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Abstract
On April 2nd, 2014, the Department of Health and Human Services (HHS) announced a historic policy in its effort
to increase the transparency in the American healthcare system. The Center for Medicare and Medicaid Service
(CMS) would publicly release a dataset containing information about the types of Medicare services, requested
charges, and payments issued by providers across the country. In its release, HHS stated that the data would shed
light on ‘‘Medicare fraud, waste, and abuse.’’ While this is most certainly true, we believe that it can provide so
much more. Beyond the purely financial aspects of procedure charges and payments, the procedures themselves
may provide us with additional information, not only about the Medicare population, but also about the phy-
sicians themselves. The procedures a physician performs are for the most part not novel, but rather recommen-
ded, observed, and studied. However, whether a physician decides on advocating a procedure is somewhat
discretionary. Some patients require a clear course of action, while others may benefit from a variety of options.
This article poses the following question: How does a physician’s past experience in medical school shape his or
her practicing decisions? This article aims to open the analysis into how data, such as the CMS Medicare release,
can help further our understanding of knowledge transfer and how experiences during education can shape a
physician’s decision’s over the course of his or her career. This work begins with an evaluation into similarities
between medical school charges, procedures, and payments. It then details how schools’ procedure choices
may link them in other, more interesting ways. Finally, the article includes a geographic analysis of how medical
school procedure payments and charges are distributed nationally, highlighting potential deviations.
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Introduction
Upon graduation from college, an aspiring medical
professional would approximately spend an additional
10 years in medical training.1 It is evident that a substan-
tial amount of knowledge is instilled in the students dur-
ing this extended training time. However, prior work has
suggested that the knowledge may not be completely
clinical, detailing the existence of an unwritten set of
rules that govern the actions and development of medi-
cal students known as the ‘‘informal’’ or ‘‘unintended’’
curriculum.2,3 While these rules have been shown to af-
fect student’s personal and moral development, they ap-
pear to extend to professional decisions as well.4–6

If experiences throughout medical school can have
such a pronounced effect on a physician’s personal
and career development, it then raises another interest-
ing question: Do influential experiences during training
reach further than career trajectory, extending into the
physician’s practice decisions including procedure
choices and pricing? We consider the following three
statistics around practice decisions in this article:
total quantity of procedures performed; average charge
billed; and average payment received for each proce-
dure aggregated from all physicians who attended the re-
spective school. Can we leverage the variety in ‘‘big data’’
to gain such additional insights? It has already been
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established that a physician’s characteristics such as age,
prior experience, and salary structure have an influence
on his or her overall practice patterns and hospital utili-
zation.7,8 A study by Feinglass et al. also noted that signif-
icant differences between physicians’ service intensity,
including the ordering of laboratory tests, may be related
to differences in teaching philosophy or practice patterns.9

Furthermore, there is psychological support for the nota-
tion that these preferences are constructed over an ex-
tended period of time and through past experiences.10

Thus, the concept of ‘‘preference construction’’ forms
the basis for this work, whereby we present the idea
that early influences during medical school may have
lasting impacts on a physician’s future clinical decisions.

This article is a data science endeavor that goes
through the process of data integration from disparate
sources to delivering answers to posited questions
around clinical practices.

Materials and Methods
We supplemented the April 2014 Center for Medicare
and Medicaid Service (CMS) physician compare data
with CMS and external data sources for our analyses.11

CMS data
The CMS physician compare dataset contained records for
approximately 877,000 physicians.12 Each record con-
tained 40 features, including information on the physi-
cian’s national provider identifier (NPI) and medical
school attended.13 While the physician compare dataset
provided details about medical school affiliation, a second-
ary source also provided by CMS, known as the CMS
Medicare provider utilization and payment dataset, pro-
vided the procedural data.14 This dataset provided detailed
procedural information for each physician, including
quantity of procedures performed, average charge billed,
and average payment received per procedure. It contained
5,949 unique procedure codes documented with the
Healthcare Common Procedures Coding System
(HCPCS). We linked the two CMS datasets.

External data
Although detailed, the two CMS datasets lacked sufficient
detail to perform the analysis required in this work,
prompting the use of two external data sources. First,
while the physician compare data provided the medical
school affiliation of each physician, it did not contain
the medical school locations, required for the geographic
analysis. To obtain this data, the zip code of each medical
school was backfilled. This process required significant

effort, as a percentage of schools were defunct or had
been acquired by other medical schools. Investigation
into the location for these schools required the usage of
historical records, newspaper articles, and medical school
announcements. For acquired schools, the original zip
code was used when available. In a limited set of cases,
no zip code was available for a defunct school, and a cen-
tral zip code for the residing state was used. Second, the
Association of American Medical Colleges Tuition and
Student Fees Reports (circa 2012) was used to obtain
the tuition costs for each school.15

Data preprocessing
First, utilizing the physician’s NPI, the corresponding
medical schools were attached to each physician’s cost
and procedure records from the Medicare provider utili-
zation and payment dataset. In the rare case where a phy-
sician’s procedural and cost data did not match a medical
school, the instance was removed. It should be noted that
some physicians had a medical school listed as ‘‘Other,’’
likely indicating a non-U.S. medical school. While the
data was maintained for accuracy, this group was not
considered in our analysis, as it provided no reference
for further analysis. Next the data was aggregated based
on medical school. Utilizing each provider’s cost and pro-
cedure record, 5,949 instances were created for each med-
ical school in the dataset. Each instance represented a
procedure code, containing the total quantity of proce-
dures performed, average charge billed, and average pay-
ment received for each procedure aggregated from all
physicians who attended the respective school.

Procedure code significance testing. One of the pri-
mary goals of our analysis was to identify differences
among the three statistics (total quantity performed,
average charge billed, and average payment received)
among schools. As such, it was important to identify
which procedure codes were performed at statistically
significantly higher quantities, and charged or paid at
statistically significantly higher dollar amounts, and
which were the result of normal variance between insti-
tutions. In order to determine these significance levels,
a 10,000-iteration Fisher–Yates shuffle was performed
at a 95% significance level.16 These Fisher–Yates tests
were performed for each of the three procedure statis-
tics in question. For the charge billed and payment re-
ceived statistics, only those schools that recorded an
average value greater than 0 were considered as these
were the schools that performed any of the procedure,
and the inclusion of 0 values in the shuffled array
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would incorrectly skew the mean dollar value of the
shuffled array downward, and produce a biased z-
score. Conversely, when evaluating the significance
for the quantity of procedures performed, all school
values—including 0—were used within the shuffle as
performing no instances of a procedure is a valid attri-
bute of an institution.

Analysis methods
Three distinct analyses were evaluated throughout this
work. The first is an evaluation of the Fisher–Yates sig-
nificance testing results (distribution analysis). The sec-
ond is an analysis of school similarity based on the
specific procedure codes identified as significant for an
institution over each of the three procedure statistics
(school similarity analysis). The third is a geographic
analysis investigating the location of schools based on
the quantity of procedures billed or charged significantly
higher (geographic distribution analysis).

Distribution analysis. We began our analysis by per-
forming a detailed examination of the Fisher–Yates re-
sults for each of the three procedure statistics. Due to
the large number of procedural codes (5,949), it be-
came apparent that the Fisher–Yates shuffling identi-
fied at least 1 procedure code as significant for the
majority of schools in each of the 3 statistics. This ob-
servation is noteworthy as it highlights the fact that the
majority of medical schools have alumni that per-
formed a procedure a statistically higher number of
times, charged a significantly higher dollar amount,
or received a significantly higher payment for at least
one of the 5,949 procedure codes than alumni of
other institutions. Thus, as the presence of a single sig-
nificant procedure cannot be used to differentiate
schools, we decided to take the analysis one step fur-
ther, identifying those schools with a statistically higher
number of significant procedures. These schools were
identified using standard outlier detection at a thresh-
old of 1.5 times over/under the interquartile range
(IQR), and denoted as of interest.

School similarity analysis. Next, we performed a
similarity comparison between each school. For each
of the 3 statistics, a 5,949-element vector was con-
structed for each medical school, representing each of
the possible procedure codes. For a given school,
each vector element was populated with a 1 if the re-
spective procedure was found to be significant through
the Fisher–Yates testing and a 0 otherwise. For exam-

ple, for the charges-billed statistic, a school’s procedure
vector would be populated with 1’s if the school
charged a significantly higher dollar amount for that
procedure than other institutions. Once all of the vec-
tors had been created, an all-pairs comparison was per-
formed between each of the school’s vectors, for each of
the three statistics, using the Spearman rank-order cor-
relation coefficient. The Spearman correlation was uti-
lized over the Pearson correlation, as it does not require
the variables to be normally distributed.17,18 This was
an important consideration, and as we construct
these vectors from the Fisher–Yeats shuffle results,
and not from a distribution, we can guarantee the nor-
mality assumption.

With over 5,000 possible procedural codes, the sig-
nificant procedures vectors can be quite sparse. As a
result, the Spearman correlation coefficients exhibit
minimal variance between schools, making differen-
tiation between schools difficult. However, since the
vectors are so large, the p-value associated with
each correlation can still be statistically significant
even if the correlation value itself would be typi-
cally considered low. A theoretical example utiliz-
ing 14 schools and 9 possible procedure codes can
be found in Figure 1A. The results of a theoretical
Fisher–Yeats shuffle indicate the significant proce-
dures for each school and can be found in the ‘‘Signif-
icant Procedure Vector’’ column. Below we find a
table of p-values resulting from the all-pairs Spearman
correlation calculation.

Utilizing the results of the similarity comparison, the
correlation p-values were then clustered using a stan-
dard k-means algorithm. The algorithm was seeded
and initialized with 10 unique seeds to help protect
against local minima, and the optimal cluster count
was obtained through a sweep of 10–100 clusters. For
each value k, clustering was evaluated in the following
manner. Based on the procedure statistic being evalu-
ated, the set of schools marked as of interest (those out-
side of 1.5 · IQR for the statistic using the count of
significant procedures based on the Fisher–Yates test)
from the distribution analysis were selected for that sta-
tistic and labeled as the ‘‘Desired Group’’ (DG). Each k
was scored as the maximum percentage of the DG
within any cluster. Finally, to prevent a single cluster
from performing well simply by encapsulating a major-
ity of schools, the constraint that no cluster could con-
tain more than 30 schools was imposed. The highest
scoring k-value was deemed optimal for each of the
three statistics. Utilizing the sample school vectors
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from Figure 1A, an example of the clustering and eval-
uation process can be found in Figure 1B.

Geographic distribution analysis. The final analysis
investigated the geographic distributions of the average
charges and payments using the zip code of each med-

ical school. To begin, each school location was trans-
formed into latitude and longitude coordinates. As
noted above, most schools had at least one significant
procedure code for each of the two statistics (average
charge billed and average payment received), and
thus a geographic comparison between them may not

A

B

FIG. 1. Clustering procedure example.
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be very meaningful, as both would encompass the same
geographic space. To account for this effect, we parti-
tioned the data based on the quantity of significant pro-
cedure codes, that is, those locations in the upper 25%,
50%, and 75% of the overall significant procedures for
both statistics.

At each partition level, the valid locations for charges
billed were marked as node type A, and payments re-
ceived type B. Next, a modified Fisher–Yates shuffle
was used, where the node markings are shuffled between
the locations. Then, the Gcross algorithm (a nearest-
neighbor distance function between two point types)
is run as a measure of geographic distribution.19–21

The window geometry was bound to the latitude and
longitude coordinates of the United States. However,
due to the irregular window geometry, Gcross should
be run with edge corrections, and for this evaluation
both the Boarder correction (reduced sample) and
Kaplan–Meier corrections were calculated.22,23 The av-
erage Gcross value of all points from each shuffle was
stored and used to compute a z-score using the average

Gcross score of the unmodified distribution values,
representing the significance in geographic distribution
deviation.

Results
While, due to the word limit, a detailed analysis across
all parameters could not be included in the article, we
have released all of our results for public use at the
link provided.24 The results below highlight interesting
cases encountered through our analyses. A discussion
of the school similarity and geographic distribution re-
sults can be found in detail in sections titled ‘‘Are
school’s procedures indicative of additional implicit
features?’’ and ‘‘Do charges and payments follow simi-
lar geographic distributions?’’ respectively.

Distribution analysis
The distributions for the count of significant codes for
each statistics found through Fisher–Yates testing can
be seen in the histograms in Figure 2A–C. Figure 2D–
F represents the distribution of count frequencies, that
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FIG. 2. Significant procedure count distribution.
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is, how many schools had a specific number of signifi-
cant procedures. These figures clearly demonstrate the
right-tailed distribution that supports the utilization of
the outlier detection to form the DG for each of the sta-
tistics from the clustering method. The top 5 schools
identified as of interest for each of the statistics are in
Table 1. The complete list is available on the supplemen-
tary website.

Another principal result of the Fisher–Yates test
was the ability to investigate not only the distribution,
but also the specific significant procedures for each
school. To demonstrate this, Table 2 details the
procedures performed at higher total quantity by the
Pacific University College of Optometry. As would
be expected, the alumni of this school perform eye-

related procedures more than physicians graduating
from other institutions.

School similarity analysis
Table 3 details the results of the k-means clustering
discussed above. It should be noted that, for the proce-
dures quantity, the ‘‘Other’’ group was labeled of inter-
est for significant procedures. Although it was not
included in the DG, ‘‘Other’’ can be found as the fourth
school in the optimal cluster, further demonstrating the
power of this clustering technique. Figure 3 details a
heatmap of the resulting correlation p-values between
each of the schools on the charges billed dataset. A
closer inspection of the similarity matrix reveals that
the values coincide well with a real-world breakdown
of institution types. This can best be illustrated with
an example. Looking at the similarity vector between
all schools and the Indiana University School of Den-
tistry, we can analyze the schools for which the corre-
lation p-value is lowest. In order of increasing p-value
(range 9.117e�154 to 2.21e�50) we find Case Western
University School of Dental Medicine, University of
Manitoba Faculty of Dentistry, University of Iowa Col-
lege of Dentistry, University of Toronto Faculty of

Table 1. Top 5 outlier schools

Charges billed Payments received Procedures performeda

University of Wisconsin Medical School State University of New York Downstate
Medical Center

Other

Cornell University Medical College New York University Medical College University of Nebraska College of Medicine

University of Illinois at Chicago Health Science
Center

Albert Einstein College of Medicine of Yeshiva
University

Johns Hopkins University School of Medicine

Mount Sinai School of Medicine of City
University of New York

New York College of Osteo Medicine of New
York Institute of Technology

Columbia University College of Physicians and
Surgeons

Medical College of Wisconsin Mount Sinai School of Medicine of City
University of new York

aOnly four schools were calculated as outliers in significant procedure count.

Table 2. Significant procedures (total quantity performed):
Pacific University College of Optometry

HCPCS code HCPCS code description

76514 Echo exam of eye thickness
92004 Eye exam new patient
92012 Eye exam established patient
92014 Eye exam & treatment
92083 Visual field examination(s)
92133 Cmptr ophth img optic nerve
92250 Eye exam with photos
92002 Eye exam new patient
92134 Cptr ophth dx img postsegmt
92225 Special eye exam initial
92082 Visual field examination(s)
95930 Visual evoked potential test
92081 Visual field examination(s)
96150 Assess hlth/behave init
96152 Intervene hlth/behave indiv
92286 Internal eye photography
76516 Echo exam of eye
92100 Serial tonometry exam(s)
92065 Orthoptic/pleoptic training
92284 Dark adaptation eye exam

HCPCS, Healthcare Common Procedures Coding System.

Table 3. K-means clustering results

Seed: 3
Charges

billed
Payments
received

Procedures
performed

Optimal K 24 10 59
Largest cluster size 29 27 4
‘‘Desired Group’’

(DG) size
10 22 3

Correctly identified
DG in optimal cluster

9 21 3

Missed DG schools New York
University
Medical
College

Columbia University
College of
Physicians and
Surgeons

None
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Dentistry, and finally Ohio State University College of
Dentistry. These results seem to align with expecta-
tions, as the alumni with dental schools are likely to
charge significantly higher for similar sets of dental
procedures than would alumni from other medical
schools. Building from similarity matrix, Figure 4 de-
tails the clustering results on the charges billed dataset.
The schools that comprise the DG are noted in red, and
the optimal cluster has been expanded for the readers’
convenience. Upon closer inspection it is clear that
clusters 12,17, and 6 are predominantly comprised of
dental schools. This supports the merit of this cluster-
ing method as it is reasonable that alumni of dental
schools would typically charge higher for dental proce-
dure codes than alumni of other medical institutions—
particularly for less common specialty procedures.

Geographic distribution analysis
The final analysis performed was the geographic dis-
tribution between the charges billed and payments

received. Figure 5 exhibits these distributions at 3
threshold ranges: baseline (A,D), 50% (B,E), and 75%
(C,F). Table 4 details the divergence significance values
over varying threshold values with significant levels
marked with an asterisk.

Discussion and Inference
Our work posed two overarching questions and the
analysis of each can be found in the respective section
below. However, before discussing the results obtained
through our analyses, it is important to note that the
data provides only a year-long snapshot to a physi-
cian’s overall practice. Thus, we must be careful to
avoid presuming causation for correlation, and correla-
tion for heuristic.

Are school’s procedures indicative of additional
implicit features?
To explore this question, we utilized the resulting opti-
mal clustering for each of the procedure statistics. We

FIG. 3. Similarity score matrix: charges billed.
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FIG. 4. Cluster results: charges billed.
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analyzed the resulting clusters with respect to factors
from external data, such as tuition. We begin by iden-
tifying the schools within the DG that clustered to-
gether, as they represented a defined group (statistical
outliers). Reviewing all of the schools comprising this
cluster, we identified two potential subgroups: schools
with highly ranked programs or specialties, and schools
with above-average tuition costs. It should be noted
that, due to the large variance of tuition levels across in-
stitutions, the median cost rather than mean was used.

Furthermore, while some schools, particularly public,
may offer discounted tuition rates for resident students,
we utilized the full tuition rate as a baseline for our
analysis. Of the 9 schools, 5 had higher tuition than
the respective groups’ median. Private schools demon-
strated an average tuition of $46,968, $1,470 over the
reported $45,498 median, while public schools were
an immense $14,262 over the reported $47,799 median.
Of the remaining 4 schools, 2 had rankings in the top
20 or higher. These factors are not mutually exclusive,
as 4 of the 9 schools had elevated tuitions, as well as
rankings in the top 20, with 3 having specialties in
the top 5 nationally.

As these groupings covered 7 of the 9 schools within
the cluster, we then investigated those that may not fit
into our proposed categories. One school, the Albert
Einstein College of Medicine (Einstein), was not
ranked in the top 20 (34). However, it is closely af-
filiated with the Children’s Hospital at Montefiore
(CHAM). CHAM was ‘‘recognized as one of the best
in the country’’ and ‘‘ranked in all 10 specialties in
the 2011–12’’ by U.S. News & World Report’s standard
and Best Children’s Hospitals rankings.25 Next, we in-
vestigated the DG school missed by the cluster, New
York University Medical College. While marked of

FIG. 5. Geographic distribution.

Table 4. Geographic divergence significance charges
billed vs. payments received

Threshold
value

Kaplan–Meier
edge correction

p-value

Boarder correction
(reduced sample)

edge correction p-value

Baseline < 0.00001* < 0.00001*
10 < 0.00001* < 0.00001*
20 1.20E-05* < 0.00001*
30 9.80E-05* 7.20E-05*
40 0.00014* 0.000102*
50 0.003314* 0.002486*
60 0.054606 0.052137
70 0.44905 0.603064
80 0.989628 0.97846
90 0.840699 0.753521

*Significant at a p-value 0.05 or smaller.
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interest for the procedure statistics, the school was in
fact below the median tuition, and in 2012 was ranked
outside the top 20 nationally (24), and was as low as 34
only 5 years earlier.26 These factors accord with our
cluster observations and proposed groupings.

Finally, we must be careful to associate correlation or
causation with these groups to influence a physician’s
pricing decisions. Instances such as Einstein indicate
that there may be additional underlying groups beyond
tuition and ranking. However, with 7 of 9 schools fall-
ing into one or more of the categories above, it does de-
liver an interesting prospective on factors that may
carry correlation with procedures.

Do charges and payments follow similar geographic
distributions?
Our next investigation was performed on the geo-
graphic distribution analysis results. Although it may
seem that schools billing the highest would also receive
the highest payments, this may not be the case. As
mentioned above, the geographic distributions for
the charges billed and payments received were taken
over a range of thresholds. Figure 3A–D details the base-
line distributions. Examining Table 4, we find statisti-
cally significant differences in geographic distribution
for average charged dollar amount, and average pay-
ment received for schools up through a threshold
value of 60%. While the payment distribution appears
to follow the U.S. population density, focusing on
major cities, the charges seem to deviate from this pat-
tern, representing a possible underlying feature influenc-
ing pricing models. As we increase the threshold, we see
that the cost distributions reconverge. This is unsurpris-
ing, as those locations with the highest values typically
represent major cities where elevated cost, and thus pay-
ment, is correlated directly with the cost of living in the
area. However, it is the divergence at baseline and low-
level thresholds that seem to be influenced by factors
other than population and cost of living.

Conclusion and Reflection
Looking back, we believe that this work represents
a comprehensive analysis of the publicly available
Medicare datasets in conjunction with other public
datasets. This work represents an important step to
achieving an understanding of the complex healthcare
practice and school environment. This understanding
is critical not only for the Medicare service, but also
for the physicians themselves. A deeper understand-
ing of the factors influencing their practice offers an

opportunity to improve it. However, for this to be-
come a reality there remains much work to be done.
Snapshot studies such as these must be replaced
with longitudinal studies, from which true correlation
and causation can be ascertained. Until then, we hope
that the data made available through this work will
provide a steppingstone for those who wish to con-
tinue this work.
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Abbreviation Used
CHAM¼Children’s Hospital at Montefiore

CMS¼Center for Medicare and Medicaid Service
HCPCS¼Healthcare Common Procedures Coding System

HHS¼Department of Health and Human Services
IQR¼ interquartile range
NPI¼ national provider identifier
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