. An extern validation revealed
a stable assay with comparable concentrations in EDTA
plasma and serum samples [66]. We validated a time-resolved
immunofluorometric assay (TRIFMA) using commercial
human RAGE antibodies (DY1145, R&D Systems) [49] and
found comparable sSRAGE concentrations by TRIFMA and
ELISA. We detected plasma sRAGE levels of 1,533 ng/L (+61
(SD)) in 100 healthy individuals. No difference in sSRAGE
levels was seen according to gender (P = 0.56), but age
introduced a difference since individuals below the age of 50
had significantly higher levels of sSRAGE than those above
the age of 50 (1,759 (86 (SD)) ng/L versus 1,378 (+78 (SD))
ng/L, P < 0.002, Figure 1). A negative association between age
and sRAGE levels was also observed in some diabetic cohorts
[42, 63] and in a population study [59].

SsRAGE levels remained stable when repeatedly measured
within at least 3 years in patients with and without diabetes
[40, 42, 67]. A negative association between sRAGE levels
and body mass index (BMI) has been found in some cohorts
[42, 61] and also in one of our studies [48]. Additionally,
ethnicity is reported to influence the sSRAGE levels as higher
SRAGE levels are reported in white compared with black
individuals [40, 61, 68]. SRAGE levels may be influenced
by diseases other than CAD and diabetes, for example,
cancer, inflammatory diseases, neurodegenerative diseases,

or chronic kidney disease [69]. Furthermore, medications
may also affect sSRAGE levels [70, 71].

7. Conclusion

Several studies indicate that RAGE activation may influence
the pathogenesis and reflection in sSRAGE levels in acute
and stable CAD differently. The current studies demonstrated
that, in nondiabetic patients, SRAGE levels are elevated
in relation to ACS and sparse data indicate that diabetes
does not have an additive effect in ACS patients. On the
contrary, in patients with stable CAD, sRAGE levels are low
in nondiabetic patients but elevated in diabetic patients which
may add predictive value to recognition of future CVD.

Current data on SRAGE levels in CAD are diverging and
sRAGE may be influenced by several other factors, which is
why precaution must be taken with the drawn conclusions.
In relation to ACS, we found the time of sampling to be
of importance, which is highly relevant for evaluation as
a potential biomarker. Additional mechanistic studies are
needed as well as investigations of the sources and functions
of sSRAGE. Further clinical studies are also needed to establish
the value of SRAGE as a prognostic marker in patients with
ACS.
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