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ABSTRACT

Binding of transcription factors to DNA is one of the
keystones of gene regulation. The existence of sta-
tistical dependencies between binding site positions
is widely accepted, while their relevance for compu-
tational predictions has been debated. Building prob-
abilistic models of binding sites that may capture de-
pendencies is still challenging, since the most suc-
cessful motif discovery approaches require numer-
ical optimization techniques, which are not suited
for selecting dependency structures. To overcome
this issue, we propose sparse local inhomogeneous
mixture (Slim) models that combine putative depen-
dency structures in a weighted manner allowing for
numerical optimization of dependency structure and
model parameters simultaneously. We find that Slim
models yield a substantially better prediction per-
formance than previous models on genomic context
protein binding microarray data sets and on ChIP-seq
data sets. To elucidate the reasons for the improved
performance, we develop dependency logos, which
allow for visual inspection of dependency structures
within binding sites. We find that the dependency
structures discovered by Slim models are highly di-
verse and highly transcription factor-specific, which
emphasizes the need for flexible dependency mod-
els. The observed dependency structures range from
broad heterogeneities to sparse dependencies be-
tween neighboring and non-neighboring binding site
positions.

INTRODUCTION

Transcriptional regulation mediated by transcription fac-
tors binding to genomic DNA is one of the fundamental
regulatory steps of gene expression. Most transcription fac-
tors bind to regulatory segments, termed transcription fac-
tor binding sites. The binding specificity of these factors

has been modeled as sequence motifs. Over the last years,
the importance of dependencies between different posi-
tions of such transcription factor binding sites has been de-
bated controversially (1–3). Several publications argue that
binding energies between transcription factors and DNA
are––with a few notable exceptions––largely additive across
positions and thus can be captured by simple weight ma-
trices with appropriately determined parameters (2,4–6).
Others find that dependencies between binding site posi-
tions exist (7) and that including dependencies into mo-
tif models can indeed increase the performance of com-
putational predictions of transcription factor binding sites
(8–16). While dependencies between neighboring positions
could be explained by DNA shape (17–19), reasons for non-
neighboring dependencies are less clear.

In this paper, we aim at providing new insights into the
importance of dependencies in transcription factor binding
sites and investigate the diverse sources of such dependen-
cies in a large-scale study on in vitro genomic context pro-
tein binding microarray (gcPBM) data (12,20) and in vivo
ChIP-seq data from the ENCODE project (21). For this
purpose, we propose a new class of probabilistic models that
allow for learning dependencies between binding site posi-
tions discriminatively, which we call sparse local inhomoge-
neous mixture (Slim) models. For representing dependen-
cies graphically, we develop a new, model-free visualization
technique, which we call dependency logos.

Probabilistic models are widely used for modeling se-
quence motifs (8–9,13,22–23). Determining a probabilistic
model requires the selection of features and the estimation
of resulting model parameters (24–26). For instance, fea-
tures might be the nucleotide composition at a certain po-
sition, the occurrence of di- or trinucleotides, or more gen-
eral dependencies between nucleotides at different positions
of the binding site. The set of features selected determines
the number of model parameters and their semantics. For
fixed-structure models including the position weight matrix
(PWM), the set of features is fully defined by the choice
of the model by the user, whereas feature selection typi-
cally becomes a part of the learning process for variable-
structure models including Bayesian trees. Parameter esti-
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mation then aims at identifying suitable values for these
parameters, which are often related to probabilities of nu-
cleotides or to binding energies between a transcription fac-
tor and the nucleotides bound. Typically, feature selection
is performed in discrete space (features are selected or not),
while parameter estimation is performed in the continuous
space of probabilities or energies.

For parameter estimation, discriminative learning princi-
ples have been proven superior over generative ones in many
areas (26–33), but typically demand for time-consuming nu-
merical optimization. For this reason, simultaneous (dis-
crete) feature selection and parameter estimation become
intractable for discriminative learning principles, since for
each (promising) feature subset a new numerical optimiza-
tion of the parameter values is required (34,35). Even sub-
optimal heuristics and approximations for discriminative
feature selection (35,36) become inapplicable for the prob-
lem of de novo motif discovery using the popular ZOOPS
(zero or one occurrence per sequence) model (15,31,37–
39), because the subset of the data (e.g. binding sites within
longer sequences) that is the basis for feature selection and
parameter estimation change over the learning process.

To overcome this situation, we propose Slim models that
use the alternative concept of soft feature selection combin-
ing all given features in a weighted manner. More specifi-
cally, the probability of a nucleotide at a certain position of
a binding site may depend on any nucleotide observed at a
preceding position. Since it is unknown beforehand, which
of these putative dependencies are important, Slim models
handle this information as a hidden variable resulting in a
local mixture model. During the learning process, the pa-
rameters of this mixture model are adapted, such that a sin-
gle position or a small subset of preceding positions obtains
a large weight, whereas the others are down-weighted, yield-
ing a soft feature selection.

In Figure 1, we illustrate this concept, which enables
simultaneous numerical optimization of feature weights
and model parameters. Hence, concurrent feature selection
and parameter estimation becomes tractable even for dis-
criminative learning principles. Depending on the weights
learned, the Slim model may interpolate between a PWM
model (40–42), a weight array matrix (WAM) model (43)
and a Bayesian tree (8), where all of these models have been
successfully applied to DNA motifs in the past. To reduce
runtime and model complexity, we additionally introduce
limited sparse local inhomogeneous mixture (LSlim) mod-
els, which limit the number of preceding positions consid-
ered.

Once dependencies between binding site positions have
been learned, an intuitive visualization of these dependen-
cies greatly supports the perception of dependency struc-
tures and their biological interpretation. Sequence logos
(44) are widely used for visualizing sequence motifs. How-
ever, sequence logos are not suited for detecting dependen-
cies between binding site positions, as they assume statis-
tical independence of binding site positions in analogy to
PWM models. Hence, extensions of sequence logos have
been used, as for instance, sequence logos using adjacent di-
and trinucleotides instead of single nucleotides (45). Fur-
ther attempts have been made to visualize dependencies be-
tween binding site positions, which, however, lack the in-
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Figure 1. Graphical representation of Slim model. Graphical represen-
tation of the dependencies of position 4 (solid node) on other positions
(dashed nodes) as modeled by a PWM model, a WAM model, a Bayesian
tree and a Slim model. The PWM model assumes independence between
position represented by missing edges between nodes and the thick outline
of node 4. For a WAM model, the conditional probabilities at position 4
depend on the nucleotides observed at position 3 as indicated by the thick
edge, but does not depend on any of the other positions. For a Bayesian
tree, the conditional probabilities at position 4 depend on the nucleotides
observed at any other position (position 1 in the example). The Slim model
is capable of interpolating between all of these cases. In the specific exam-
ple, the probabilities at position 4 are independent of all other positions
with a weight of 0.3 (thick outline of node 4) , while the remaining weight
of 0.7 is distributed between preceding positions 1, 2 and 3. These values
are chosen for illustration purposes, whereas typically, the weights of the
Slim model are less evenly distributed between the different options.

stant perceptibility of the original sequence logo and are
largely tied to a specific class of models. Specifically, visual-
izations for feature motif models (46), hidden Markov mod-
els (13) and adjacent dinucleotide models (6) have been pro-
posed.

In this paper, we present dependency logos as a new way
of visualizing dependency structures within binding sites. In
contrast to sequence logos, dependency logos make depen-
dencies between binding site positions visually perceptible.
In contrast to previous approaches, dependency logos are
model-free and only require a set of aligned sequences, e.g.
predicted binding sites, and, optionally, associated weights
as input.

MATERIALS AND METHODS

In this section, we introduce the Slim and LSlim models,
explain how we estimate the model parameters, and how we
apply the model in practical applications. Subsequently, we
introduce dependency logos and give illustrative examples
for their advantages compared to sequence logos. Finally,
we specify the data that we use in the case studies.

Sparse local inhomogeneous mixture model

We consider DNA sequences x = x1, . . . , xL where each
symbol x� is from the DNA alphabet � = {A, C, G, T}.
For modeling dependencies within DNA sequences, we in-
troduce sparse local inhomogeneous mixture (Slim) models
that allow for modeling each position within the sequence
independently of all other positions or conditionally depen-
dent on some of its predecessor positions.
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In the following, we do not explicitly denote the model
parameters λ for the sake of readability. However, each of
the Pl(...) terms depends on (some of) the model parame-
ters, and we use the natural parametrization (47,48) for all
probabilities. We denote by X� the random variable for nu-
cleotide x�, by Y� the random variable for the conditioning
nucleotide, by M� the hidden random variable for the posi-
tion of the conditioning nucleotide and by C� the binary
hidden random variable distinguishing between the inde-
pendent (C�=0) and conditionally dependent (C� = 1) cases.

For a (limited) Slim model of distance d, the likelihood of
sequence x is defined as

P(x|λ) =
L∏

�=1

(
P(C� = 0) · P(X� = x�|C� = 0)

+P(C� = 1) ·
∑

m∈[1,z�]

[
P(M� = � − m|C� = 1) ·

P(X� = x�|Y� = x�−m, C� = 1)
])

, (1)

where z� = min (d, � − 1) and the remaining terms have the
following meaning:

� P(C�): The a priori probability that the distribution at po-
sition � should be modeled by a weight matrix (C� = 0,
no context dependencies) or by a conditional distribution
depending on previous positions (C� = 1).

� P(X�|C� = 0): The unconditional, probability distribu-
tion over the nucleotides at position � is similar to a
PWM.

� P(M�|C� = 1): The a priori probability that position �
should depend on position M�.

� P(X�|Y� = x� − m, C� = 1): The conditional probability
distribution over the nucleotides at position � given the
nucleotide at position � − m. This (conditional) distribu-
tion depends on the nucleotide x� − m but is identical for
each of the possible predecessor positions max (� − d, 1),
. . . , � − 1 as indicated by the shared random variable Y�.

The distance parameter d limits the set of allowed prede-
cessor positions, and, hence, reduces the number of features
considered. Conceptually, if d is set to infinity, all predeces-
sor positions (down to position 1) are considered. If d < L
− 1, we refer to this model as limited Slim model of distance
d (LSlim(d)) and if d = ∞, we refer to this model as full Slim
model (Slim) in the following.

In Figure 1, we visualize the dependency structure of a
Slim model as defined by its likelihood (Equation (1)) for an
exemplary position � = 4. We visualize positions by nodes
and possible dependencies by edges. The probability that
the position is modeled without context is P(C4 = 0) = 0.3
depicted close to node 4. In contrast, the probability that
the position is modeled with a specific context position z is
P(C4 = 1) · P(M4 = z|C4 = 1) depicted close to the corre-
sponding edges. For instance, the probability that position
4 is modeled with position 2 as context is visualized by the
edge between nodes 4 and 2 with P(C4 = 1) · P(M4 = 2|C4
= 1) = 0.1 close to the edge.

Hence, the concept of weighted features is implemented
via the distributions P(C�) and P(M�|C� = 1). However, spe-

cific choices of these distribution lead to well-known mod-
els.

� If for all � P(C� = 0) = 1, we obtain a PWM model.
� If for all � P(C� = 1) = 1 and P(M� = � − 1|C� = 1) = 1,

we obtain a WAM model.
� If for all � P(C� = 1) = 1 and P(M� = m�|C� = 1) = 1

for one m�, we obtain a subclass of Bayesian trees, i.e.
we obtain a dependency structure that is equivalent to a
Bayesian tree. However, in contrast to general Bayesian
trees, only the subset of predecessor positions is allowed
as ‘parent’ random variable.

In general, we may also obtain all possibilities between
those extremes and may partly capture if one position de-
pends on more than one of the other positions.

Encoding feature selection in continuous model param-
eters in complete analogy to the parameters representing
nucleotide probabilities allows for learning both simultane-
ously using numerical optimization techniques.

Model application

For all applications presented in this paper, models are ad-
ditionally wrapped in a ‘strand model’, which is a simple
mixture model over the two DNA strands such that the en-
closed model is applied to an input sequence in both orien-
tations (15).

In case of gcPBM data, we use this strand model in com-
bination with a homogeneous Markov model of order 1 as
the background model.

In case of de novo motif discovery using Dimont, this
strand model is additionally enclosed in a ZOOPS model
(37–39) and a uniform distribution is used as a background
model (15).

In the following, we denote the likelihood of the fore-
ground and the background model given the model param-
eters λ as Pfg(x|λ) and Pbg(x|λ), respectively.

Learning model parameters

We learn model parameters by the discriminative weighted
maximum supervised posterior principle (49). To this end,
we assign to each input sequence xn weights wn, fg and wn, bg,
wn, fg, wn, bg ≥ 0, wn, fg + wn, bg = 1 representing the proba-
bility that this sequence is bound by the transcription factor
of interest or not, respectively.

In case of gcPBM data, these weights are based on the
PBM intensity In for sequence xn . The foreground weight is
determined from a logistic function with parameters a and
b as

wn,fg := 1
1 + exp (−a · (In + b))

. (2)

The parameters a and b are fitted to the intensities I1, . . . , IN
of all input sequences such that the 10th and 90th percentile
of the In yield wn, fg = 0.1 and wn, fg = 0.9, respectively.

In case of ChIP-seq data, these weights are based on the
ranks of the peak statistics Sn for sequence xn as described
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Figure 2. Dependency logos reveal dependencies between binding site positions. While the sequence logos of both data sets are identical, dependency logos
reveal dependencies between positions 7, 12, 13 and 14 that are present in data set (B) but not in data set (A).

previously (15). Specifically, we compute

wn,fg := 1

1 + hn
1−hn

· 1−q
q

, (3)

where hn = rn
m is the relative rank of the peak statistics of

the nth sequence in the data set, rn is the rank and m =
max n{rn} is the maximum rank. The parameter q is a user-
specified parameter that represents the a priori fraction of
sequences that receives a foreground weight >0.5, which is
set to the default value of 0.2 for all experiments presented
in this paper (15).

We optimize the model parameters λ by a weighted vari-
ant (15,49) of the discriminative maximum supervised pos-
terior principle (30,50–51)

λ̂ = argmax
λ

N∑
n=1

∑
c∈C

wn,c log

⎛
⎜⎜⎝ P(c|λ)Pc(xn |λ)∑

c̃∈C
P(c̃|λ)Pc̃(xn |λ)

⎞
⎟⎟⎠ + Q(λ|α), (4)

where C = {fg, bg} is the set of classes, P(c|λ) denotes the
a priori probability of class c and Q(λ|α) denotes the prior
on the parameters λ given hyperparameters α. The prior is
a transformed product-Dirichlet prior (48) using BDeu hy-
perparameters (52,24) based on an equivalent sample size
of 4. Parameter optimization is performed numerically us-
ing conjugate gradients.

Definition of dependency logos

Generating a dependency logo, we start from aligned se-
quences of length L and, optionally, associated scores, e.g.
prediction scores or ChIP peak statistics. We aim at identify-
ing clusters of sequences with co-occurrence of nucleotides
at several positions by recursively splitting the data set.
Hence given a set of sequences, we compute the mutual in-
formation Mi, j as a measure of dependence between each
pair of positions i and j.

We define D(i) as the average of the three largest mutual
information values between position i and any of the re-
maining positions. Subsequently, we determine that posi-
tion j yielding the largest D(j) and we determine that po-
sition k with the highest mutual information Mj, k to the
previously selected position j. We then split the set of se-
quences into 16 partitions according to the nucleotides at

positions j and k. To avoid tiny partitions in the visualiza-
tion, we join all partitions containing <3% of the sequences
into the smallest partition containing at least 3% of the se-
quences. We sort the resulting partitions descendingly ac-
cording to the average score of the contained sequences if
scores are available (as it is the case for all dependency lo-
gos presented in this manuscript), or otherwise according to
the nucleotide frequencies.

We proceed for each partition recursively until the cur-
rent set of sequences contains <3% of the initial full set of
sequences, D(k) is less than a user-defined threshold, or the
maximal recursion depth of 6 is reached.

After partitioning the input sequences in the described
manner, we visualize each partition in one row and deter-
mine the height of the row relative to the size of the complete
data set. We visualize each individual position of a partition
by one box and determine the color for this box as the av-
erage of the RGB color encodings (A: green, C: blue, G: or-
ange, T: red) of the corresponding nucleotides. In analogy to
the scaling of sequence logos, we determine plotting opacity
of a box as the relative information content at this position
in the partition. Hence, boxes with conserved nucleotides
appear in vibrant colors (e.g. positions 8–11 in Figure 2A),
whereas less conserved positions become gradually subdued
(cf. positions 8, 7 and 6 in Figure 2A).

This procedure allows for distinguishing the dependency
structure of the data set visualized in Figure 2A from that of
the data set visualized in Figure 2B. While no dependencies
exist in data set A and the dependency logo is just one row,
we detect several dependencies between positions 7, 12, 13
and 14 in data set B that are visualized by co-occurring col-
ored boxes in several rows. For instance, we observe in Fig-
ure 2B that position 13 always shows the same nucleotide (A
or T) as position 7, and that position 14 is always C if po-
sitions 12 and 13 are T, whereas position 14 is T if position
12 is T and position 13 is A.

To further assist the visual detection of dependencies, we
plot a graph structure above the dependency logo, where
edges connect all positions exhibiting a significant depen-
dency (chi-squared test, Bonferroni corrected for multiple
testing across all combinations of positions) and the dark-
ness of an edge represents the corresponding mutual infor-
mation value. Finally, we plot a traditional sequence logo
below each dependency logo.
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For the gcPBM and ChIP-seq analysis, we partition the
initial set of sequences into buckets of pre-defined size based
on associated scores before starting the recursive partition-
ing procedure to additionally visualize the variation of de-
pendency structures from top-scoring to low-scoring sites.

Data

gcPBM data. We obtain the gcPBM data of Mordelet
et al. (12) (GEO accession number GSE47026) for the hu-
man transcription factors Mad2 (also known as Mxi1, 4292
probe sequences), Max (4430 probe sequences) and c-Myc
(4917 probe sequences) including the partitioning used for a
10-fold cross validation in the study by Mordelet et al. (12).

ENCODE ChIP-seq data. We obtain from the ENCODE
project (21) ChIP-seq data sets for those 63 transcription
factors with (i) data sets available for at least two of the
‘Tier 1’ cell types and (ii) uniform peaks available. If mul-
tiple such data sets are available for the same cell type
but from different labs, we just chose the first uniform
peak data set in the list (complete list in Supplementary
Text S6.1). For each of the tools tested and each data set,
we extract the most suitable sequences in the region of
each peak according to the suggestions of the correspond-
ing publications from the hg19 genome sequence obtained
from UCSC (http://hgdownload.soe.ucsc.edu/goldenPath/
hg19/bigZips/, cf. Supplementary Text S6.3). All data sets
comprising the extracted sequences are available from the
authors on request.

RESULTS

In this section, we give a brief explanation of dependency
logos, which complements the rather formal definition in
‘Materials and Methods’, and, subsequently, we present re-
sults of the analysis of gcPBM and ChIP-seq data using
Slim and LSlim models.

In a pilot study for these analyses, we test Slim models
for classifying artificial sequence data. We find that Slim
models are capable of identifying those dependencies be-
tween sequence positions that are relevant for classification.
On these artificial data, Slim models yield a greater pre-
diction performance than PWM and WAM models, and
achieve a prediction performance comparable or slightly
better than Bayesian trees using heuristic discriminative
structure learning. A detailed presentation of this pilot
study is given in Supplementary Text S4.

Introduction to dependency logos

The following presentation of results critically depends on
the representation of dependencies and heterogeneities in
binding sites by dependency logos. Hence, we give a short
introduction to dependency logos in this section, while a
formal definition has been given in ‘Materials and Meth-
ods’.

Sequence logos (44) are an intuitive method to visualize
sequence motifs, but have several disadvantages including
the inability to visualize dependencies between positions of
binding sites.

To overcome these limitations, we propose dependency
logos as an alternative way of representing binding specifici-
ties. Dependency logos make dependencies between differ-
ent motif positions visually perceptible by three key ideas.

First, dependency logos are directly based on binding
sites instead of abstract binding motifs, e.g. mononucleotide
distributions of PWM models.

Second, we cluster binding sites by their nucleotides at
those positions showing the strongest dependencies to other
positions. If, for instance, position 14 shows the strongest
dependencies to other positions and, of those, the depen-
dency between positions 13 and 14 is the strongest, we cre-
ate 16 clusters according to the dinucleotide at positions 13
and 14. This procedure may be repeated recursively for each
of the clusters (e.g. those sequences with a TC at positions
13 and 14) as detailed in Materials and Methods.

Third, we visualize each cluster as one row of colored
boxes using the familiar colors of sequence logos. If more
than one nucleotide is present at a certain binding site po-
sition in a cluster, we mix the colors representing those nu-
cleotides and set their saturation based on information con-
tent in analogy to the height of stacks in sequence logos.
We give a step-by-step example for the generation of de-
pendency logos in Supplementary Text S1 and provide an
annotated dependency logo in Supplementary Figure S1.

An illustrating example of dependency logos is given in
Figure 2. In this case, the sequence logos (lower part) fail to
represented dependencies present in data set B. In contrast,
the dependencies between positions 7, 12, 13 and 14 are
clearly visible as dependency structure and colored boxes in
the upper part of the dependency logo of Figure 2B (more
details cf. Materials and Methods).

In Supplementary Text S2, we extend the examples above
presenting dependency structures that may be present in the
data and that can not be distinguished by sequence logos
(Supplementary Figure S2). We also use dependency logos
in Supplementary Figure S3 to illustrate the rather smooth
transition from perceived dependencies to perceived hetero-
geneities and discuss why both are not clearly separable.

gcPBM data

In a first practical application of Slim and LSlim models,
we consider the gcPBM data. Originally, the protocol of
gcPBM was introduced by Gordan et al. (20) and uses PBM
technology but with probe sequences representing known,
aligned binding sites in their genomic context (obtained, e.g.
from ChIP experiments) instead of unbiased de-Bruijn se-
quences representing all k-mers. This technique has the ad-
vantage that a greater number of probe sequences are ac-
tually bound by the factor of interest and yields a higher-
granularity picture of binding specificity and context de-
pendency than universal PBMs. Hence, the gcPBM data
sets constitute a near-optimal setting for learning statisti-
cal models that are more complex than PWMs like WAM
models, Bayesian trees, or the Slim and LSlim models pro-
posed in this paper.

Here, we consider the data of Mordelet et al. (12) for
the three human basic helix-loop-helix transcription factors
Mad, Max and Myc. All three factors bind to sequences
with central palindromic E-box consensus CACGTG. Typ-

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
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Figure 3. Prediction performance on gcPBM data. Comparison of the prediction performance of the models considered by means of R2 in a 10-fold cross-
validation experiment. For each of the data sets, (A) Mad, (B) Max, (C) Myc, and each of the models, we plot the mean R2 value with the standard error
indicated by error bars. Significant differences of one model to the previous one (Wilcoxon signed-rank test, � = 0.05) are indicated by asterisks. As a
reference, we plot the R2 value achieved by regression models (12) as a dashed line.

ically, the consensus positions are referred to as position −3
to +3. This consensus is also present in all probes of the
data sets of all three factors and, hence, differences in bind-
ing strength between different probes may only result from
nucleotides at flanking positions.

In Figure 3, we compare the proposed Slim and LSlim
models to a PWM model and to several models that can
capture dependencies between binding site positions by
means of the squared Pearson correlation coefficient R2 as
proposed by Mordelet et al. (12) (cf. Supplementary Text
S3). As a reference, we include the R2 values gained by the
regression models of Mordelet et al. (12).

We find that the PWM model, which assumes posi-
tion independence, and the WAM model, which only cap-
tures dependencies between adjacent positions, achieve a
substantially lower performance than the regression mod-
els of Mordelet et al. The Bayesian tree with the struc-
ture determined generatively by mutual information be-
tween sequence positions (BT(MI)) scores approximately
on par with the WAM model. In contrast, the Bayesian
tree with the structure determined discriminatively by ex-
plaining away residual (53,54) (BT(EAR)) yields R2 val-
ues that are substantially greater than those achieved by
the regression models for the Mad and Myc data sets and
slightly better in case of the Max data set. Finally, the per-
formance achieved by the Slim and LSlim models is consis-
tently greater than the performance of the regression mod-
els for all three data sets and the performance of the LSLim
model is also significantly better (Wilcoxon signed-rank test
over the 10 values obtained in the cross validation) than the
performance of the Bayesian tree using EAR.

We investigate, which dependencies contribute the most
to prediction performance by scrutinizing the dependency
structures learned by the different models. We find that for
all three data sets, the LSlim model discovers a dependency
between positions −4 and +4 directly flanking the central
CACGTG consensus, while the remainder of dependencies
either involve neighboring positions or are less strong. This
dependency is also discovered by the Slim and BT(EAR)
models, which also gained large R2 values, but is not repre-
sented by the PWM, WAM and BT(MI) models performing
worse.

Inspecting this dependency in more detail for the Myc
data set, we observe that the majority of Myc binding sites
follows the consensus CCACGTGG. However, in the less
frequent case of an A at position −4, we likely find a T at
position +4, while a G at position −4 most likely results
in a C at position +4. This dependency structure also be-
comes perceptible from the dependency logo presented in
Supplementary Figure S5A. The dependency structures for
Mad and Max are similar, although less pronounced than
for Myc, and the differences between nucleotide preferences
are rather subtle (Supplementary Figure S5).

Notably, Yang et al. (17) also report Mad and Max to
have more similar binding specificities than each of these
factors compared with Myc. Evaluating their models em-
ploying DNA shape features on the unfiltered gcPBM data
set, Yang et al. yield R2 values between 0.80 and 0.88.
Hence, models utilizing DNA shape features (19) might im-
plicitly contain similar information as appropriate explicit
dependency models, e.g. Slim and LSlim.

In summary, we find that Slim and LSlim models im-
prove considerably over models that can only represent de-
pendencies between neighboring binding site positions and
that LSlim models score also slightly but significantly better
than Bayesian trees using heuristic discriminative structure
learning. This improved prediction performance can mostly
be attributed to one specific dependency between the posi-
tions directly flanking the binding consensus CACGTG. In
contrast to Bayesian trees and due to soft feature selection,
Slim and LSlim models are also applicable to de novo mo-
tif discovery in the Dimont framework (15). We will exploit
this fact in the next section, where we test Slim and LSlim
models on ChIP-seq data from the ENCODE project.

ChIP-seq data

In a pilot study, we analyze the Dimont (15) framework
that we use for applying Slim and LSlim models to ChIP-
seq data. Specifically, we test the prediction performance
of Dimont using PWM and WAM models compared with
MEME (37,55) as a de facto standard, and DiChIPMunk
(14) and TFFMs (13) employing first-order dependency
models. To this end, we consider ChIP-seq data sets from
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Figure 4. Performance of WAM, LSlim and Slim models relative to a PWM model within the Dimont framework for predictions in a 10-fold cross validation
on 63 ENCODE ChIP-seq data sets. For each data set, we plot the performance of WAM, LSlim and Slim models as red, green and blue points, respectively.
Here, we use as performance measure the difference of wAUC-PR relative to a PWM model, which is represented by a black line at a value of 0, accordingly.
Data sets are grouped according to the model yielding the best performance and, within each group, ordered by the performance of this model. We indicate
by a ‘+’: model performs significantly (mean ±2 SD) better than a PWM model; ‘−’: model performs significantly worse than a PWM model; ‘×’: one
type of model (LSlim/Slim versus WAM) performs significantly better than the other; ‘*’: combination of ‘+’ and ‘×’.

the ENCODE project (21) for 63 human transcription fac-
tors with (i) data sets available for at least two of the ‘Tier 1’
cell types and (ii) peaks from the ENCODE uniform peak
calling pipeline (also referred to as ‘uniform peaks’) avail-
able. For each transcription factor, we train each of the ap-
proaches on the data for one cell type and assess prediction
performance on the data for another cell type.

We find that Dimont yields a competitive prediction per-
formance compared to the other approaches. Hence, Di-
mont may serve as a solid framework for evaluating dif-
ferent dependency models including Slim and LSlim mod-
els in the following. We further use this setting for an ini-
tial comparison of Slim and LSlim models with PWM and
WAM models within the Dimont framework. We find that
for the majority of data sets, all of the dependency models
(WAM, Slim or LSlim) yield an improved prediction perfor-
mance compared to the PWM assuming position indepen-
dence. WAM, Slim and LSlim models each yield the maxi-
mum performance for approximately one-third of the data
sets, where the exact proportions vary slightly for different
performance measures. A detailed presentation of this pilot
study is given in Supplementary Text S6.5, Text S6.6 and
Supplementary Figures S6–S16.

Comparing models capturing different dependency structures.
While overfitting is less likely for the baseline models (PWM
and WAM), it might become an issue for the more com-
plex Slim and LSlim models. In addition, in vivo binding
measured by ChIP experiments for one transcription factor
may––in contrast to in vitro gcPBM data––be affected by
competition among different transcription factors with sim-
ilar binding preference. This, in turn, might induce cell type-
specific biases that may skew the measured performance. To
approach both problems, we compare the performance of
PWM, WAM, Slim and LSlim models in cross-validation
experiments in the following.

In Figure 4, we present the results of 10-fold cross-
validation experiments on the largest ChIP-seq data set

from ENCODE Tier1 for each of the transcription factors
considered in the pilot study using wAUC-PR as perfor-
mance measure. In contrast other performance measures
like AUC-ROC, wAUC-PR measures the ability of classify-
ing highly occupied peaks from less occupied ones but also
the ability of predicting peak abundances from sequence
data. Results for other performance measures (cf. Supple-
mentary Text S3), including AUC-ROC, can be found in
Supplementary Figures S17 and S18. We find that the Slim
and LSlim models score worse than the PWM model only
for a small fraction of data sets, while the WAM model
achieves a lower wAUC-PR than the PWM model for a
slightly larger fraction of data sets. We also observe that
the LSlim model, which captures short-range non-adjacent
dependencies, yields the best prediction performance for a
greater number of data sets than any of the other models.

In total, we find (cf. Supplementary Table S2) that the
WAM model yields a significantly (mean ± 2-fold standard
error) greater wAUC-PR than the PWM model for 25 of
the 63 data sets, while we find the opposite for four data
sets. The LSlim model performs significantly better than
the PWM for 36 data sets and significantly better than the
WAM model for 21 data sets and the opposite is true for
one and two data sets, respectively. Finally, the Slim model
significantly outperforms the PWM model for 30 and the
WAM model for 12 data sets, while we find the opposite for
zero and three data sets, respectively.

Considering prediction performance on the level of indi-
vidual data sets, we find the improvement in prediction per-
formance consistent with the pilot study (E2F4, Nfya, Nfe2,
Nfyb, Nrsf, Atf3), whereas for others (Gtf2f1, Fosl1, Brca1)
the improvement is less pronounced, which can in part be at-
tributed to the overlaps between cell type-specific data sets.
For some data sets (e.g. Rfx5, Sin3a, Stat5), we find that
the dependency models yield a greater improvement of pre-
diction performance compared to the PWM model in the
cross-validation experiment than it was the case in the pilot
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study, which might be due to cell type-specific biases (Sup-
plementary Text S6.2).

Interestingly, we consistently find an improvement of pre-
diction performance for Mxi1, which belongs to the Mad
protein family, Max and Myc when using dependency mod-
els instead of PWMs irrespective of using (in vitro) gcPBM
data (Figure 3) or (in vivo) ChIP-seq data (Figure 4).

While this improvement of prediction performance is
valuable per se, e.g. if we combine experimental data like
DNase I footprints with computational predictions of bind-
ing sites, the predictions of Slim and LSlim models can also
be used to gain new insights into the binding landscape of
transcription factors. To this end, we study dependency lo-
gos of predicted binding sites for several transcription fac-
tors in the next section.

Dependency structures. We use dependency logos for vi-
sualizing the binding sites predicted by different models in
ChIP-seq data sets. Compared to standard sequence logos,
dependency logos proposed in this paper make dependen-
cies between the different positions of a binding site percep-
tible.

As a first example, we consider the c-Jun data set (Fig-
ure 5), for which the WAM, Slim and LSlim models showed
a clear improvement over the PWM model. Accordingly,
we find several dependencies between adjacent positions at
both flanks of the central consensus TCA in Figure 5A.
The dependency structure on the right flank of the con-
sensus does not show a clear pattern and might be related
to shape readout (17,18). In contrast, on the left flank,
the dependency logo clearly indicates a flexible binding be-
tween the two halves of the c-Jun leucine zipper resulting in
the dependencies observed. Hence, we may conclude that
c-Jun either binds to sequences similar to the consensus
TGASTCA or to sequences similar to an elongated con-
sensus TGAYSTCA which can also be represented by two
sequence logos (Figure 5B). For Jund (Supplementary Fig-
ure S19C), we find a similar pattern. This flexibility has also
been found by Badis et al. (1) for Jundm2 in mouse using
PBM data and by Mathelier et al. (13) using TFFMs on
ChIP-seq data for human Jund. However, the TFFM mod-
els required a specific initialization strategy to model this
flexibility (13), whereas the Slim model proposed in this pa-
per is capable of learning this flexibility intrinsically. Fur-
thermore, dependency logos allow us to identify this type
of dependency structure.

As a second example, we consider the Atf3 data set, for
which we observed a considerable improvement of predic-
tion performance using Slim and LSlim models in the pre-
vious section. We present the dependency logo generated
from the predictions of the Slim model for this data set in
Figure 6A. We find that the predicted sites are highly het-
erogeneous following multiple different consensus. A sub-
stantial subset of predicted binding sites follows an AP1-like
consensus TGACTCA and variations of this motif. How-
ever, especially the binding sites with the largest prediction
scores depicted in the upmost block of Figure 6A follow a
different consensus and show greater variation, including
a motif with consensus CSYGGGTTCRANYCCCR with-
out a clearly matching motif in Stamp (56) and a motif
with consensus TGACGYA, which is also visible at the bot-

Figure 5. Dependency structure of c-Jun binding sites. For c-Jun, two dis-
tinct motifs are captured by the Slim model, which are both composed of
the same half sites (TGA and TCA) separated by a varying spacer. These
two binding modes are perceptible as distinct blocks in all three blocks
in panel (A). In this case, the two binding modes can also be represented
by separate sequence logos (B). The bar on the right of panel (A) assigns
different blocks of the dependency logo to these sequence logos, where a
red bar refers to the short spacer variant and a blue bar refers to the long
spacer variant.

tom of the lowermost block. According to Stamp, the lat-
ter partly matches the expected CRE motif. Finally, another
subset of predicted binding sites, which is distributed over
all three blocks, shows similarities to the E-box consensus
CACGTG.

Previous works (57,58) identified the ATF/CRE con-
sensus as TGACGTCA and the AP-1/TRE consensus as
TGACTCA. Several studies (58,59) find that the CRE mo-
tif preferred by Atf3 and that most Atf3 ChIP peaks can be
explained by direct binding to CRE elements (60), which is
in contradiction to our findings. However, other studies also
observe cases, where Atf3 binds to the AP-1 motif (61) and
not the CRE motif present in the promoters of target genes
(62,63). Notably, Kheradpour and Kellis (64) analyze Atf3
ChIP-seq data and find an E-box as the first motif, a mo-
tif similar to our CRE-like motif as the second motif and a
third motif with consensus CCCG similar to the rightmost
part of the high-scoring motif discovered by our approach.

Due to the dichotomous characteristic of predicted sites,
we use a two-component PWM mixture model to dissect



PAGE 9 OF 12 Nucleic Acids Research, 2015, Vol. 43, No. 18 e119

Figure 6. Dependency structure of Atf3 binding sites. For Atf3, broad heterogeneities can be captured by the Slim model. For the binding sites predicted
by the Slim model, we plot a dependency logo using all data (A). We learn a two-component mixture model on the predicted binding sites and partition
the enclosing sequences under the ChIP peaks according to the occurrence of single and multiple motif instances. For these partitions, we generate box
plots of the associated ChIP peak statistics (B). Black asterisks: significant difference to sequences without predicted binding sites (Kolmogorov–Smirnov
test, corrected P-values, ***P < 10−5). We also plot dependency logos for the binding sites assigned to the two components of the mixture model (C).

these two groups (Figure 6C). We find that even after de-
mixing, several dependencies between binding site posi-
tions persist and both groups are still substantially hetero-
geneous. Hence, a greater number of mixture components
(at least five) would be required to largely represent the dif-
ferent types of binding sites by simple PWM models.

Since we can assign each predicted binding site to a ChIP-
seq peak with a given peak statistic, we can––after de-
mixing––partition the sequences under the ChIP-seq peaks
and their associated peak statistics according to single and
multiple occurrences of each of these two motifs or co-
occurrences of both motifs (Figure 6B). As expected, all
groups with predicted sites yield a significantly higher peak
statistic than ChIP-seq regions without predicted sites. We
also find that the subset of sequences comprising the CREB-
like motif yields higher peak statistics than the AP1-like mo-
tif, whereas only 3200 of the 14 408 (22%) peaks can be ex-
plained by this motif and 7786 (54%) peaks can be explained
by the second, AP1-like motif. Only 1080 of the peaks con-
tain both motifs, which is significantly lower than expected
by chance (odds ratio 0.34, P < 10−150, two-sided Fisher’s
exact test) and indicates that both have the tendency to oc-
cur mutually exclusive. It remains unclear whether these ob-
servations are due to indirect binding of Atf3 to another
transcription factor, for instance other bZIP family mem-
bers like Fos or Jun (57).

For Nfe2 (Figure 7A), we also observe heterogeneities.
However, in this case de-mixing yields two clear motifs with-
out substantial dependencies, where the first is an E-box-
like (CACGTG) motif and the second is the expected Nfe2
motif with consensus TGCTGAGTCAY (Supplementary
Figure S22A). While the E-box-like motif occurs in only
a small subset of predicted sites, the corresponding peak
statistics are greater than for the expected motif, especially
in case of multiple occurrences of the E-box-like motif (Sup-
plementary Figure S22A). Again, both motifs have a strong

tendency to appear mutually exclusive (odds ratio 0.06, P <
10−90).

In case of Nrsf (also known as REST, Figure 7B), we
find the canonical Nrsf motif with consensus GCTGTC-
CNNGGTNCTGA in the sequence under the ChIP-seq
peaks with the largest peak statistic (Supplementary Figure
S22C). However, the full motif only explains ∼24% of the
peaks, whereas the majority of sequences under the ChIP-
seq peaks (68%) contain at least the left half site (CTGTCC)
of the Nrsf motif. In this case, the dependencies of the Slim
model capture the information that the second half of the
motif is either completely present (resulting in larger peak
statistics) or widely absent (resulting in lower peak statis-
tics). In contrast, a PWM model would only be able to rep-
resent a gradual increase of peak statistics with each addi-
tional matching base in the second half of the Nrsf motif.

While a dependency of nucleotide conservation on ChIP
enrichment of the Nrsf motif has been reported before (65),
the clear distinction between two modes of Nrsf binding dis-
covered using the Slim model is novel and might be related
to the diverse complexes of Nrsf with other factors (66). For
CTCF, which is a transcription factor with a large number
of zinc fingers as well (11 versus 8 fingers for Nrsf), a multi-
valency model has been proposed (67), and a similar bind-
ing model might also apply to Nrsf. Finally, several isoforms
of Nrsf with differing numbers of zinc fingers have been re-
ported (68), which might also explain the observed binding
modes if the antibody used in the experiment has not been
specific to one isoform.

In Supplementary Figures S19–S21, we present addi-
tional examples of dependency logos of predictions on the
ChIP-seq data sets for Jund and Max showing largely ad-
jacent dependencies, Nfyb, E2F4, Taf1 and Tblr1 showing
non-adjacent dependencies, Chd2, Mxi1, Rfx5, Sin3a and
Stat5 showing heterogeneities, and Elk1 showing negligible
dependencies.
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Figure 7. Dependency logos of binding sites predicted by the Slim model for Nfe2 and Nrsf ChIP-seq data sets. For Nfe2, we observe heterogeneities
caused by two different, mixed motifs, while we find a partial motif for the majority of Nrsf binding sites.

It might be tempting to assume that dependency struc-
tures could be (more or less) clearly related to transcrip-
tion factor families. However, we do not find a significant
relationship of transcription factor families and the num-
ber of neighboring or non-neighboring dependencies, or the
degree of heterogeneity (Supplementary Text S6.8, Supple-
mentary Table S3, Supplementary Figure S23).

In summary, we find that Slim and LSlim models may
capture dependency structures that range from complex
heterogeneities to sparse dependencies between adjacent
position or even no substantial dependencies between any
motif positions. Each of these situations could also be han-
dled by specialized models, e.g. multi-component mixture
models in case of Atf3, spaced PWM models in case of c-
Jun or hidden Markov model-like approaches for Nrsf. The
main strength of the Slim and LSlim models proposed in
this paper is the flexibility to adjust to all these dependency
structures without user intervention. Finally, dependency
logos allow for dissecting dependencies a posteriori by vi-
sual inspection.

DISCUSSION

Building appropriate probabilistic models for transcription
factor binding sites is crucial for downstream analyses in-
cluding genome-wide binding site prediction and identifi-
cation of target genes. Although statistical dependencies be-
tween transcription factor binding site positions have been
reported before, they have not been exploited in a fully dis-
criminative manner.

To close this gap, we propose Slim (sparse local inhomo-
geneous mixture) and LSlim models that use the concept
of soft feature selection and, hence, allow for simultaneous
feature selection and parameter estimation independent of
the learning principle. We demonstrate that Slim and LSlim
model in combination with a discriminative learning prin-
ciple yield an overall improved performance compared to

state of the art tools and compared to other probabilistic
models on gcPBM and ChIP-seq data. Scrutinizing the re-
sults of the individual data sets, we find several cases where a
PWM model neglecting dependencies between binding site
positions already yields a decent prediction performance.
However, for a considerable fraction of data sets, the im-
provement gained by models capturing dependencies be-
tween adjacent and non-adjacent positions is substantial.

Since sequence logos do not allow for visualizing depen-
dencies between binding site positions, we develop depen-
dency logos that allow for visualizing complex dependency
structures including neighboring and non-neighboring de-
pendencies, and heterogeneities. Here, we focus on ChIP-
seq data sets for those transcription factors with the great-
est improvements in prediction performance using Slim or
LSlim models. We find that the binding landscapes of the
transcription factors considered are highly complex and di-
verse. For some transcription factors we find secondary or
multiple motifs that in general could also be captured by
multiple distinct PWM models. For others, however, we find
partial motifs, flexible binding modes or dependencies be-
tween neighboring and non-neighboring positions, which
demand for more complex models.

In a nutshell, there is neither a common dependency
structure for all transcription factor binding sites nor de-
pendency structures that can be clearly attributed to tran-
scription factor families. In some cases, PWM models per-
form sufficiently well, whereas in other cases higher-order
dependency models or mixture models improve prediction
performance. Hence, modeling transcription factor binding
sites profits from flexible motif models that cover a wide
range of dependency structures. Slim and LSlim models
proposed in this paper are a novel and unbiased approach
for capturing all these dependency structures without user
intervention.
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Dependency logos can also be applied to other aligned se-
quences including target sites of CRISPR/Cas guideRNAs,
microRNA target sites or splice sites for inspecting their de-
pendency structures. However, the applicability of Slim and
LSlim models for these types of data has to be proven in
further studies.

AVAILABILITY

Slim models and dependency logos are implemented in
the open-source Java library Jstacs (69) available at http://
www.jstacs.de. At http://galaxy.informatik.uni-halle.de, we
provide Galaxy (70) tools for learning Slim models from
aligned input sequences, for learning Slim models from
ChIP-seq data and for plotting dependency logos. All
Galaxy applications are also available for download and can
be installed in local Galaxy servers. For learning Slim mod-
els from ChIP-seq data, we also provide a multi-threaded
command line application at http://www.jstacs.de/index.
php/Slim.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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65. Bruce,A.W., López-Contreras,A.J., Flicek,P., Down,T.A., Dhami,P.,
Dillon,S.C., Koch,C.M., Langford,C.F., Dunham,I., Andrews,R.M.
et al. (2009) Functional diversity for REST (NRSF) is defined by in
vivo binding affinity hierarchies at the DNA sequence level. Genome
Res., 19, 994–1005.

66. Yu,H.-B., Johnson,R., Kunarso,G. and Stanton,L.W. (2011)
Coassembly of REST and its cofactors at sites of gene repression in
embryonic stem cells. Genome Res., 21, 1284–1293.

67. Nakahashi,H., Kwon,K.-R.K., Resch,W., Vian,L., Dose,M.,
Stavreva,D., Hakim,O., Pruett,N., Nelson,S., Yamane,A. et al. (2013)
A genome-wide map of CTCF multivalency redefines the CTCF
code. Cell Rep., 3, 1678–1689.

68. Palm,K., Belluardo,N., Metsis,M. and Timmusk,T.õ. (1998)
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