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ABSTRACT

Post ENCODE, regulatory sRNAs (rsRNAs) like miR-
NAs have established their status as one of the core
regulatory elements of cell systems. However, large
number of rsRNAs are compromised due to tradi-
tional approaches to identify miRNAs, limiting the
otherwise vast world of rsRNAs mainly to hair-pin
loop bred typical miRNAs. The present study has
analyzed for the first time a huge volume of se-
quencing data from 4997 individuals and 25 cancer
types to report 11 234 potentially regulatory small
RNAs which appear to have deep reaching impact.
The rsRNA-target interactions have been studied and
validated extensively using experimental data from
AGO-crosslinking, DGCR8 knockdown, CLASH, pro-
teome and expression data. A subset of such interac-
tions was also validated independently in the present
study using multiple cell lines, by qPCR. Several of
the potential rsRNAs have emerged as a critical can-
cer biomarker controlling some important spots of
cell system. The entire study has been presented
into an interactive info-analysis portal handling more
than 260 GB of processed data. The possible degree
of cell system regulation by sRNAs appears to be
much higher than previously assumed.

INTRODUCTION

Initially, the duplex form of sRNAs capable to form com-
plementarity with target RNAs were found regulating the
genes post-transcriptionally (1,2). Based on this observa-
tion more miRNAs were identified. At and after this point
a few trend setting developments occurred: exogenous syn-
thetic molecules causing RNA interference were called siR-
NAs (small/synthetic interfering RNAs), while the du-
plexes being produced endogenously were termed ‘micro-
RNAs (miRNAs)’. In the followup, with the availability

of closely discovered miRNAs, some common features like
hairpin-loop formation capacity and in/exact base pairing
in the stem region became most prominent miRNA features
to identify the miRNA precursors. Since then, these features
have been defining properties of miRNAs on which several
computational tools and approaches were developed (3–6).
To this date, the same belief continues for miRNA ‘precur-
sor’ identification. However, most of the genomic regions
are capable to form stable hairpin loops. Bentwich et al. re-
ported ∼11 million hairpin loops across the genome (7). In
fact, most of the previously identified properties like ther-
modynamic stability, sequence conservation, terminal loop
size and 3′ overhang today stand challenged for not being
specific enough (8,9). The earlier found miRNAs and prop-
erties defined over them appear to influence the protocols
and so the concept about miRNAs in general. This had re-
sulted into an era where reporting of novel miRNAs was al-
most halted. Sequences which fitted the mentioned param-
eters defined over already existing and abundant miRNAs
and satisfied the view of a typical canonical miRNA were re-
ported in large, saturating the databases and data-sets of the
algorithms intended to discover novel miRNAs. However,
this trend was broken with the advent of next generation
sequencing (NGS) technologies, powerful enough to detect
most of the existing sRNA sequence even with low abun-
dance, resulting into sudden surge in the reporting of novel
miRNAs (9). NGS led discoveries not only impacted the
number but also the concept of miRNAs. Unlike the previ-
ous definitions for siRNAs and miRNAs, the line of demar-
cation between these two has blurred now. Now, siRNAs are
reported to form endogenously too and capable of causing
the same impact as typical hairpin loop derived miRNAs
(10). A wide range of endogenous regulatory small RNAs
exist within the animal cell system, originating from anti-
sense transcripts (nati-siRNA), being generated from degra-
dation products (rasi-RNAs) or piwi RNAs (11–14). Be-
sides this, endogenous regulatory small RNAs are now also
reported from corners which were earlier blindly filtered out
from genomic studies as a practice. A lot of regulatory small
RNAs including miRNAs have been shown to have origin in
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repetitive elements (15,16). Several non-coding RNAs like
snoRNAs, tRNAs, rRNAs and other non-coding RNAs
have been reported to produce endogenous regulatory small
RNAs capable to influence phenotypes in vertebrates (17–
19). In fact, in light of NGS driven reporting of enormous
number of miRNAs in miRBase, there are many miRNAs
which exhibit stark difference from typical properties of
miRNAs: large variations in terminal loop size, lack of 3′
overhang, mature miRNA components coming from the
terminal loop region, miRNAs without duplex partners,
several sRNAs being derived from a single precursor (i.e.
phased miRNAs and mORs) and miRNAs with negligible
loop size (Supplementary Figure S1). Some small regula-
tory RNAs have been reported, being derived from totally
unstructured precursors (20). The diversion from general
idea of s/miRNAs is not just in terms of source but even at
the level of the way they are processed. Otherwise, regard-
less of their origin, all regulatory small RNAs exhibit an
almost common route to become regulatory sRNAs: Un-
dergo Dicer processing, followed by loading into Argonaute
complex and interactions with the target. Amid this all, re-
cent studies suggest lack of specificity by all the three ma-
jor RNAse III enzymes, as Drosha/DGCR8 system, Dicer
and Argonautes exhibit several non hairpin loop precur-
sors as their substrate, suggesting clearly a wide range of
sources available to provide regulatory sRNAs carrying out
miRNA like function (21–24). The degree to which these
sRNAs could be regulating the cell system could be much
higher than expected earlier. It is more important and rele-
vant now to look beyond the canonical products of typical
hairpin-loop precursors to fathom the regulatory impacts
of sRNAs.

Having this motivation, the present work was done to lo-
cate all such potential regulatory small RNAs in human cell
systems. The fundamental working ideas have been : (i) re-
currence of any given sRNA across large number of exper-
imental samples provides strong evidence for non-random
existence of such sRNAs. (ii) For the given samples, if the
RNA-seq/transcriptome expression data is available, it is
possible to estimate the anti-correlation for expression be-
tween a sRNA and its putative targets, multiple times in a
re-affirmative manner. Use of proteome abundance data in
measuring anti-correlation with the target gene adds further
support to this. (iii) Data from interaction sequencing tech-
niques like AGO-HITS CLIP and CLASH provide a very
high confidence experimental proof of interactions between
the sRNA and targets.

For this study, we considered experimental data available
for cancerous and normal states for many individuals as well
as cancer types. Consideration of cancer for this study has
important reasons. It has huge social, health, financial and
medical impacts due to being one of the deadliest health
conditions. WHO has noted that in year 2012 itself 14 mil-
lion new cases and 8.2 million cancer related deaths oc-
curred (World Wide Cancer Report 2014) and the rate of
cancer is expected to increase by 70% in the coming two
decades. Technically, cancer is a state of uncontrolled cell
proliferation which becomes malignant. A cancerous cell
has capacity to grow on itself, multiply indefinitely where
loss of cell cycle control is apparent, resist all signals to stop
them as well as oppose cell death and apoptosis, and become

capable to migrate anywhere (25). This way, s/miRNAs be-
come natural components for cancer studies, as their initial
prominence has been due to their close involvement in cell
and tissue development, control of cell-cycle states and in
general association with most of the cell signaling processes
(26–28). Using NGS data, the information regarding the bi-
ology of cancer has suddenly spiked (29). This has resulted
into enormous experimental data availability in public do-
mains like GEO. In the meantime, The Cancer Genomics
Atlas (TCGA) has been launched which is the prime repos-
itory for all cancer related genomics data. Such availabil-
ity of precious experimental data spontaneously meets the
prime requirements of the present study as described above
in three points. We were able to get several experimental
replicates for 25 cancer types, including data for sRNAs,
transcriptome and interactome, sufficient enough for con-
fident observations regarding the possible regulatory roles
of existing sRNAs in human cell system and their behavior
during various cancer conditions.

MATERIALS AND METHODS

Experimental data

Data for small RNA seq, RNA-seq and proteins ex-
pression for 25 cancer conditions were downloaded from
TCGA (http://cancergenome.nih.gov/), GEO, SRA and
UCSC CGHUB (https://cghub.ucsc.edu/). RNA-seq and
small RNA-seq reads for five conditions were downloaded
from GEO and SRA. Complete list of various condi-
tions and sources is available in Supplementary File S1.
Expression data for genes and proteins in terms of nor-
malized RPKM/microarray normalized expression and
mass spectrometry abundance data were downloaded from
TCGA. RPM for sRNAs were calculated using in-house
developed scripts. Argonaute CLIP-seq data was down-
loaded from starBase (30) and CLASH sequencing data
was downloaded from NCBI SRA under the accession ID
(SRP029351). Dicer and TRBP CLIP-seq reads data were
taken from (SRA ID SRP038919 and SRP050041) (31).
Control, DGCR8 and Drosha knockdown related sequenc-
ing data were taken from starBase and GEO (GSE55333)
(30,31). All sequencing data were checked and processed for
quality as well as filtered accordingly. Genomic sequences,
annotations and reference RNA sequences were down-
loaded from ENSEMBL (http://www.ensembl.org/index.
html). To identify the transcriptionally active regions in
the genome, FAIRE-seq, DNase-seq and TFBS peaks were
downloaded from ENCODE (The ENCODE Project Con-
sortium). Pathways information of each gene was down-
loaded from Reactome, Wikipathways, BioCyc and KEGG
(32–35). Correlation coefficients were calculated using in-
house developed scripts in JAVA.

Three hundred fifty-eight unique sRNA reads for tRNAs,
snoRNAs, snRNAs and other ncRNAs were obtained from
the different studies (36–39). Scanning against all these pre-
viously annotated data was done to pull out the overlapping
cases where the regulatory sRNAs were reported previously
in these studies and were also detected in the current one.

http://cancergenome.nih.gov/
https://cghub.ucsc.edu/
http://www.ensembl.org/index.html


Nucleic Acids Research, 2015, Vol. 43, No. 18 8715

Read mapping and target identification

Small RNA reads were merged from each experimental
conditions and unique reads were selected. These unique
reads were mapped to human genome build 19 (hg19) as-
sembly using BOWTIE with maximum of two mismatches.
Mapped reads were also matched to known mature miR-
NAs downloaded from miRBase version 21 to filter out
reads mapping on known miRNAs. To filter out small
RNA reads as some random product, two different cri-
teria were applied: (i) only those reads were considered
which appeared more than five times in any given experi-
ment, and (ii) at least for two different experimental con-
ditions. All such reads were subjected to target identifica-
tion. Targets of novel regulatory small RNAs were identi-
fied using TAREF (40) and TargetScan (41). Small regula-
tory RNAs which were found to target genes were searched
against the complete genome annotation downloaded from
ENSEMBL. For this purpose, the co-ordinates of small
regulatory RNAs were matched against the annotations
provided in ENSEMBL, using openMPI library based in-
house scripts on LINUX cluster system.

Validation of identified sRNA:target interactions

For the validation of sRNA:targets interactions identi-
fied above, targets and partner rsRNAs were searched
across Argonaute CLIP-seq data and CLASH sequenc-
ing data. Also, Pearson correlation coefficient (PCC) be-
tween a target gene’s protein level, transcript abundance
and small regulatory RNA expression was calculated to fur-
ther verify functional relevance of these sRNAs. Argonaute
CLIP-seq data was available for four Argonaute proteins
namely AGO1, AGO2, AGO3 and AGO4. The reported
sRNA:Target interactions were scanned through all these
Argonautes’ cross linking data. Using the RNA-seq based
RPKM values of target genes and RPM values for sRNAs,
expression correlation was calculated between the sRNA
and its targets. Since protein abundance was normalized
and reported in TCGA, the correlation coefficients were cal-
culated using normalized protein abundance and RPM val-
ues.

Functional and pathways characterization of target genes

For each target gene, KEGG pathway information was ex-
tracted from bioDBnet (http://biodbnet.abcc.ncifcrf.gov/),
and Gene Ontology (GO) data was extracted from EN-
SEMBL. Gene Enrichment Analysis (GEA) of target genes
was done using hypergeometric test with Bonferroni cor-
rection in R. Enrichr (42) was used for functional and
pathways enrichment analysis using KEGG, Biocarta and
Wikipathways.

Location and biogenesis of novel regulatory small RNAs

Novel small regulatory RNAs were mapped to human
genome hg19 build using Bowtie with ‘-a’ option to re-
port all matching loci. The annotation of loci was done
using the annotation file downloaded from ENSEMBL.
These loci were searched in UCSC ENCODE data for iden-
tification of transcriptionally active regions. For this pur-
pose DNA-seq, FAIRE sequencing and TFBS data were

downloaded from UCSC ENCODE database. Bedtools
was used to report the overlapping loci with transcription-
ally active regions. To identify the rsRNAs which were
processed by DGCR8 complex, DGCR8 down-regulated
sRNA reads were compared with DGCR8 expressed and
DGCR8 CLIP-seq reads to identify sRNA reads pro-
cessed by DGCR8. To identify rsRNAs processed by
DROSHA, knockdown data of DROSHA was considered
(GSM1550168 and GSM1550168). Similar steps were taken
to identify the Dicer (GSE55324) and TRBP (GSM1548746
and GSM1548747) dependent rsRNAs which were scanned
in their corresponding CLIP-seq read data. The genomic se-
quences with 100 bp left and right flanking regions from
the start point of the given sRNAs were analyzed for
hairpin-loop and miRNA precursors structure support us-
ing miREval (43) and RNAfold (44).

Figure 1 Summarizes the basic work-flow of the present
study. All statistical tests were performed using open source
software for statistical analysis, ‘R’ (R Core Team).

Experimental validation of regulatory sRNAs

RNA purification. Total RNA was isolated from cultured
cells of all the four cell lines, A549 (Lung Adenocarcinoma),
MDA-MB-231 (Breast cancer), HeLa (Cervical cancer) and
MCF7 (breast cancer), using Trizol reagent (Invitrogen,
Life Technologies Corporation, Carlsbad, CA, USA), ac-
cording to the manufacturer’s instructions. Subsequent pu-
rification using an RNeasy Kit (Qiagen, Hilden, Germany)
was carried out to remove residual aromatic compounds.
One �g of total RNA was used to make cDNA separately
for rsRNAs and gene specific qPCR.

cDNA synthesis and quantitative real-time PCR (qPCR).
rsRNA: cDNA synthesis was done using QuantiMir RT
Kit (Small RNA Quantitation system) from System Bio-
sciences (SBI) following manufacturer’s protocol. Briefly,
small RNAs present in the total RNA were tagged by
a Poly-A Tail, followed by annealing of anchor oligo-dT
adaptor to the poly-A tail. These were then carried forward
for cDNA synthesis resulting in pool of anchor-tailed small
RNAs. cDNAs were checked by end-point PCR with kit
supplied universal reverse primer and miRNA-specific for-
ward primer (human U6 used as control). The cDNAs were
diluted 1:20 before being used for qPCR.

Gene: Total RNA was converted to cDNA using ran-
dom primers and High Capacity cDNA Reverse Transcrip-
tion (Applied Biosystems, Life Technologies Corporation,
Carlsbad, CA, USA) as per manufacturer’s instructions.
The resultant cDNA was diluted 1:10 for qPCR, subsequent
to check with a control �-actin primer.

qPCR was performed using KAPA SYBR R© FAST qPCR
Kit (KAPA Biosystems) on a Roche LightCycler R© 480 in-
strument (384-well), using default parameters. HPLC puri-
fied primers were synthesized from Sigma-Aldrich for this
work. Primers used for qPCR of rsRNA and gene are listed
in Supplementary File S2.

http://biodbnet.abcc.ncifcrf.gov/


8716 Nucleic Acids Research, 2015, Vol. 43, No. 18

Figure 1. The basic work-flow adopted to identify the regulatory small RNAs. Following the same fundamental steps the potential rsRNA (11 234) were
reported. These regulatory sRNAs exhibited potential target interaction of high confidence and were found consistently associated with Dicer, TRBP and
AGO line of sRNA processing and target loading path, a signature of regulatory sRNAs.

RESULTS AND DISCUSSION

Identification of putative regulatory sRNAs and their inter-
actions using multilayer validation

Small RNA reads from all considered cancerous and nor-
mal tissue-specific conditions were pooled to identify the
unique reads. These unique reads were mapped to human
genome assemblies (hg19, hg18). A total of 523 540 761
unique reads were obtained from sRNA-seq read data, of
which 317 890 669 (60%) reads mapped across the human
genome with 100% match. The number of reads were re-
duced to 23 369 669 (7%) when only those reads were con-
sidered which were expressed in two or more conditions.
10 789 006 (45%) unique reads out of 23 369 669 unique
reads were such reads which exhibited abundance of at least
five reads. These 10 789 006 small RNA reads were con-
sidered as the final set of small RNAs for further analysis.
These sRNA were used to identify targets using TAREF
(40) and TargetScan (41). A total of 8 276 923 (76%) out
of 10 789 006 small RNAs were found to target 17 612
genes with maximum of two mismatches in interaction pat-
terns between target and small RNAs. An analysis of these
sRNAs against their presence across various experimental
conditions and AGO cross linking/CLASH data suggested
that the number of sRNAs falls steeply from their presence
in single experimental state to presence in at least two ex-
perimental conditions (Figure 2). As can be observed from
the plot, for all the recurrent experimental conditions, the
fraction of sRNAs found associated with AGO/CLASH
was higher than the fraction observed for unassociated sR-
NAs. This suggests that the sRNAs found associated with
AGO/CLASH data had larger fraction of its population
in multiple experimental conditions than those which were
not found associated with any interaction data. This all pro-
vided the reasoning to consider only those sRNAs which ex-
isted in at least two experimental conditions and were asso-
ciated with AGO/CLASH data. In overall, 183 601 unique
sRNAs were found associated with AGO/CLASH, while
10 224 907 unique sRNAs were found not associated with
AGO/CLASH and were recurring at least in two exper-
imental conditions. A list of sRNAs not associated with
AGO/CLASH interaction data but exhibiting recurrence

Figure 2. Distribution of small RNA reads across the 25 cancerous and
respective normal conditions with percentage of sRNA:target interactions
identified in AGO-HITS CLIP/CLASH data. As evident from the plot,
the fraction of sRNAs found associated for interactions were higher for
multiple experimental conditions when compared with the fraction of the
population of unassociated sRNAs. Also, in general, there was a sharp de-
cline in the number of total sRNA when occurrence in more than single ex-
perimental condition was considered, suggesting suitability of recurrence
as an effective initial filtering parameter to identify the rsRNAs.

has been provided at the complementary ‘mythology’ portal
associated with this work. Though the sRNAs which exhib-
ited recurrence but were not found associated with any in-
teraction evidence may exhibit targeting capacity (8 093 322
of such sRNAs returned common targets for TargetScan
and TAREF runs) in some other experimental conditions,
in the present study for further analysis only those sRNAs
were considered which exhibited recurrence as well as as-
sociation with AGO/CLASH interaction data. From here
on only those sRNAs were considered which exhibited two
fold or above differential expression at least in any single
state. This way, a total of 11 234 potential novel regulatory



Nucleic Acids Research, 2015, Vol. 43, No. 18 8717

sRNAs were identified. 9860 regulatory small RNAs dis-
played higher abundance in cancerous conditions, whereas
564 rsRNAs showed higher abundance in normal condi-
tions, remaining 810 rsRNAs were equally over-expressed in
normal and cancerous conditions. The identified potential
regulatory sRNAs were scanned for their presence across
the Dicer CLIP-seq data (GSE55324) to fathom the num-
ber of such sRNAs being processed by Dicer. A total of
9316 potential rsRNAs were found associated with Dicer
in its CLIP-seq data (31). When analyzed against the Dicer
knockdown data (GSM1550166, GSM1550167) comparing
the wild type condition, 8400 potential rsRNA were found
being formed exclusively in the presence of Dicer. Hav-
ing support from two entirely different methods for Dicer
led generation of sRNAs, these sRNAs were further ana-
lyzed for their association with TRBP (GSM1548746 and
GSM1548747). TRBP is an important mediator in RNA
silencing process, where it mediates the transfer of regula-
tory sRNAs from Dicer to Argonaute-RISC complex to
cause RNA silencing. TRBP CLIP-seq data was scanned
for the presence of the potential rsRNAs and it was found
that 9100 potential rsRNAs were associated with TRBP. All
these rsRNA candidates could be clustered into 12 differ-
ent length based clusters ranging from 17 bases long to 28
bases long. The highest number of sRNAs were found hav-
ing length of 17 bases (4,312) followed by 18 bases (2,174)
and 21 bases (1,644). Average read copies of the rsRNAs
was found to be 37.53, spread in the range of 6 to 1457 ob-
served maximum read copies in any given experimental con-
dition. All these observations also suggest that it is highly
improbable that the reported rsRNA candidates could be
a random degradation product. These novel 11 234 poten-
tial rsRNAs were also searched against the DGCR8 knock-
down and over-expressed HITS-CLIP data to identify the
possible DGCR8-DROSHA mediated rsRNAs. Those can-
didates were considered as processed by DGCR8 if found
exclusively present in DGCR8 expressed and cross linked
data only and totally absent in DGCR8 knockdown con-
dition. 2999 (26.69%) of the potential rsRNAs were found
exclusively expressed in the presence of DGCR8. Similar
analysis was performed for Drosha dependent existence of
these sRNAs. It was found that 2625 out of 2999 such sR-
NAs (87.58%) were formed exclusively in the presence of
Drosha and were totally absent in Drosha knockdown con-
dition. Therefore, all these rsRNA candidates displayed dis-
tinct dependence upon Drosha-DGCR8 system for forma-
tion, which is a trademark of canonical miRNAs. All such
sRNAs were mapped to the genome and genomic sequences
starting from 100 bp 5′ and 3′ flanking regions from its
start position were extracted to find out if such sRNAs ex-
isted within the stem of any stem-loop precursor structure.
For 2204 sRNAs miRNA precursors were found supported
by miREval (43) (data available at associated portal). 1125
such sRNAs were present almost perfectly within the stem
region. Figure 3 summarizes the findings made in this sec-
tion. Recently, Auyeung et al. (31) explored for novel fea-
tures of Drosha processed miRNAs and they found pre-
dominance of certain motifs in pri-miRNA sequence and
structure context around the Drosha processing sites. It in-
cluded the predominance of CNNC motif around 17th nu-
cleotide downstream of the precursor’s 3′ end, U at –14th

and G at –13th position from the 5′ end of the precursor in
independent manner, where UG enrichment was observed
the most, and the presence of UGU/GUG/UGUG mo-
tif within the precursor region, mostly in the apical termi-
nal loop. The identified 2999 potential miRNAs’ extended
sequences covering potential pri-miRNA regions, as men-
tioned above, were scanned for all these positional motifs.
A total of 2501 miRNA candidates reported the presence of
all these three major signatures together, further supporting
their genuine candidature for being miRNA. Supplemen-
tary File S3 provides information about all these 2,999 po-
tential miRNA candidates. Additional information has also
been provided at the companion site.

As mentioned above, 17 612 different targets (unique
genes) were predicted commonly by TargetScan and
TAREF systems. In order to validate these target:small
RNA interactions, the interactions were first searched
against the Argonaute sequencing data downloaded from
starBase (version 2) (30). A total of 149 344, 150 049,
145 561 and 148 251 novel putative small regulatory
RNA:target interactions for 8036, 6247, 8342 and 7196
unique rsRNAs and 14 265, 12 448, 14 438 and 13 674
unique targeted genes were validated using AGO1, AGO2,
AGO3 and, AGO4-CLIP sequencing data (Supplementary
File S4), respectively (Supplementary Figure S2). This also
suggested that majority of the potential regulatory small
RNAs could be loaded into the different AGO complexes
and target number of genes. From the analysis, it was found
that many of these novel putative regulatory small RNAs
were simultaneously loaded into different Argonautes in-
stead of showing any specific preferences, exhibiting concor-
dance with earlier finding that sRNAs don’t display any ma-
jor sorting preferences for the various Argonautes (42–46).
Apart from CLIP-seq data, CLASH-seq data was also used
for the validation of rsRNA: target interactions. CLASH-
seq data gives more precise information about the interac-
tions as the interactions are arrested through ligation of
the target and targeting small RNA. Using CLASH-seq
data, 16 371 unique genes were found being targeted by 10
048 putative rsRNAs, comprising 474 770 unique target in-
teractions (Supplementary Figure S2). In overall, all these
steps in analysis give a complete flow illustration with strong
serial evidences, starting from processing by Dicer, subse-
quent transfer and loading by TRBP and final acceptance
of the processed rsRNAs by Argonaute.

To add another layer of validation for their existence
and their possible regulatory presence, correlation between
the expression patterns for the identified interacting rsR-
NAs and their target partners was assessed using RNA-
seq as well as protein abundance data. Protein abundance
data was available for only 192 genes in TCGA for dif-
ferent cancerous conditions whereas gene expression data
from microarrays and RNA-seq was available for 17 488
and 17 814 unique genes, respectively. Since sRNAs sup-
press the expression of the target gene, an anti-correlation
was expected between the targeting rsRNA and target. For
some cancer conditions either the expression data was not
available or the data was restricted by TCGA. Protein and
miRNA expression anti-correlation estimation was per-
formed for 4776 patients for 15 cancer conditions for which
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Figure 3. Work-flow illustration of analysis performed on regulatory small RNAs with respect to DGCR8 dependent processing, a step involved in canon-
ical miRNA processing. A total of 2999 rsRNA appeared as potential miRNAs for which strong DGCR8 and Drosha association supports were available
along with traditional structural support. 2501 of these potential miRNA candidates exhibited all the three Drosha processing associated motifs.

data was available. Targets validated using protein:sRNA
co-expression identified many important small regulatory
RNAs which target genes involved in important functions
such as tumor enhancer or tumor suppressor genes (Sup-
plementary File S4). Out of 192 genes having protein abun-
dance data, significant anti-correlation for expression was
observed with 131 unique genes as the targets for 9446 rsR-
NAs.

Another level of validation was obtained by perform-
ing sRNA and target genes expression analysis using their
read counts. A total of 3013 cancerous and normal tissue
based experimental conditions were considered. For some
cancer tissues the RPKM based gene expression data was
not available. In such situation the microarray expression
data from TCGA (for 137 cancer and normal conditions)
was used. Details of s/RNA-seq and microarray based ex-
pression study are given in Supplementary File S5. Signif-
icant (P-value < 0.05) and high inverse correlation (PCC
> |–0.5-> –1|) coefficient between target genes and target-
ing rsRNAs was observed for 11 234 sRNAs and 17 093
unique genes for sequencing data, while the microarray data
showed 8931 sRNAs having strong anti-correlation with 16
020 target genes. In order to assess if targeting could be as-
sociated with anti-sense phenomenon, from the list of tar-
geting rsRNAs those rsRNAs were identified whose biogen-
esis locus was coinciding with the binding site in the target
gene and were originating from the opposite strand of the
target. From this analysis, a total of 1185 unique rsRNAs
were identified regulating 211 unique genes (Supplementary
Figure S3). Also, it was found that 10 968 rsRNAs targeted
UTRs of 13 264 genes with a total of 932 266 interactions.

Figure 4 illustrates the level of agreement between the dif-
ferent validation approaches for the identified rsRNA and
target interactions as well as the location of target genes
identified exclusively using AGO CLIP-seq, CLASH-seq
and common in both techniques. As apparent from this
study, for most of the interactions two or more methods
agreed, strongly suggesting the regulatory existence of these
sRNAs. These novel sRNAs showed significant negative
correlation with the target genes identified using digital gene
expression data and protein expression data. Many of the
target genes were found important for pathways related to

Figure 4. Overlapping interaction supports from different platforms for
the identified rsRNAs. The figure shows Venn diagram representing target
genes identified using AGO1–4, HITS-CLIP data, CLASH-sequencing,
RNA-seq based digital gene expression profiling, microarray based gene
expression profiling and protein expression based target identification.
Most of these interactions reported through different platforms concurred
with each other, giving strong evidence for interactions of rsRNAs with
their potential targets.

cancer, with names like BRCA2, p53, Rb, Myc, 14–3–3 ep-
silon, CycD and CycE.

Finally, 22 potential rsRNAs identified through anal-
ysis above, were selected for experimental validation for
their expression and potential target regulation, follow-
ing the procedure described in the methods section. The
experiment was done in triplicates in four different cell
lines, namely, A549 (Lung Adenocarcinoma), MDA-MB-
231 (Breast cancer), HeLa (Cervical cancer) and MCF7
(Breast cancer). qPCR confirmed differential expression
levels for 19 out of 22 rsRNA and 14 out of correspond-
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ing 22 target genes across the cell lines. Rest did not work
experimentally under the condition tested. One exception is
GK5, where rsRNA2474 targeting the gene did not work in
any of the cell lines. Significantly, it was observed that 8 out
of 13 target-rsRNA pairs (∼62%) displayed strong inverse
correlation. For the remaining pairs for which strong anti-
correlation could not be found, it might be plausible that
they show such regulation in different tissue origin cell lines,
tissue per se or there could be multiple targeting sRNAs in-
volved. For some cases, the target genes were expressing in
less than 3 cell lines, making it insufficient for correlation
measure. Importantly, we found that most of the rsRNA
: target gene pairs exhibited inversely correlated Ct values
in the same background of the tissue in which they were
discovered. Few prominent examples being rsRNAs 7906,
9345, 4150, 3790, 3091, 2734 and 1336. All these rsRNA
were discovered in the lung tissue and they showed lower
expression in A549 whereas the target genes were expressed
in higher quantity. Same goes for rsRNA 8294 and its tar-
get gene expression in breast cancer cell line MCF7. We
also observed that rsRNA 3091 which showed expression
in breast cancer in addition to lung, was found to reflect
the same pattern of anti-correlated expression in MCF7,
but not in MDA-MB-231. This highlights the possible role
of additional factors leading to rsRNA-target regulation.
The importance of tissue background of expression is also
highlighted by non-directional levels of rsRNAs 9338 and
551 with their target genes. Overall, the experimental results
elucidate the existence and differential expression patterns
of the queried rsRNAs and their corresponding targets, sug-
gesting their possible regulatory roles in tissue-specific man-
ner (Figure 5; Table 1). The associated information has been
made available in Supplementary File S2.

Repeats, introns and ncRNAs have major stakes in regulatory
small RNAs

It is an irony that most of the miRNA discovery methods
plainly discard the reads displaying any repetitiveness and
association with repeats. This happens despite of contin-
uous reports suggesting that repeats are not junk but ge-
nomic goldmine having critical roles. This study reports an
exclusive association between the regulatory sRNAs and
repetitive elements. It was found that these small regula-
tory RNAs were originating from multiple loci mainly be-
longing to repetitive elements, intronic region and ncRNA
regions (Table 2; Supplementary Figure S4; Supplemen-
tary File 6). The abundance of intronic source for these
small regulatory RNAs concurs with the fact that a large
amount of already reported regulatory small RNAs like
miRNAs originate from the intronic regions (47–49). The
current version of miRBase (version 21) has ∼46% miR-
NAs from the intronic regions (50). However, what looked
more fascinating was the high share of repetitive and non-
coding elements. Many diverse forms of endogenous siR-
NAs and non-canonical miRNAs have been reported re-
cently (51–54). The highest numbers of regulatory sRNAs
were found belonging to Alu elements, ERVs, LINEs and
hAT elements. A number of previous works have already
pointed this out repeatedly that numerous such regulatory
small RNAs could have origins in retro and transposing el-

ements of the genome (16,55,56). For all the novel identified
rsRNAs in this study their corresponding coordinates were
identified and mapped to the transcriptionally active co-
ordinates identified by ENCODE. Overlaps between tran-
scriptionally active regions and rsRNAs were identified us-
ing ‘intersect’ module of BED tools. Out of 11 234 rsRNAs,
10 698 (95.22%) rsRNAs were identified whose coordinates
did not overlap with any coding region. For these 10 698
rsRNAs, the coordinates of 7802 (72.92%) rsRNAs were
found overlapping with transcriptionally active regions. The
majority of such rsRNAs were found coming from ncR-
NAs and Alu subfamilies (Supplementary File S6). Most
of ncRNA associated rsRNAs were coming form LINC
RNA (620) (Supplementary File S6). Among these all, the
case of Alu elements becomes most notable as 4592 differ-
ent sRNAs were found originating from the Alu elements.
More interesting was to observe the distribution profile of
these sRNAs across the length of Alu consensus, which fol-
lowed almost a conserved non-random pattern of sRNAs
abundance for a number of different experimental condi-
tions (Supplementary Figure S5A). The sRNAs originating
from Alu displayed absolute conservation of profiles across
the individuals, which was also seen distinguishing signif-
icantly between the normal and cancer samples for many
cancer types. A series of t-tests between cancer v/s normal
conditions gave consistently significant P-values (P < 0.05)
for this observation, suggesting the sRNA profile originat-
ing from Alu differ significantly between cancer and normal
states. Previous studies as well as structural analysis of Alu
suggest that they are potent to generate siRNAs through
Dicer like endonuclease activities. The association of Alu
derived sRNAs with AGO proteins and CLASH data found
in this study supports the regulatory roles of these sRNAs
and reasons for the observed non-random pattern of Alu
derived sRNAs. In the absence of high number of individ-
ual samples, such sRNAs would be otherwise rejected as a
random product or sequencing artifact. However, with con-
sistent evidence of similar and distinctive patterns across
many individual sequencing data for normal and cancer
states it is tough to dismiss such sRNAs as random prod-
ucts. With the availability of high throughput sequencing
data, some recent studies have already reported the display
of similar kind of non-random pattern of sRNA biogene-
sis from other non-coding RNAs exhibiting regulatory roles
in cancer conditions (57). Percentage of reads distribution
on rsRNAs coming from repeats were also calculated. This
analysis was performed to normalize the rsRNA reads as a
given rsRNA coming from repeats could map on multiple
loci. It was found that rsRNAs from ERVL and Alu families
were distributed non-randomly across the genome followed
by other repeat families (Supplementary Figure S5B).

The identified potential rsRNAs were also scanned
against some previously reported cases of regulatory sR-
NAs from different non-coding elements like tRNAs, snoR-
NAs and other ncRNAs. This study was an apt opportunity
to provide strong evidence and support to such previously
identified regulatory small RNAs. A recent work by Cole
et al. (38) compiled several such previously reported regula-
tory sRNAs and performed high throughput data backed
computational analysis to confirm as well as report such
regulatory sRNAs. The same set of regulatory sRNA data
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Figure 5. qPCR based validation of rsRNAs and target genes. Functional validation of 22 rsRNAs and their corresponding target genes was done using
qPCR across four different cell lines (HeLa, MDA-MB-231, A549, MCF7). The targets exhibited significant coefficient of anti-correlation with their
targeting rsRNA. Figure 1(A) plots the expression levels for rsRNA 1336 and its target gene FOXO3, (B) plots the expression levels for rsRNA 7906 and
its target EMP2, (C) plots the expression levels for rsRNA 8294 and E2F8, and (D) plots the expression levels of rsRNA 3091 and EMP2.

Table 1 Experimental validation of rsRNAs and associated targets using qPCR

rsRNA/Gene
A549 (Lung
adenocarcinoma)

MDA-MB-231
(Breast cancer)

HeLa (Cervical
cancer)

MCF7 (Breast
cancer) PCC

rsRNA-1336 32.48 32.46 31.41 29.43 -0.62
FOXO3 23.17 25.73 25.07 26.21
rsRNA-3091 24.17 24.81 23.19 21.66 -0.77
EMP2 20.80 23.90 29.22 29.26
rsRNA-3790 26.82 27.60 26.55 25.02 -0.56
TAF8 19.94 22.89 23.08 24.71
rsRNA-5402 31.20 32.02 29.52 28.50 -0.96
ATM 24.48 22.24 26.22 NA
rsRNA-7906 34.15 34.53 31.96 31.4 -0.91
EMP2 20.80 23.90 29.22 29.26
rsRNA-8294 25.20 25.77 24.79 23.11 -0.96
E2F8 22.42 20.73 21.61 28.62
rsRNA-9338 32.28 33.55 31.82 29.70 -0.98
TERF1 26.46 25.66 26.31 27.32
rsRNA-9345 35 35 34.03 32.16 -0.78
BRCA2 22.76 26.78 33.01 33.18
rsRNA-3091 24.17 24.81 23.19 21.66 -0.66
TAF8 19.94 22.89 23.08 24.71

The table summarizes the expression level differences for rsRNA and target genes along with their Pearson Correlation Coefficient (PCC) for expression
values across different cell lines. Out of 22 rsRNAs selected for experimental validation, 19 rsRNAs were found reasonably expressing in the given cell lines.

Table 2 Genomic annotation of rsRNAs loci identified in the study

Genome annotation Number of rsRNAs Percentage of rsRNAs

Repetitive elements 5,078 45.20
ncRNAs 680 6.05
Intergenic regions 73 0.64
Introns 5324 47.39
Exons 99 0.88

Introns and repetitive elements emerge as the major sources for rsRNAs. Though repeats and multiple mapping reads are simply excluded from the usual
miRNA discovery protocols, the findings here suggest repeats having a big stake in regulatory sRNAs.
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was scanned to find if support for them existed in the present
study. They had reported a total of 358 regulatory sRNAs,
out of which 125 sRNAs were found overlapping with the
rsRNAs reported in the current study. Remaining 233 sR-
NAs were found mapping to the sRNAs which had not
qualified on the series of filtering criteria mentioned above
which included clauses like association with AGO, presence
in CLASH data, abundance of at least five reads and dif-
ferential expression in at least one experimental condition.
Most of these sRNA were found absent in any interaction
sequencing data. It was also found that several of these re-
ported sRNAs were extremely poor in expression or had no
differential expression. A complete breakup has been pro-
vided in Supplementary File S7.

The potential regulatory sRNAs distinguish between cancer
and normal states

One of the most interesting findings made in this study has
been the identification of certain regulatory small RNAs as
the markers of the cancer states studied here. The history
of small regulatory RNAs itself started with discovery of
their roles in cell and tissue development whose reporting
increased only with time. A number of s/miRNAs have been
implicated in cell differentiation processes (26–28), tissue-
specific growth and ominous control of most critical regu-
latory networks of cell system (53). Any change in the ba-
sic fundamental character of any of these systems may lead
to serious intervention in normal development and growth
leading to unwanted outcomes like cancer. Thus, a lot of
miRNAs have been found strongly associated with cancer
states.

In the present study, several potential regulatory small
RNAs were found significantly differentially expressed be-
tween normal and cancer states. The differential expression
was evaluated across large number of individual samples,
followed by t-test for significance between normal and can-
cer state samples for every cancer condition studied here.
Supplementary File S8 provides the list of top 10 over-
expressed small regulatory RNAs for the compared con-
ditions for cancer and respective normal states along with
the functional enrichment classes for each cancer type. The
full details including the list for all over-expressed sRNAs
can be found on the ‘Mythology of ‘micro’-RNA’ por-
tal described below. All these over-expressed miRNAs dis-
played a strong negative expression correlation value (<–
0.5) with their corresponding targets. The functional enrich-
ment analysis over their targets provided us the insight that
most of the targets of these regulatory small RNAs were
associated with cell development, its life cycle, growth and
apoptosis (Supplementary File S8).

Though this analysis has provided a huge amount of
information, it would be difficult to discuss all of them
here. The readers are suggested to explore the ‘Mythol-
ogy of ‘micro’-RNAs’ portal for details. However, as an in-
stance, it would be interesting to discuss the case of regu-
latory sRNA 9881. This small regulatory RNA was found
over expressed in almost all cancer states studied here, sug-
gesting about some central points being affected by this
small RNA. There were 20 different target genes which
were found strongly negatively correlated to its expression

(Table 3). A closer analysis revealed that the target genes
were enriched for pathways critical for cell development
and cancer at the interfaces of diverse pathways (apopto-
sis, cell death, p53 signaling, hiv-1 nef, caspase cascade,
TLR, TNFR-1 signaling and FAS pathway), reasoning why
the regulatory sRNA 9881 was found abundant in most
of the studied cancer conditions. Supplementary File 9
presents details of all the target genes of rsRNA-9881. A
motion chart link (http://14.139.59.221/∼scbb/support site/
all data/rsRNA-9881-n.html) describes the regulatory im-
plications of regulatory small RNA 9881 and expression
relationships between rsRNA-9881 and its targets. An in-
teraction network was built with these 20 target genes to
understand their relative standing in the networks. Certain
genes emerged as central to several critical processes. The
most connected genes were CASP8, OLA1 and SUV39H2.
In overall, all these 20 genes were found closely associated.
CASP8 is critical for MAPK signaling cascade, apoptosis
modulation, insulin signaling and tight junction formation.
DDX52 associated genes were found enriched for pathways
in cancer, MAPK Signaling and apoptosis. FKBP associ-
ated genes were found enriched for genes involved in mul-
tiple cancer pathways, insulin signaling, B-cell receptor sig-
naling, focal adhesion, WNT signaling pathways. Adipocy-
tokine signaling, insulin signaling, cancer related pathways,
EBVL MP1 signaling, TOR signaling were found enriched
in MAP3K connected genes. The MBD4 associated genes
had broad range of impacts, affecting FAS pathways, apop-
tosis, cell cycle, notch signaling, pathways in cancer, glycine-
serine-thronine metabolism, cysteine-methionine and other
amino acids metabolism. MBD4 has already been reported
as a gene which is omnipresent as a tumor suppressor gene
whose down regulation is related to several types of cancer.
The genes associated with MECR were found enriched for
adipogenesis, adipocytokine signaling, fatty acid biosynthe-
sis, PPAR signaling and pathways in cancer. MECR associ-
ated genes have been found affected in cancer while MECR
is reported as the last step gene of fatty acid biosynthesis
pathway, seated at mitochondria, but also standing as the
final connecter to the nuclear signal through PPAR (58).
Another target gene, MRTO4, is associated with ribosome
formation and translation rate, which was reported to be in-
volved with PKR to control the cell cycle process in normal
conditions (53). The genes interacting with MRTO4 were
found enriched for chemokine signaling, cytoplasmic ribo-
somal proteins, inflammatory response, adipogenesis, focal
adhesion and senescence and autophagy. Another target
gene, OLA-1, is a newly found ATPase member of YchF
subfamily GTPases whose functions are still not clear. It
has been found critical in centrosome and spindle pole for-
mation (59) and in cell survival during stress (60). The
genes interacting with OLA-1 were found enriched for ox-
idative phosphorylation, ETC, adipogenesis, gluconeogen-
esis, focal adhesion, glutathion metabolism and fatty acid
metabolism. For the target gene RNF213, the genes asso-
ciated with functions like focal adhesion, pathways in can-
cer and endocytosis were most prominent. However, there
is not much information for RNF 213 and its possible roles.
Another target of rsRNA 9881, SUV39H2, is a histone
methyltransferase gene, important for transcriptional si-
lencing of genes through H3K9 methylation and transcrip-

http://14.139.59.221/~scbb/support_site/all_data/rsRNA-9881-n.html
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Table 3 The most significant targets of rsRNA 9881 and their associated anti-correlation coefficient and significance values

Target gene id Anti-correlation coefficient p-value

SYT11 0.995 1.49E-129
MBD4 0.971 7.53E-080
MRTO4 0.958 1.09E-069
PGPEP1 0.939 1.12E-059
YEATS2 0.906 2.17E-048
CYP20A1 0.901 2.96E-047
DDX52 0.893 4.76E-045
FKBP14 0.872 1.17E-040
RNF213 0.871 1.91E-040
SUV39H2 0.860 3.04E-038
HSH2D 0.809 1.44E-030
CASP8 0.808 1.53E-030
MAP3K15 0.807 2.04E-030
MECR 0.761 2.86E-025
FBXO27 0.752 2.33E-024
ALDH8A1 0.746 8.55E-024
TACC1 0.723 8.66E-022
CLDN18 0.681 8.66E-022
OLA1 0.634 1.22E-018
CEACAM5 0.621 1.24E-015

All these targets exhibited strong inverse expression correlation with rsRNA 9881. Most of these targets were found associated with pathways and processes
critical for cell development and cancer. Interestingly, most of them converge to adipogenesis and focal adhesion, which are considered as important factors
in cancer development. rsRNA 9881 is among those rsRNAs which were found abundant in most of the cancer conditions studied here.

tional silencing during meiotic prophase, was found asso-
ciated with cancer states (61). The interacting genes with
SUV39H2 were found prominent for regulation of actin
cytoskeleton, purine metabolism and focal adhesion. Tar-
get gene TACC1 down regulation and aberrant splice vari-
ant cases have been reported associated with cancer (62).
The genes interacting with TACC1 were found most promi-
nent for axon guidance and meiosis. Target gene YEATS2
has been reported to be associated with bone tumors (63),
though not much is known about this gene. The interact-
ing genes for YEATS2 were found prominent for purine
metabolism, RNA transport, notch signaling, insulin sig-
naling, RIG-I like signaling, osteoclast differentiation etc.
On collective consideration of all the interacting genes for
the found targets for rsRNA 9881, the most common pro-
cess found across all these genes was adipogenesis, sug-
gesting strongly that systems associated with fatty acid
metabolism and fat cell formation appear as the central of
most of the cancer states. Findings here get support from
the recent studies which have demanded strong attention for
identification of fatty acid metabolism pathways as one of
the most affected processes during cancer (64,65). One final
observation has been that the expression patterns of several
of these regulatory sRNAs and their relationship to cancer
states were relative to the tissue type. This could be contex-
tual to the abundance of other regulatory small RNAs. A
proper detailed analysis is required to find out these rela-
tionships between the small regulatory RNAs and onset of
cancer states. The findings made here open a scope to de-
cipher the cancer states where these potentially regulatory
small RNAs would be very helpful as markers.

The potential regulatory small RNA information portal

One of the important points of this study has been the
amount of high throughput data considered to identify reg-
ulatory small RNAs and their impacts. While doing so,

various experimental data from different platforms were
pooled together, analyzed and were related to each other
in a meaningful manner. Handling such data and pull out
meaningful interpretations require a proper structuring and
representation of the data and information tools. In this
regard, a number of visually rich and useful representa-
tions have been made available as a complementary material
at the associated portal (http://14.139.59.221/mythology/
index.php) where a user could delve into the details. The
portal has been built using next generation web develop-
ment package JS, D3, Python, PERL, JSON, HighCharts
and MySQL, installed over a Linux server. A user can
browse the portal through several entry points: by search-
ing for terms, browsing for rsRNAs or by directly opting
for the various result sections which in turn transfer the
user to entire tool sets, look into the pathways details, and
select various cancer states. A wall page contains cluster-
ing of the rsRNAs on the basis of seed similarities, which
provides dynamic image system and enrichment analysis
for the targets of the selected clusters and sRNAs. The
provisions of dynamic expression analysis is given where
any number of experimental conditions could be selected
along with sRNA of choice and its targets. Search can
be performed using single term as well as in batch mode.
Search results may be explored with two options: Annota-
tion Viewer and Expression Search. On selecting Annota-
tion Viewer, an annotation chart with visual genomic rep-
resentation of the selected query is displayed. From here,
all information for a target site and rsRNA can be ac-
cessed. Whereas, selecting expression chart button redirects
the user to multiple selection input option page. From the
page user can select multiple filters like support type, can-
cer type, sample type, number of individual and user choice
plot selection (Supplementary Figure S6, http://14.139.59.
221/mythology/supplementary/). The rsRNA browser sec-
tion facilitates several searches and analysis at single place,

http://14.139.59.221/mythology/index.php
http://14.139.59.221/mythology/supplementary/
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where a user can look for a particular rsRNA, its exper-
imental evidences, perform on the spot target and associ-
ated expression analysis, their enrichment for GO and path-
ways, and perform up to three step network visualization.
At the browser provisions have been made to download the
sequences. Highcharts and Highstock library were imple-
mented for expression analysis chart, Scribl library for An-
notation viewer and Linkurious based on SigmaJS library
was used for network creation and visualization. Also, a
user can perform sequence based search using two differ-
ent search approaches: (i) Suffix tree based Bowtie search
with mismatch provisions, and (ii) BLAST search.

Besides this, the portal provides facilities to explore the
data according to gene ontology and clustering of the sR-
NAs. Gene Ontology information of each target gene has
been provided. The results and data are displayed in the
form of bubble chart containing the gene ontology slim IDs
and the number of rsRNA:target interactions for the given
ID. The size and color of the bubbles varies with respect to
the number of rsRNA:target interactions. The selected ID
redirects the user to a new page which contains the genes
associated with the respective GO terms and targeting rsR-
NAs with provisions for exploration of expression analysis
between a sRNA and target genes. Supplementary Figure
S7 shows that from (A) GO bubble chart or table, (B) user
gets redirected to respective page where the genes or rsR-
NAs involved could be selected. On the selection of a gene
or rsRNA of interest a final plot opens (C) which shows ex-
pression of the target genes and targeting rsRNAs. From
the list of genes and rsRNAs only the elements selected
by the user are displayed. Besides these all, the portal also
contains the details of various cluster analysis, from where
again every individual sRNA could be picked and analyzed
in depth.

In overall, this information portal provides a huge vol-
ume of experimental data in high quality visualization and
representation to facilitate the user to have meaningful in-
sights. All supporting materials of this study have also been
hosted there. This portal will be also available at http://scbb.
ihbt.res.in/SCBB dept/Software.php.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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