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Abstract

Three dimensional microscopy images present significant potential to enhance biomedical studies. 

This paper presents an automated method for quantitative analysis of 3D primary vessel structures 

with histology whole slide images. With registered microscopy images of liver tissue, we identify 

primary vessels with an improved variational level set framework at each 2D slide. We propose a 

Vessel Directed Fitting Energy (VDFE) to provide prior information on vessel wall probability in 

an energy minimization paradigm. We find the optimal vessel cross-section associations along the 

image sequence with a two-stage procedure. Vessel mappings are first found between each pair of 

adjacent slides with a similarity function for four association cases. These bi-slide vessel 

components are further linked by Bayesian Maximum A Posteriori (MAP) estimation where the 

posterior probability is modeled as a Markov chain. The efficacy of the proposed method is 

demonstrated with 54 whole slide microscopy images of sequential sections from a human liver.

1 Introduction

Whole slide histological images contain rich information about morphological and 

pathological characteristics of biological systems, enabling researchers and clinicians to gain 

insights on the underlying mechanisms of the disease onsets and pathological evolutions of 

distinct cancers. Although numerous imaging analytical approaches have been proposed to 

quantitatively analyze the 2D biological structures (such as nuclei and vessels) in 

microscopy images [1], various clinical applications require 3D modeling of the micro-

anatomic objects for better characterization of their biological structures in practice. One 

such application is liver disease where clinicians and researchers are interested in the 3D 

structural features of primary vessels from a sequence of 2D images of adjacent liver 

sections [2, 3], as illustrated in Fig. 1(a). Although there are a large suite of methods for 
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vessel structure analysis, they mainly focus on radiology image analysis and are not directly 

applicable to high resolution whole slide histological images encoding enormous 

information of complex structures at cellular level.

In this paper, we propose an automated framework for 3D primary vessel reconstruction 

with a set of registered histological whole slide images of liver sequential tissue sections. To 

identify vessels, we use an improved variational level set method with a Vessel Directed 

Fitting Energy (VDFE) as prior information of vessel wall probability for the energy 

minimization paradigm. We associate the segmented vessel objects across all slides by 

mapping primary vessels between adjacent slides with four distinct association scenarios, 

and apply a Bayesian Maximum A Posteriori (MAP) framework to the bi-slide vessel 

components to recover the global vessel structures across all slides.

2 Methods for 3D Vessel Reconstruction

2.1 Automated 2D Vessel Segmentation

Due to large variations introduced by whole slide microscopy image preparation and strong 

heterogeneity embedded in tissue anatomical structures, vessels of interest in liver biopsies 

present distinct staining intensities. Although a number of level set methods have been 

proposed to solve this issue [4, 5], these formulations only work well when a given image 

has two primary classes of connected regions. In our dataset, each typical liver image 

consists of primary vessel walls, lumens, small vessel walls, bile ducts, and non-tissue 

regions, each presenting different intensity characteristics. One solution is to employ 

multiple fitting functions to reach functional minimum [5]. However, this would inevitably 

increase the computational complexity. As we focus on identifying primary vessel walls in 

this work, we propose an improved formulation with directed prior information on vessel 

wall probability within a variational level set framework based on [5]. Let us denote two 2D 

vectors x and y defined over the image domain Ω of image I. Level set ϕ : Ω → ℛ is a 

Lipschitz function defined over Ω. Vessel Directed Fitting Energy (VDFE) EV is then 

defined as follows:

(1)

where f1 (x) and f2 (x) are two fitting functions for interior and exterior regions of zero level 

set. Gσ is a bivariate Gaussian filter;  and H (x) is a 

Heaviside step function;  is a function describing image smoothness. 

P(y) = max p(y, si, τ, ω) is a pre-computed vessel wall probability map indicating the 

likelihood of pixel y belonging to a vessel wall [6] where si is the ith scale of a Gaussian 
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filter that convolves with the image channel representing vessel-specific 

immunohistochemical stain DAB [7]; τ and ω are parameters governing the sensitivity of 

P(y) to measures of vessel structure similarity and intensity change magnitude. We set τ = 

0.5 and ω = 15.

In our formulation, fitting function f1(x) fits better to y in close proximity to x and with large 

Qσ3(y). Similarly, f2(x) is biased to image locations y close to x and with large P(y). 

Compared with small vessels, primary vessels have longer edge contours where Qσ3 (y) is 

low. Thus, VDFE minimization guarantees that f1(x) is automatically elected to fit to 

primary vessel wall regions where Qσ3 (y) is small and that f2 (x) fits to non-primary vessel 

regions where P (y) is small. Therefore, the proposed VDFE uses joint information derived 

from image regions, vessel edges, and the prior vessel wall probability map. To regulate 

zero level set smoothness, and retain signed distance property for stable level set function 

computation, we use the following accessory energy terms [8]: E1(ϕ(x)) = αQσ3 (x)|

∇H(ϕ(x))| and E2(ϕ(x)) = βR(|∇ϕ(x)|). In addition, we introduce another energy term to 

expedite zero level set convergence to vessel walls: E3(ϕ(x)) = γ (1 − P(x)) H (ϕ(x)). 

Combining all energies, we formulate the following functional to be minimized:

(2)

We update f1, f2, and ϕ in two sequential steps within each iteration as suggested by the local 

binary fitting model [5]. First, we fix ϕ(x) and optimize f1 (x) and f2 (x) to minimize 

functional by solving the system of Euler-Lagrange equations. Next, we minimize functional 

ℐ by optimizing ϕ(x) with two updated fitting functions unchanged. Note that we can swap 

integration variables x and y, change the integration order for the energy term EV, and re-

write the integrand:

By the Euler-Lagrange equation, we have the final updating equation as:
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(3)

2.2 Two-stage Vessel Association with Vessel Cross-sections

We perform vessel association by two steps: local bi-slide vessel mapping and global vessel 

structure association. At each stage, we consider four different association cases: one-to-one 

(growth), one-to-two (bifurcation), one-to-none (disappearance) and none-to-one 

(appearance). For local bi-slide vessel mapping, we take into account vessel shape 

descriptors and spatial features, with the overall similarity function for each association case 

defined as follows:

1. One-to-one: 

2. One-to-two: 

3. One-to-none: 

4. None-to-one: 

where  is the ith vessel object in slide t; functions g(·) and d(·) are two Gaussian Radial 

Basis Functions (GRBF) with scale κ1 and κ2, representing the similarity of vessel 

appearance by Fourier shape descriptors and the spatial distance between two vessel objects, 

respectively; Ωt and Ot are the boundary and centroid of slide t; {μ1, μ2} with μ1 + μ2 = 1 are 

constant weights to control the bi-slide vessel mapping smoothness.

The bi-slide vessel mapping is considered as a multi-object tracking problem, and solved by 

constrained Integer Programming [9] based on the defined similarity functions. This stage 

generates a set of bi-slide vessel components B = {Bi}. Next, we reconstruct the global 

vessel structures by linking {Bi} across all slides within a Bayesian Maximum A Posteriori 

(MAP) framework [10, 11]. Denote V = {Vk} as the set of hypotheses on vessel structures 

over all slides. Each vessel structure Vk may contain the pre-defined four association cases 
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and can be written as  where  is the ith bi-slide vessel component in vessel 

structure Vk.  can be represented as  where , and  are the associated 

vessel objects linked by . We maximize the following marginal posterior probability to 

obtain the best vessel structure hypothesis V*:

(4)

As no vessel structure in our dataset overlaps with others (i.e., Vk ∩ Vl = ∅, ∀k ≠ l), we 

assume each Vk is conditionally independent given B. We model P (Vk|B) as a Markov chain 

by taking into account the four distinct association cases;  and  are the “start” and 

“end” components of Vk, respectively;  with x ∈ {i, j, m, n1, n2} represents an 

intermediate vessel component. Probabilities for the four defined association cases are:

where  and ; function b(·) indicates the change of a vessel 

trajectory.  and  are constant likelihoods of bi-slide vessel components being the 

last and the first in vessel structure Vk, respectively; {ω1, ω2, ω3} s.t. ω1 + ω2 + ω3 = 1 are 

constant weights to adjust the global vessel association smoothness. Function b is defined 

as:

(5)

where  is defined as , indicating the 

orientation change when  is associated with . o(·) is a vector pointing to a vessel center. 

Next, we take logarithm of the objective function and solve the MAP problem by Linear 

Programming technique. We assume there are M bi-slide vessel components generated from 

all slides and h possible associations between these bi-slide vessel components. The optimal 

global vessel structures can be achieved by solving the following problem:

(6)
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where i = 1,…, 2M, j = 1, …, h; p is a h × 1 vector with each entry representing the 

likelihood of one bi-slide vessel association; R is a h × 2M binary matrix with each column 

indicating the index of bi-slide vessel components on the global association; (RT x)i is the ith 

element of (RT x) and the constraint (RT x)i ≤ 1 guarantees that each bi-slide vessel 

component can be selected at most once; the optimal solution x is a h × 1 binary vector 

where xj = 1 indicates the jth association is included in the optimal solution. In our tests, the 

resulting optimal solution by Standard Simplex algorithm [9] is identical to that of the 

Integer Programming problem.

3 Experimental Results and Validation

We have tested our method on 54 registered whole slide images of sequential liver tissue 

sections from one human patient, with z-resolution of 50μm. These biopsy sections are 

stained by Immunohistochemistry (IHC). The resulting images for analysis are down-

sampled from the base level by 64:1, with the final resolution of 1530 × 1373 pixels. We 

apply our segmentation method to images with parameters: σ1 = 1, σ2 = 4, σ3 = 1.5, λ1 = λ2 

= 1, α = 65, β = 2, γ = 5. In general, we can have similar results with reasonable 

perturbations to this parameter set. The segmentation time cost for each image is 43.65 ± 

0.63 seconds in Matlab R2013 with Dual Xeon E5420 CPUs at 2.5Ghz. In Fig. 1, we present 

vessel segmentation results from a typical image where the detected vessels are marked in 

green. The final vessel detection results in Fig. 1(e) are produced by combining final vessel 

wall results in Fig. 2(a) with detected lumens after removing candidates with unduly long 

perimeter length. To further examine the efficacy of VDFE directing level set function to 

vessel boundaries, we illustrate in Fig. 2 vessel wall segmentation results with and without 

prior information on vessel wall probability before post-processing. It is apparent that VDFE 

in Fig. 1(a) navigates zero level set to specific vessel edges in a target segmentation process. 

By contrast, results without VDFE guidance in Fig. 1(b) show that zero level set partitions 

the image purely based on fitting error (or homogeneity), with poor selective specificity to 

primary vessel boundaries. We compare our segmentation results with primary vessel 

annotations by human. Due to the large number of vessels in presence and variable 

confidence of vessel recognition by their appearances, only representative primary vessels 

with high recognition confidence and relatively large size are annotated by human. Table 1 

presents the validation results of all one-to-one human-machine vessel pairs measured by 

Jaccard coefficient, precision, recall, F1 score, and Hausdorff distance. We also compare our 

Vessel Directed Level Set (VDLS) method with morphological reconstruction (MR) 

approach [12] in Table 1. Note that 1336 human-VDLS and 881 human-MR one-to-one 

vessel pairs from 54 images are found and assessed.

To avoid unduly high vessel association complexity and error, we apply our vessel 

association approach to top 30 candidates by size on each slide. The most expensive 

computation is linear programming (64.56 ± 3.49 seconds). The parameters are empirically 

set as μ1 = 0.63, , ω1 = 0.54, ω2 = 0.36, κ2 = 500,  and 

. After vessel association, we perform B-Spline interpolation between adjacent 

associated vessel objects due to low z-axis data resolution, and volumetrically render the 3D 

vessel structures. In Fig. 3(a), we present a panoramic view of our 3D visualization result for 
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representative primary vessels from our dataset. One close-up view of a vessel segment is 

illustrated in Fig. 3(b). The right most image frame observed from right to left in the 

panoramic view is shown in Fig. 3(c), with color-coded 2D vessel candidates for 3D 

reconstruction. Note that reconstructed vessels with candidates by MR method are generally 

shorter due to imperfect vessel identification in intermediate image frames. As our analysis 

focuses on primary vessels, the vessel association result is relatively robust to registration 

outputs.

4 Conclusion

In this paper, we present an automated framework for 3D primary vessel structure analysis 

on whole slide histological images of liver tissue sections. For vessel segmentation, we 

propose an improved variational level set framework with prior information on vessel wall 

probability. We achieve optimal vessel associations by local bi-slide vessel mapping and 

global vessel structure association within a MAP framework. Experiments with a real world 

use case and preliminary evaluations present promising results. In future work, we will 

assess our method with other larger datasets and extend it to enable micro-vessel analysis.
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Fig 1. 
Representative segmentation result of primary vessels. (a) a typical 2D liver histology image 

with vessels highlighted in brown; (b) DAB stain image channel derived from color 

deconvolution; (c) vessel wall probability map P(x); (d) smooth indicator function Qσ3(x); 

(e) segmented primary vessels after post-processing (in green); and (f) markup image with 

one-to-one vessel pairs by human (red) and machine (green), with yellow mask resulting 

from red and green mask.
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Fig 2. 
Primary vessel wall segmentation result of (a) directed and (b) non-directed prior 

information on vessel wall probability before post-processing.
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Fig 3. 
(a) Panoramic view of 3D reconstructed vessels; (b) a close-up view of a vessel segment 

indicated by a curly bracket in the panoramic view; (c) color coded vessel candidates in the 

right most image frame observed from right to left in (a).
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