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Abstract
There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, muta-

tional factors that are involved in malignant transformation of potentially malignant oral

lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2

(FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-

2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are

involved in transmission of signals between the epithelium and connective tissue, and influ-

ence growth and differentiation of a wide variety of tissue including epithelia. The present

study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and

FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment

for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to

OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2

and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2

and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which

showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/

62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2.

Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/

10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62

(37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A

significant association of FGF-2 and FGFR-2 expression with malignant transformation

from PMOLs to OSCC was observed both at phenotypic and molecular level. The results

suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation

in patients with OSMF and LKP.
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Introduction
Oral squamous cell carcinoma (OSCC) is a multifactorial and complex disease. Several factors
including angiogenesis, lymphangiogenesis, alterations in expression or structure of tumor
suppressor genes and oncogenes and their proteins, etc are involved in malignant transforma-
tion of potentially malignant oral lesions (PMOLs) to OSCC [1, 2].

The malignant transformation rates of PMOLs show a great variation; for example, 10–20%
of hyperkeratosis or epithelial hyperplasia or epithelial dysplasia may transform to cancer and
the estimated annual rate is 1.4–7% [3, 4]. Lumerman in 1995 reported that 6.6%–36% of epi-
thelial dysplasias may transform to invasive SCC [5]. The malignant transformation rate of leu-
koplakia (LKP) has been reported to range from 0.13 to 17.5% [6,7], 1.1% in Oral lichen planus
[8] and 2.3–7.6% in oral submucous fibrosis (OSMF), during 10–17 years of follow-up [9,10].
In a study from Taiwan [11], the malignant transformation rate in an average follow-up period
of 42.6 months ranged from 1.9 to 5.4% for various types of PMOLs.

At present, histologic assessment of epithelial dysplasia is the gold standard for determining
the malignant transformation risk of PMOLs. However, the problem of inter and intra observer
variation is always there in the histopathologic assessment of presence and severity of epithelial
dysplasia [12, 13]. In spite of tremendous progress in the field of molecular biology, there is as
yet no single marker or set of markers that reliably predict malignant transformation of LKP in
individual patients [14]. Therefore, objective biomarkers which do not require the ability to
recognize morphologic changes are needed to evaluate the risk of malignant transformation of
PMOLs.

FGF-2 is one of the prototypes of a large family of growth factors which is expressed in sev-
eral tissues and has a wide scope of biologic activities [15]. It binds to low affinity heparin sul-
fate proteoglycans that are involved in the interaction with high affinity receptors that in turn
mediate the cellular response to FGF-2 [16, 17]. The FGF receptor family consists of four mem-
bers (FGFR-1(flg), FGFR-2 (bek), FGFR-3 and FGFR-4) that have 55–72% amino acid homol-
ogy [18].

FGF-2 induces angiogenesis [19, 20, 21] and its receptors may play a role in synthesis of col-
lagen. It is involved in the transmission of signals between the epithelium and connective tis-
sue, and influences growth and differentiation of a wide variety of tissue including epithelia
[22].

Studies have reported FGF-2 overexpression in high grade malignant tumours and malig-
nant transformation of normal cells transfected with FGF-2 gene [23, 24]. FGF-2 is involved in
the invasion of cancer cells and the proliferation of fibroblasts around cancer cells in an auto-
crine or paracrine fashion [25]. The study of expression of this factor in head and neck carcino-
mas (HNC) has yielded controversial results [26, 27, 28, 29]. It has been suggested that
deployment of FGFR-specific tyrosine kinase inhibitors as single agent or in combination with
EGFR inhibitors may be one of the effective therapeutic strategies in Head and Neck squamous
cell carcinoma [30].

The aim of present study was to analyze the expression of FGF-2 and its receptors FGFR-2
and FGFR-3 in PMOLs and OSCC and their role in risk assessment for malignant transforma-
tion of LKP and OSMF to OSCC.

Materials and Methods

Subjects and sample collection
Tissue biopsies were obtained from cases of 72 PMOLs which included 43 cases of LKP and 29
cases of OSMF, 108 OSCC and 52 healthy controls from the Departments of Oral and
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Maxillofacial Surgery and Otorhinolaryngology, King George’s Medical University Lucknow
after obtaining the Institutional Ethical approval and informed written consent from patients
during the year 2007 to 2012. Healthy oral tissues were obtained from patients undergoing cos-
metic surgery, who otherwise did not have any infective or inflammatory oral lesion. A small
part of the tissue was snap frozen for molecular work and was stored at -80°C. The inclusion
criteria followed for PMOLs patients was as described by Ho et al. (2009) [31]. Relevant clinical
and demographic details of each patient were recorded on a structured proforma.

Histopathological examination
All tissues were fixed in 10% neutral buffered formalin and processed for histopathological
examination as per standard procedure. 5μm thick sections were cut and stained with haema-
toxylin and eosin (H&E). Sections were reviewed by two independent pathologists and histo-
logical diagnosis was made as per WHO criteria and following the classification by
Warnakulasuriya et al 2007 [32] where the clinically diagnosed cases of leukoplakia on histopa-
thology of tissue biopsies, are divided into leukoplakia with dysplasia and leukoplakia without
dysplasia. Among 29 cases of the OSMF group in the present study, 11 were without dysplasia,
4 showed mild dysplasia, 5 with moderate dysplasia and 9 cases showed severe dysplasia.
Among 43 cases in the Leukoplakia group, 10 cases showed no dysplasia, 3 had mild dysplasia,
10 with moderate dysplasia and 20 cases showed severe dysplasia.

The patients were followed up every 2 months in the first year, every 3 months in the second
year, and every 4 to 6 months thereafter. The patients were followed to a maximum of 5 years.
Between the follow ups some patients with leukoplakic lesions and OSMF without dysplasia,
underwent treatment at an early stage and were discontinued from the follow-up.

Immunohistochemistry
Sections were deparaffinized in xylene followed by hydration in descending ethanol grades.
Endogenous peroxidase was blocked in 3% H2O2 in methanol for 30 min. Antigen retrieval
was performed by heating specimens for 15 min at 95°C in citrate buffer (pH 6.0) using an EZ
antigen retriever system (BioGenex, USA). Sections were then incubated with power block
(BioGenex, USA) for 10 min to reduce nonspecific antibody binding. The sections were incu-
bated overnight at 4°C with primary antibodies. Mouse monoclonal antibodies against human
FGF-2, FGFR-2 and FGFR-3 (Santa Cruz Biotechnology Inc., Santa Cruz, CA) were used. Pri-
mary antibodies were detected using super sensitive polymer-HRP IHC detection system (Bio-
Genex, USA). After thorough washing with Tris buffered saline (TBS; pH 7.4) sections were
treated with super enhancer for 20 min at room temperature followed by incubation with poly-
HRP reagent for 30 min at room temperature. After three washes with TBS, DAB substrate (3,
3’-diaminobenzidine tetra hydrochloride) was applied to the sections for 5–10 min in the dark.
Sections were counterstained with hematoxylin, dehydrated with ascending ethanol grades and
xylene and mounted permanently with DPX. Negative control sections were processed by
omitting primary antibody and breast carcinoma tissue was used as positive control.

Evaluation of staining
The level of expression was assessed by semiquantitative scoring which included the overall
percentage area of the lesion stained positive (0–100%), and the staining intensity (0–3). In all
the cases, the expression in epithelium, endothelial cells and stroma was analyzed. Grading for
percentage area positivity was done as follows:<10% = 0, 10–25% = 1, 25–50% = 2, 50–75% =
3,>75 = 4. To evaluate the intensity, grading was done as; 0 = none, 1 = mild, 2 = moderate,
3 = strong staining. The percentage score (0–4) was multiplied by the intensity score (0–3) and
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a final score was assigned, 0–4 as negative staining, 5–12 as positive staining [33]. At least five
best fields were taken for interpreting results of percentage area.

Quantitative real-time PCR (qPCR) for FGF-2, FGFR-2 and FGFR-3
genes

Total RNA extraction. RNA was extracted from frozen tissue samples with Trizol reagent
(Invitrogen, Carlsbad, CA). RNA purification was done by DNase1 treatment (Invitrogen,
Amplification grade). In brief, 1μg of total RNA sample was treated with 10X DNase I reaction
buffer and DNase I (1U/10μl) and incubated for 15 min at room temperature followed by inac-
tivation of DNase I with 25mM EDTA at 65°C for 10 min. RNA was quantified by Qubit 2.0
fluorometer (Molecular Probes, Invitrogen, USA).

cDNA synthesis. 250 ng of the total RNA was subjected to reverse transcription using ran-
dom hexamer primers with Gene AMP RNA PCR kit (Applied Biosystems, Foster city, CA) for
cDNA synthesis, as per manufacturer’s instructions. Briefly, the 20μl reaction was performed
in 3 steps. Step 1 at 25°C for 10 min, step 2 at 37°C for 2 hrs and finally step 3 at 85°C for 5min.
cDNA was stored at -20°C for real time PCR.

Quanitative real time PCR (qPCR). qPCR was performed using StepOne Real-time PCR
system (Applied Biosystems, USA) in the presence of SYBR Green fluorescent dye according to
the manufacturer’s instructions. Briefly, 20μl of the reaction mixture consisting of reverse tran-
scribed cDNA, 2X SYBR Green master mix containing dNTPs, ROX dye and 10μM of forward
and reverse primers was dispensed into a fast optical 48-well real time PCR reaction plate
(Applied Biosystems, USA). The PCR primers for FGF-2 [34], FGFR-2 [34], and FGFR-3 [30]
genes were selected from a published article and synthesized by MWG, India. Primer sequences
were rechecked using Primer Express software 3.0 (Applied Biosystems, USA) and checked for
homology by Blast sequence analysis (National Centre for Biotechnology Information). Fol-
lowing primers sequences were used: β-actin (endogenous control): forward 5’-GAGACCT
TCAACACCCCAGCC-3’; reverse 5’-AGACGCAGGATGGCATGGG-3’, FGF-2: forward
5’-ATGGCAGCCGGGAGCATCACCCACG-3’; reverse: 5’TCAGCTCTTCGCAGACATTGG
AAG-3’, FGFR-2: forward 5’-TCCACATGGAGATATGGAACAGGA-3’; reverse 5’-GG
AGCTATTTATCCCCGAGTG-3’ FGFR-3 forward 5’- CCATCGGGCATTGACAAGGAC-3’,
reverse 5’- GCATCGTCTTTCAGCATCTTCAC-3’. Thermal cycle conditions consisted of on
initial denaturation incubation at 95°C for 10min followed by 40 cycle of 15sec incubation at
95°C and 60sec incubation at 60°C followed by the thermal dissociation (melt curve) protocol
for fluorescence detection. Gene expression level was determined using the 2-ΔΔCt method
using beta-actin as an endogenous control. A negative control without a template was run in
parallel to assess the overall specificity of the reaction. All reactions were run in replicates. Data
are presented as “relative gene expression”.

Statistical analysis
Statistical analysis was performed using version 17.0 SPSS software for windows (SPSS, INC,
Chicago, IL). For assessing proportional data, chi-square test was carried out. Correlation
between FGF-2, FGFR-2 & FGFR-3 was determined by Spearman correlation coefficient.
Logistic regression was applied to evaluate hazard ratios for the malignant transformed
PMOLs. Odds ratios (OR) with 95% confidence interval (95% CI) was calculated and p-
values were reported. For all the tests, a p-value< 0.05 was considered statistically
significant.
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Results

Clinicopathological features
The study population comprised of 172 (74.14%) males and 60 (25.86%) females with a median
age of 42 years (range 8 to 85 years). In PMOL group dysplasia was present in 51 out of 72
cases. In OSCC group, histologically 8 cases were poorly differentiated, 25 cases were moder-
ately differentiated and 75 cases were well differentiated. 62 tumors were clinical stage I or II,
and 46 tumors were clinical stage III or IV. Lymph node involvement was found in 41 cases of
OSCC.

Immunohistochemical expression of FGF-2 and its receptors (FGFR-2
and FGFR-3) in PMOLs and OSCC
Immunhistochemical expression of FGF-2, FGFR-2 and FGFR-3 is shown in Table 1. Expres-
sion of FGF-2 was cytoplasmic in basal, parabasal layers in tissues with lining epithelium,
tumor cells and also in stroma as shown in “Fig 1A, 1B, 1C and 1D”. FGF-2 positivity was
observed in 49.08% (53/108) OSCC cases, 31.95% (23/72) PMOLs and in 26.92% (14/ 52) con-
trol cases. Expression of FGFR-2 was found to be cytoplasmic in full thickness of epithelium,
tumor cells and stromal cells as shown in “Fig 2A, 2B and 2C”. FGFR-2 expression was
observed in 57.41% (62/108) cases of OSCC, 33.33% (24/72) cases of PMOLs and 15.38% (8/
52) cases of controls. Cytoplasmic FGFR-3 expression was observed in upper and midstratum
layer of lining epithelium, stromal fibroblast cells, tumor cells and seldom in endothelium of
tumor stroma as shown in “Fig 3A, 3B and 3C”. 75% cases (81/108) of OSCC, 40.28% cases
(29/72) of PMOLs and 36.54% (19/52) controls stained positive for FGFR-3.

Association of FGF-2, FGFR-2 and FGFR-3 with clinicopathological
parameters in PMOLs and OSCC
Association of FGF-2, FGFR-2 and FGFR-3 with clinicopathological parameters in PMOLs
and OSCC is shown in Tables 2 and 3. FGF-2 expression was significantly associated with sex
(p<0.013) and tumor differentiation (p<0.0001) in OSCC patients. While, FGFR-2 was not
associated with any clinicopathological features in oral cancer, FGFR- 3 expression was signifi-
cantly higher (p<0.043) in stages I-II. No association of FGF-2, FGFR-2 and FGFR-3 was
found with clinicopathological parameters in PMOLs.

Quantitative real time PCR for FGF-2, FGFR-2 and FGFR-3
Real time PCR was performed to validate the results of immunohistochemistry as shown in
Table 4, “Fig 4A”. The same tissue specimens that overexpresed FGF-2 and receptors by IHC
were subjected to PCR.

We found that OSCC patients had significantly higher level of FGF-2, FGFR-2 and FGFR-3
expression followed by LKP and OSMF. In OSCC patients relative gene expression of FGF-2
was 28.62 fold higher, FGFR-2 was 20.21 fold higher and FGFR-3 was 7.05 fold higher as com-
pared to healthy controls.

Correlation between FGF-2, FGFR-2 and FGFR-3 in PMOLs and OSCC
In PMOLs, FGF-2 was significantly correlated with FGFR-2 (rs = 0.313, p<0.008). FGFR-2
showed significant correlation with FGFR-3 (rs = 0.260, p<0.027). In OSCC, FGF-2 was signif-
icantly correlated with FGFR-2 (rs = 0.321, p<0.001) and FGFR-3 (rs = 0.353, p<0.000). As in
PMOLs, FGFR-2 showed significant correlation with FGFR-3 (rs = 0.368, p<0.000).
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Malignant transformation (from PMOLs to OSCC) and association with
FGF-2, FGFR-2 and FGFR-2
Malignant transformation of PMOLs to OSCC was observed in 13.89% (10/72) cases (3 OSMF
and 7 LKP cases) as shown in Table 5. Some cases of both OSMF (n = 3) and LKP (n = 4)
groups, with either no dysplasia or mild dysplasia regressed after the course of treatment.

FGF-2 expression was seen in 15/62 cases (24.19%) of untransformed PMOLs and 9/10
cases (90%) of transformed PMOLs as shown in “Fig 4B”. FGFR-2 expression was observed in
16/62 (25.81%) of untranformed PMOLs and 8/10 (80%) transformed PMOLs as shown in
“Fig 4C”. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs
and 6/10 cases (60%) in transformed PMOLs as shown in “Fig 4D”. The characteristics of indi-
vidual malignant transformed cases are described in Table 6. FGF-2 and FGFR-2 expression
was found to be significantly associated with malignant transformation of PMOLs to OSCC
both at phenotypic (FGF-2 p<0.000, FGFR-2 p<0.001), and molecular level (FGF-2 p<0.019,
FGFR-2 p<0.025). No association of FGFR-3 was found with malignant transformation.

Logistic regression analysis of malignant transformation risk in PMOLs
To evaluate the risk of malignant transformation of PMOLs we analyzed clinicopathological
parameters and FGF-2 and FGFR-2 expression by logistic regression. In the univariate regres-
sion analysis, FGF-2 and FGFR-2 expression was associated with 28.2-fold (95% CI, (3.29–
241.72); P<0.002) and 11.5-fold (95% CI, 2.20–59.91; P<0.004) increased risk of malignant
transformation, respectively as shown in Table 7. To further assess the influence of each factor,
we did multivariate regression analysis. Both these factors retained statistical significance. The
OR for transformation was 19.91 for FGF-2 (95% CI, 12.20–180.32; P<0.008) and 7.22 for
FGFR-2 (95% CI, 1.20–43.31; P<0.031). Interestingly, when co-expression of FGF-2 and
FGFR-2 was considered as cofactor, the risk of malignant transformation was considerably
higher in PMOLs showing co-expression as compared to PMOLS without co-expression of
FGF-2and FGFR-2 (OR, 4.19; 95% CI, 1.81–9.71; P< 0.001).

Discussion
The transformation of oral precancerous lesions to cancer is a known fact. However it is diffi-
cult to predict which precancerous lesions will progress into malignancy. The present study
evaluated the expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in PMOLs and
OSCC and their role in assessment for malignant transformation of PMOLs to OSCC.

FGF-2 is involved in induction of angiogenesis in several cancers; phaeochromocytoma,
renal cell carcinoma, astrocytoma, bladder carcinoma, hepatocellular carcinoma, and prostate
cancer [35] and also in the signals between the epithelium and connective tissue, influencing
growth and differentiation. We observed expression of FGF-2 and its receptors FGFR-2 and

Table 1. Immunohistochemical expression of FGF-2, FGFR-2 and FGFR-3 in OSCC and PMOLs.

Groups FGF2Negative FGF-2
Positive

P
-value

FGFR-
2Negative

FGFR-2
Positive

P
-value

FGFR-
3Negative

FGFR-3
Positive

P
-value

N (%) N (%) N (%) N (%) N (%) N (%)

Controls 38(73.0) 14(26.92) 44(84.62) 8(15.38) 33(63.46) 19(36.54)

PMOLs 49(68.0) 23(31.95) 0.445 48(66.67) 24(33.33) 0.024 43(59.72) 29(40.28) 0.428

OSMF 20(68.9) 9(31.03) 0.694 22(75.86) 7(24.14) 0.331 18(62.07) 11(37.93) 0.282

LKP 29(67.4) 14(32.56) 0.402 26(60.47) 17(39.53) 0.008 25(58.14) 18(41.86) 0.296

OSCC 55(50.92) 53(49.08) 0.008 46(42.59) 62(57.41) 0.000 27(25) 81(75) 0.002

doi:10.1371/journal.pone.0138801.t001
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FGFR-3 in neoplastic progression from normal through stages of epithelial dysplasia to oral
squamous cell carcinoma. FGF-2 immunohistochemical expression was observed in 49.08%
(53/108) cases of OSCC, 31.95% (23/72) cases of PMOLs and 26.92% (14/52) of controls. The
expression of FGF-2 was cytoplasmic in basal and parabasal layers with lining squamous

Fig 1. Immunohistochemical staining of FGF-2. (A-D). A, FGF-2 positivity in transformed case of Leukoplakia with dysplasia X 100. B, FGF-2 positivity in
transformed cases of OSMF in fibrosis area X 100. C, FGF-2 positivity in epithelium of OSCC X 400. D, FGF-2 positivity in tumor cells OSCC X 400.

doi:10.1371/journal.pone.0138801.g001
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epithelium, tumor cells and also in the tumor stroma. Our findings are similar to that of Rai-
mondi et al. (2006) [36] who have reported FGF-2 immunostaining only in cytoplasm of the
basal layers of the epithelium in hamster cheek pouch model of oral cancer. Higher expression
of FGF-2 in breast cancer stroma as compared to normal breast stroma has been reported [37].

Fig 2. Immunohistochemical staining of FGFR-2 (A-C). A, FGFR-2 positivity in transformed cases of Leukoplakia with dysplasia X 200. B, FGFR-2
positivity in transformed case of OSMF in fibrosis area X 100. C, FGFR-2 positivity in OSCC X 100.

doi:10.1371/journal.pone.0138801.g002
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Fig 3. Immunohistochemical staining of FGFR-3 (A-C). A, FGFR-3 positivity in epithelium of Leukoplakia with dysplasia in transformed case X 200. B,
FGFR-3 positivity in transformed case of subepithelial fibrosis area of OSMF X 100. C, FGFR-3 positivity in tumor cells of OSCC X 400.

doi:10.1371/journal.pone.0138801.g003
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FGF-2, besides being expressed in cancer and precancer, was also found in 26.92% cases of
healthy controls in the present study. Wakulich et al (2002) [28] noticed weak to intense stain-
ing of FGF-2 in basal and parabasal layers in normal epithelium of 78.57% (11/ 14) cases. They
found no statistically significant difference in staining intensity between normal and carcino-
matous tissue. Further the presence of FGF-2 expression in basal and parabasal layers sug-
gested that this growth factor was involved in proliferation but not in differentiation of normal
oral keratinocytes.

FGF-2 expression was significantly high (60.38%) in well differentiated tumors in the pres-
ent study. Janot et al. (1995) [26] and Wakulich et al. (2002) [28] have also reported increased
FGF-2 staining in well differentiated tumors suggesting that it may be involved in mitosis seen
in dysplasia, carcinoma in situ and OSCC.

In the present study, FGFR-2 expression was observed in 57.41% (62/108) cases of OSCC,
33.33% (24/72) cases of PMOLs and 15.38% (8/52) cases of controls. Wakulich et al. (2002)
[28] have also reported generalized increase in staining intensity at all levels in dysplasias and
carcinomatous tissue. While we observed FGFR-2 expression in normal epithelium in only 8
control cases, Dellacono et al. (1997) [27] found positive FGFR-2 staining in normal epithelium
as well as in patches in OSCC. Forootan et al. (2000) [38] have reported increased FGFR-2
expression in superficial layers of normal epithelium and in areas of keratinization in squa-
mous cell carcinomas. Recently, overexpression of FGFR-2 in breast cancer cell lines was
reported to lead to constitutive FGFR-2 activation. Inhibition of FGFR-2 signaling in these
cells induced apoptosis [38]. Thus, constitutive FGFR-2 signaling due to FGFR-2 overexpres-
sion can lead to protection from apoptosis which is one of the hallmarks of cancer [39].

Cytoplasmic FGFR-3 expression was observed in upper and middle layers of lining epithe-
lium, stromal fibroblast cells, tumor cells and sometimes in the endothelium of tumor stroma.
We found FGFR-3 positivity in 75% cases (81/108) of OSCC, 40.28% cases (29/72) of oral

Table 2. Relation of FGF-2, FGFR-2 and FGFR-3 expression with clinico-pathological parameters in PMOLs.

Variables FGF-
2positive

FGF-2
negative

P-
value

FGFR-
2positive

FGFR-
2negative

P-
value

FGFR-
3positive

FGFR-
3negative

P-
value

Age

<42 16 35 0.582 15 36 0.271 21 30 0.809

�42 8 13 9 12 8 13

Sex

Male 17 37 0.564 20 34 0.248 21 33 0.677

Female 7 11 4 14 8 10

Dysplasia

Present 19 32 0.271 17 34 1.000 18 33 0.179

Absent 5 16 7 14 11 10

Tobacco chewing
habit

Present 16 32 1.000 16 32 1.000 20 28 0.734

Absent 8 16 8 16 9 15

Alcohol

Present 8 20 0.494 10 18 0.732 9 19 0.262

Absent 16 28 14 30 20 24

Smoking

Present 12 24 1.000 10 26 0.317 12 24 0.230

Absent 12 24 14 22 17 19

doi:10.1371/journal.pone.0138801.t002
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PMOLs and 36.54% cases (19/52) of controls. Our findings of FGFR-3 expression in full thick-
ness of normal epithelium and its significant expression (p<0.008) in carcinomas are sup-
ported by the results of Raimondi et al. (2006) [36] in experimental model of hamster cheek
pouch. The authors found FGFR-3 expression in normal mucosa as well as its significant

Table 3. Association of FGF-2, FGFR-2 and FGFR-3 with clinico-pathological features in OSCC.

Variables FGF-2
positive

FGF-
2Negative

P-
value

FGFR-
2positive

FGFR-
2negative

P-
value

FGFR-
3positive

FGFR-
3negative

P-
value

Age

<42 14 16 0.756 19 11 0.440 26 4 0.082

�42 39 39 43 35 55 23

Sex

Male 49 41 0.013 55 35 0.080 69 21 0.371

Female 4 14 7 11 12 6

Lymph node

Positive 16 25 0.102 20 21 0.156 27 14 0.086

Negative 37 30 42 25 54 13

Differentiation

WD 32 43 0.000 40 35 0.069 52 23 0.077

MD 19 6 19 6 23 2

WD 2 6 3 5 6 2

Tumor stage

Stage I-II 31 31 0.823 31 31 0.071 42 20 0.043

StageIII-IV 22 24 31 15 39 7

Tobacco chewing
habit

Present 43 41 0.410 50 34 0.405 61 23 0.285

Absent 10 14 12 12 20 4

Alcohol

Present 28 24 0.339 27 25 0.267 37 15 0.374

Absent 25 31 35 21 44 12

Smoking

Present 46 44 0.344 50 40 0.384 67 23 0.766

Absent 7 11 12 6 14 4

doi:10.1371/journal.pone.0138801.t003

Table 4. Gene expression profile of FGF-2, FGFR-2& FGFR-3 by Quantitative Real—time PCR.

Gene Controls(N = 11) LKP(N = 8) OSCC(N = 11) OSMF(N = 29)

FGF-2
Fold Change 1 21.75 28.62 6.79

SE 0.2730769 0.45445 0.6142065 0.3886392

P-value 0.002 0.000 0.001

FGFR-2
Fold Change 1 16.79 20.21 9.72

SE 0.3936878 0.6452975 0.496684 0.9335131

P-value 0.065 0.000 0.322

FGFR-3
Fold Change 1 4.45 7.05 3.95

SE 0.333856 0.7594367 0.6345427 0.3587593

P-value 0.008 0.000 0.005

doi:10.1371/journal.pone.0138801.t004
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Fig 4. Real time PCR results of FGF-2, FGFR-2 and FGFR-3 and frequency of FGF-2, FGFR-2 and FGFR-3 malignant transformation rate (A-D). Bar
diagram showing fold change expression of FGF-2, FGFR-2 and FGFR-3 by Real Time.A, PCR in OSMF, LKP, OSCC and healthy controls. B, Frequency of
FGF-2 malignant transformation rate in PMOLs. C, Frequency of FGFR-2 malignant transformation rate in PMOLs. D, Frequency of FGFR-3 malignant
transformation rate in PMOLs.

doi:10.1371/journal.pone.0138801.g004
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expression in carcinoma, predominantly in the basal layers. The presence of FGFR-2 and
FGFR-3 receptors in epithelial cells, fibroblasts and endothelia are an evidence to their partici-
pation in normal epithelial growth and in the maintenance of connective tissue structures and
of vascular network [36].

FGFR-3 has been shown to play an important role in bladder cancer growth and is sug-
gested as a candidate for targeted therapy [40]. In human bladder cancer, the FGFR-3 muta-
tions were observed to be strongly associated with non invasive, low grade and stage. A two
pathway model of carcinogenesis (favorable and unfavorable) has been proposed in urinary
bladder cancer [41,42]. The favorable pathway is characterized by mutations in FGFR-3 and a
clinically unfavorable pathway characterized by mutations in p53. Further the detection of
FGFR-3 mutations in urine from patients with FGFR-3 mutations in primary tumor indicating
tumor recurrence has also been reported. Thus identification of FGFR-3 mutations may be a

Table 5. Patients characteristic of malignant transformed and untransformed cases in PMOLS.

Patients Characteristics Untransformed PMOLs (N = 62) Malignant transformed PMOLs (N = 10) P-value

Age (Years)

Mean ± SD 37.81± 11.98 43.60± 18.65 0.383

Range 20–80 22–75

Sex N (%)

Female 17 (27.42%) 1 (10%) 0.238

Male 45 (72.58%) 9 (90%)

Dysplasia

Present 41 (66.13%) 10 (100%) 0.029

Mild 7 0

Moderate 15 0

Severe 19 10

Absent 21 (33.87%) 0 (0%)

Tobacco chewing habit

Present 40 (64.52%) 8 (80%) 0.335

Absent 22 (35.48%) 2 (20%)

Alcohol

Present 24 (38.71%) 4 (40%) 0.938

Absent 38 (61.29%) 6 (60%)

Smoke

Present 29 (46.77%) 7 (70%) 0.173

Absent 33 (53.23%) 3 (30%)

Follow—up

Mean 26.21 29.41 0.749

Range(months) 3–55 10–60

FGF-2 expression

Negative 47 (75.81%) 1 (10%) 0.000

Positive 15 (24.19%) 9 (90%)

FGFR-2 expression

Negative 46 (74.19%) 2 (20%) 0.001

Positive 16 (25.81%) 8 (80%)

FGFR-3 expression

Negative 39 (62.90%) 4 (40%) 0.171

Positive 23 (37.10%) 6 (60%)

doi:10.1371/journal.pone.0138801.t005
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potential biomarker of prognosis and recurrence [43,44]. This needs to be studied in oral
cancer.

In the present study, we found that the FGFR-3 expression was significantly associated with
tumor stage. FGFR-3 expression was observed in 51.85% of cases in stages I and II. Unlike our
results, other workers have observed more pronounced staining in stages III and IV [27].

Over expression of a gene can be caused by its amplification or aberrant transcriptional reg-
ulation. Increased mRNA levels of FGF-2 and its receptors were observed in oral cancer and
precancer patients as compared to normal controls in the present study. Relative gene expres-
sion of FGF-2 was 28.62 fold higher in OSCC, 21.75 fold in Leukoplakia and 6.79 fold higher in
OSMF as compared to healthy controls. FGFR-2 relative gene expression was 20.21 fold higher
in OSCC, 16.79 fold higher in LKP and 9.72 fold higher in OSMF as compared to healthy con-
trols. Relative gene expression of FGFR-3 was 7.05 fold higher in OSCC, 4.45 fold higher in
LKP and 3.95 fold higher in OSMF as compared to healthy controls. Elevated levels of FGFRs

Table 6. Characteristics of the malignant transformed cases.

CaseNo. Age Sex Diagnosis Site of
lesion

Tobacco
chewing habit

Alcohol Smoking dysplasia FGF-
2

FGFR-
2

FGFR-
3

Follow- up in
months

1 25 M SMF BM P A A P A A P 40

2 22 M SMF BM P A P P P P P 60

3 60 M SMF BM P A A P P P A 18

4 34 M LKP T A P P P P P P 34

5 55 F LKP BM P A P P P P P 39

6 65 M LKP BM P A A P P P A 29

7 30 M LKP G P P P P P P A 22

8 40 M LKP BM P P P P P A A 23

9 75 M LKP BM P P P P P P P 10

10 30 M LKP BM A A P P p p P 18

M, Male; F, Female; BM, Buccal mucosa; T, Tongue; G, Gingival buccal sulcus. P, Present; A, Absent.

doi:10.1371/journal.pone.0138801.t006

Table 7. Logistic regression analysis of variables in PMOLsmalignant transformation.

Variables OR (95% CI) P-value

Univariate analysis

Age 1.03 (.98–1.08) 0.201

Sex 0.29 (.03–2.50) 0.262

Tobacco 2.20 (.42–11.27) 0.344

Alcohol 1.05 (.27–4.13) 0.938

Smoking 2.65 (.62–11.22) 0.184

FGF-2 expression 28.20 (3.29–241.72) 0.002

FGFR-2 expression 11.5 (2.20–59.91) 0.004

FGFR-3 expression 2.54 (.64–9.97) 0.180

Multivariate analysis

FGF-2 expression 19.91 (2.20–180.32) 0.008

FGFR-2 expression 7.22 (1.20–43.31) 0.031

Coexpression of FGF-2/FGFR-2 4.19 (1.81–9.71) 0.001

OR, Odds ratio; 95%CI, 95% confidence interval.

doi:10.1371/journal.pone.0138801.t007
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have been found in numerous cancers such as cancer of brain, head and neck, lung, stomach,
breast, prostate and in sarcomas and multiple myeloma. However, an elevated level of a protein
in cancer cell does not necessarily mean that this protein plays a role in carcinogenesis. Further
it is not always clear that the FGFR alterations found in human cancers are “drivers” or “pas-
sengers” [39].

Several alterations, most often leading to increased FGFR signaling have been associated
with human carcinogenesis and development of a malignant phenotype [39]. FGFs/FGFRs are
key regulators of mesenchymal-epithelial communication. In adults, FGFR signaling continues
to regulate tissue homeostasis and is also involved in processes such as tissue repair, angiogene-
sis and inflammation. In angiogenesis and neovascularization, FGFR signaling is mainly
thought to play an indirect role by influencing other growth factors such as VEGF and hepato-
cyte growth factor [45].

FGFRs have also been observed in several cancers suggesting a tumor suppressor role of
FGFR signaling in these cases. However, it is currently not well understood how FGFR-2 sig-
naling seems to exhibit tumor suppressing effects in some cells and oncogenic effects in others.
The basic mechanisms of FGFR signaling have been discussed in an excellent review on roles
of fibroblast growth factor receptors in carcinogenesis by Haugsten et al. (2010) [39].

Imbalanced FGFR signaling could contribute to carcinogenesis and could thus be a potent
therapeutic target in several human cancers. Several promising FGFR tyrosine kinase inhibitors
and FGFR-blocking antibodies have been developed and some of them are in early phases of
clinical trials [46, 47].

We found malignant conversion of PMOLs (OSMF, LKP) to OSCC in 13.89% (10/72) cases
with mean follow up of 29.41 months. All the precancer cases 7 LKP (16.28%) and 3 OSMF
(10.34%) which transformed into malignancy, had associated epithelial severe dysplasia. This
number is an under-representation of the population because our study was restricted to only
biopsy proven cases of pre-cancerous lesions, that too only in two categories i.e. LKP and
OSMF. Further, the cases of OSMF are also limited, as all clinical cases which report to us, have
not been included in the study. Only those cases of OSMF who underwent surgery as a part of
their treatment were included in our study. FGF-2 was positive in 90% (9/10) and FGFR-2 was
positive in 80% (8/10) of transformed cases, a finding of statistical significance (FGF-2
p<.0001; FGFR-2 p<.001). Myoken et al. (1994) [48] in their immunohistochemical study,
reported stronger expression of FGF-2 in OSCCs as compared to normal tissue, suggesting the
possibility of its involvement in malignant transformation and self proliferation of cells. Fibro-
blasts transfected with FGF-2 cDNA underwent malignant transformation thereby acquiring
self proliferative ability.

OSMF is an established precancerous lesion prevalent in India [49]. It is caused mainly due
to the habit of chewing betel quid which subjects the oral mucosa to direct and frequent contact
with chemical carcinogens. One third of OSMF cases slowly progress into squamous cell carci-
noma. In experimental carcinogenesis model of oral cancer, when chemical cancerization solu-
tion is spread over the mucosa of hamster cheek pouch (one of the most widely accepted
animal model of oral cancer), the first change observed is marked desmoplasia or fibrosis
underlying the cancerized epithelium, even before the abnormal morphologic epithelial lesions
occur. Fibrosis or desmoplasia in the oral cancer may be either a stromal component of the
tumor itself or it may be associated with preceding OSMF [36].

The principal cells in OSMF implicated as a source of extracellular matrix in the areas of
fibrosis are fibroblasts. Accumulation of connective tissue matrix is secondary to factors such
as cytokines and growth factors. In the present study, 3 out of 29 (10.34%) cases of OSMF pro-
gressed into OSCC. In a report from southern India, 40% of oral cancer patients had OSMF.
Incidence of 7.6% oral cancer in OSMF patients was reported by authors in a median follow-up
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period of 10-year. We however, had a follow up period of 5 years in this study. Increased FGF-
2 expression can be explained due to an initial injury phase because of areca consumption, fol-
lowed by cellular activation by chemotactic cytokines and other growth factors with eventual
fibrosis occurring as a result of molecular alteration at the cellular level [50].

The univariate and multivariate analysis with logistic regression showed statistically signifi-
cant expression of only FGF-2 and FGFR-2 and their combined co-expression in cases which
transformed from precancer into malignancy in the present study. Tumor derived FGF-2 may
promote cancer progression by elevating proteolytic enzymes and by paracrine stimulation of
vascular endothelial cell growth [51].

Shi et al. (2010) [52] have reported immunohistochemical expression of 2 other modulators
of angiogenesis; podoplanin and ABCG2 as markers for evaluating risk of malignant transfor-
mation of oral lichen planus. We however, did not have any case of oral lichen planus in our
study.

In the present study, presence of dysplasia was found to be a significant clinico-pathologic
predictor for malignant transformation in precancer [53]. Age, sex, tobacco, smoking, and
alcohol intake were not predictors of malignant transformation. Our findings are in close con-
formity with previous reports [52, 54].

Our data showed up-regulated FGF-2, FGFR-2 and FGFR-3 expression both at phenotypic
and molecular level from PMOLs to OSCC with statistically significant co-expression of FGF2
and FGFR2. Therefore, expression of FGF-2 and FGFR-2 may serve as an adjunct to histopath-
ologic assessment of epithelial dysplasia for evaluating progression and malignant transforma-
tion in PMOLs. However, the study is limited by the overall numbers of converted patients.
Further studies need to be done in a large cohort to draw a strong conclusion.
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