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Abstract

Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major 

depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin 

releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood 

symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the 

cognitive disruptions observed in patients with these disorders has received less attention. Here we 

review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies 

revealing that CRF is poised to modulate regions required for learning and memory. We also 

describe preclinical behavioral studies that demonstrate CRF’s ability to alter fear conditioning, 

impair memory consolidation, and alter a number of executive functions, including attention and 

cognitive flexibility. The implications of these findings for the etiology and treatment of the 

cognitive impairments observed in stress-related psychiatric disorders are described.
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Introduction

Some of the most common psychiatric disorders are post-traumatic stress disorder (PTSD) 

and major depression, which have a lifetime prevalence of 5.7% and 14.4%, respectively 

(Kessler et al., 2012). The defining symptoms of these disorders are different, such that 

PTSD is characterized by the re-experiencing of a traumatic event, avoidance, and 

hyperarousal, while depression is characterized by a persistent low mood often accompanied 

by feelings of hopelessness, helplessness, and anhedonia (American Psychiatric Association, 

2013). Despite differences in their diagnostic criteria, PTSD and depression share several 

features. For example, patients with these disorders suffer from cognitive deficits, reporting 
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impairments in learning, memory, and attention (for review see, Aupperle et al., 2012; 

Marazziti et al., 2010; Milad et al., 2006; Samuelson, 2011). These deficits impact daily 

function, thereby compounding the disruptions in affect caused by these disorders. Another 

shared feature is stress, and, in fact, PTSD and depression are sometimes referred to as 

stress-related disorders. PTSD, by definition, is precipitated by a traumatic event (Breslau, 

2009; Shabsigh and Rowland, 2007). Stress also is associated with the onset and severity of 

depression (Kendler et al., 1995; Melchior et al., 2007; Newman and Bland, 1994). 

Moreover, patients with these disorders have alterations in stress circuitry (Hamilton et al., 

2008; Karl et al., 2006; Kitayama et al., 2005), as well as dysregulated stress hormones and 

stress-related neuropeptides (Deuschle et al., 1997; Elzinga et al., 2003; Holsboer, 2001; 

Nemeroff et al., 1984; Yehuda et al., 2005). Given the common features of PTSD and 

depression, it is likely that these disorders share some etiological factors.

One stress-related neuropeptide that is linked to both PTSD and major depression is 

corticotropin releasing factor (CRF; e.g., Gold and Chrousos, 2002; Kasckow et al., 2001; 

Nemeroff and Vale, 2005). CRF acts at the level of the pituitary to initiate the hypothalamic 

pituitary adrenal (HPA) axis response, as well as centrally to modulate brain regions that 

regulate behavioral responses to stress (Bale and Vale, 2004; Owens and Nemeroff, 1991; 

Vale et al., 1981). Although typically CRF release facilitates appropriate stress coping, its 

hypersecretion is thought to be maladaptive (Holsboer and Ising, 2008; Kasckow et al., 

2001; Nemeroff, 1996). In fact, some patients with PTSD and depression have elevated 

levels of CRF in their cerebrospinal fluid, which positively correlates with symptom severity 

(Baker et al., 2005; Baker et al., 1999; Banki et al., 1992; Bremner et al., 1997; Nemeroff et 

al., 1984; Sautter et al., 2003). Moreover, in postmortem tissue of depressed patients, high 

levels of CRF and altered CRF receptor expression indicative of protracted CRF 

dysregulated are observed (Austin et al., 2003; Bissette et al., 2003; Raadsheer et al., 1994; 

Wang et al., 2008). Single nucleotide polymorphisms (SNPs) in the CRF1 receptor gene also 

have been reported in patients with PTSD and depression (Amstadter et al., 2011; Liu et al., 

2006; Polanczyk et al., 2009; Wasserman et al., 2008). Collectively, these studies suggest 

that alterations in the CRF system could contribute to the symptoms of these stress-related 

disorders.

To more directly link CRF hypersecretion to disordered behavior, researchers have turned to 

non-human animal models where causality can more easily be tested. The focus of much of 

this work has been to identify how CRF and the activation of CRF receptors alter anxiety 

and endocrine responses to stress. These preclinical studies have shown, for example, that 

CRF overexpression leads to an anxious phenotype (Stenzel-Poore et al., 1994; van Gaalen 

et al., 2002). Studies on the two CRF receptors, CRF1 and CRF2, have revealed that they can 

differentially modulate stress-related behavior. Specifically, CRF1 receptor activation 

initiates the HPA axis response and leads to anxiogenic behavior (Bale and Vale, 2004; 

Contarino et al., 1999; Heinrichs et al., 1997; Smith et al., 1998; Takahashi, 2001; Timpl et 

al., 1998). In contrast, activation of CRF2 receptors attenuates the HPA axis, and, in some 

cases, decreases anxiety (Bale et al., 2000; Bale and Vale, 2004; Coste et al., 2000; Coste et 

al., 2001). The underlying mechanisms of the sometimes opposing actions of CRF1 and 

CRF2 receptors are unclear. However, in the dorsal raphe, differences in the density of CRF1 

and CRF2 receptors on serotonergic versus GABAergic neurons are thought to underlie 
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different functions (Commons and Valentino, 2002). Additionally, distinct trafficking of 

CRF1 and CRF2 receptors within dorsal raphe neurons has been linked to alterations in 

stress-coping strategies (Waselus et al., 2009). However, more research is needed to 

understand the molecular basis for the sometimes opposing effects of CRF1 and CRF2 

receptors in other brain regions.

In addition to the effects of CRF on the regulation of anxiety and endocrine responses to 

stress, an underexplored but intriguing possibility is that CRF also mediates the changes in 

cognition observed in patients with PTSD and depression. This idea is based on the fact that 

CRF and its receptors are found in regions critical for learning and memory (Justice et al., 

2008; Merchenthaler, 1984; Primus et al., 1997; Van Pett et al., 2000). Moreover, emerging 

preclinical research suggests that mnemonic processes can be mediated by CRF. Here we 

review these studies and provide evidence that the cognitive disruptions that impair function 

in patients with PTSD and depression could result from high levels of CRF.

CRF and Fear Learning

Fear is an emotional response to a threat or perceived threat. In addition to expressing fear, 

animals can learn about cues that predict threatening situations and remember those cues to 

promote future survival. A growing body of literature suggests a critical role for CRF in 

learning about fearful situations, and these findings may be clinically relevant. Although 

learning about threating situations is adaptive, it becomes maladaptive when traumatic 

memories are activated inappropriately or persistently, and such responses are linked to the 

etiology of stress-related psychiatric disorders. PTSD in particular is thought to be caused, at 

least in part, by dysregulated fear learning (e.g., Blechert et al., 2007; Mahan and Ressler, 

2012; Milad et al., 2006; Orr et al., 2000; Pitman, 1989; VanElzakker et al., 2014; Wessa 

and Flor, 2007). Learning disruptions can occur at the time of the traumatic event when 

associations between the trauma and various environmental cues become so strong that they 

later trigger intrusive recollections (Orr et al., 2000; Pitman, 1989). Additionally, patients 

with PTSD can have difficulty extinguishing responses to cues associated with the trauma 

(Blechert et al., 2007; Wessa and Flor, 2007). Although abnormal fear learning is most 

associated with PTSD, depressed patients and even the children of depressed and anxious 

mothers have disrupted fear learning (Nissen et al., 2010; Waters et al., 2014). Thus, 

alterations in the mnemonic aspects of fear processing may be a premorbid risk factor for 

several stress-related psychiatric disorders.

In the laboratory, fear learning is studied utilizing the fear conditioning procedure. The 

rodent version of this task pairs an initially neutral stimulus, typically a tone, with an 

aversive unconditioned stimulus (US), typically a footshock. Because the tone proceeds and 

predicts the footshock, the rodent forms an association between these two stimuli, and the 

tone becomes a conditioned stimulus (CS). This association is tested 24 hours after the CS–

US pairings when the tone is presented in a novel context and freezing (i.e., ceasing all 

motion as a defensive behavior) during the tone is measured. This freezing response is 

considered a conditioned response (CR), and the magnitude of freezing is thought to reflect 

the strength of the CS–US association. This simple procedure has been elegantly utilized to 

elucidate the circuitry critical for fear learning (e.g., Davis, 1992; Davis and Whalen, 2001; 
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Fanselow and Poulos, 2004; Johansen et al., 2011; LeDoux, 2000; Maren, 2005; Medina et 

al., 2002; Quirk et al., 1995; Sah and Westbrook, 2008). This circuit consists of sensory 

regions that process stimuli, areas that regulate the mnemonic aspects of the task, and 

regions involved in generating the expression of fearful responses. Specifically, the CS and 

US are first processed by sensory regions, such as the auditory and somatosensory thalamus 

and cortices. This sensory information then converges on neurons in the lateral nucleus of 

the amygdala (LA). Through CS–US pairings, synaptic plasticity within the LA region 

enhances neuronal responses to the CS, indicating that the LA is critical for forming the 

association. The LA then projects both directly and indirectly (via the basal nucleus and 

intercalated masses) to the central nucleus of the amygdala (CE). The CE regulates the 

expression of fear via projections to brain regions involved in autonomic (lateral 

hypothalamus), endocrine (paraventricular nucleus of the hypothalamus), and defensive 

(periaqueductal gray) responses.

It is clear from this prior work that fear conditioning requires a network of brain regions. 

Interestingly, CRF is positioned to modulate many of these areas, including those involved 

in both non-mnemonic and mnemonic aspects of fear conditioning. For example, CRF 

receptors are found in thalamic and cortical regions involved in audition and 

somatosensation (Fig. 1; Primus et al., 1997; Van Pett et al., 2000). Therefore, CRF could 

directly modulate sensory processing of the CS and US, a possibility, which to our 

knowledge, has never been tested. CRF and its receptors are also present in regions critical 

for fear expression, including the lateral hypothalamus, paraventricular nucleus of the 

hypothalamus, and periaqueductal gray (Fig. 1; Merchenthaler, 1984; Potter et al., 1994; 

Van Pett et al., 2000). In fact, local infusions of CRF into the periaqueductal gray increases 

defensive behavior, such as freezing during fear conditioning (Carvalho-Netto et al., 2007; 

Stiedl et al., 2005). Anatomically, CRF is also positioned to affect amygdala regions 

involved in the mnemonic aspects of fear conditioning (Fig.1). Both types of CRF receptors 

(CRF1 and CRF2) are found in the LA and CE regions, although CRF1 receptors are 

expressed at higher levels than CRF2 receptors (Chalmers et al., 1995; Justice et al., 2008; 

Van Pett et al., 2000; Weathington and Cooke, 2012). CRF immunoreactivity is found 

throughout the amygdala, but the CE in particular has a large number of CRF expressing cell 

bodies (Gray, 1993; Swanson et al., 1983). Interestingly, CRF projections from the CE 

terminate in fear expressing regions, including the lateral hypothalamus and periaqueductal 

gray (Gray, 1993; Gray and Magnuson, 1992), indicating that CRF may be a critical 

neuropeptide that links the amygdala with regions involved in fear expression.

There is evidence to suggest that moderate levels of CRF are actually required for 

appropriate fear learning. Exposure to footshock (the most common US) increases CRF 

expression in the amygdala of male rats (Yamano et al., 2004). This increase may be critical 

for fear conditioning because reducing the effects of CRF in both the basolateral amygdala 

(BLA; which includes the LA) and the CE disrupts the consolidation or stabilization of fear 

memories in male rats (Hubbard et al., 2007; Pitts and Takahashi, 2011; Pitts et al., 2009). 

Conversely, in the BLA of male rats, increasing free endogenous CRF concentrations by 

displacing CRF from its binding protein enhances memory consolidation of fearful events 

(Roozendaal et al., 2008).
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The above studies suggest that CRF acts to enhance consolidation, however manipulations 

that cause very high CRF levels indicate that CRF can also have the opposite effect on the 

consolidation of fear memories (Isogawa et al., 2012). Specifically, in male rats, the addition 

of CRF into the LA by microinfusion immediately before or after training impairs fear 

conditioning, a time course consistent with CRF inducing an impairment in consolidation 

(Isogawa et al., 2012). Similarly, fear conditioning is disrupted in CRF overexpressing male 

mice, although the exact nature of the mnemonic deficit (e.g., disruption in acquisition, 

consolidation, or retention) is difficult to determine given their persistently high levels of 

CRF expression (Groenink et al., 2003; Tovote et al., 2005; van Gaalen et al., 2002). 

Interestingly, CRF administration in the LA has a different effect 24 hours after training, but 

prior to testing, such that it improves fear conditioning (Isogawa et al., 2012). Given the 

timing, this result indicates that CRF can enhance the retention of fearful memories. 

Notably, the effects of exogenously applied CRF on fear learning appear specific to the LA, 

as similar infusions into the CE did not alter the consolidation or retention of fear 

conditioning (Isogawa et al., 2012).

Another critical aspect of fear learning is fear extinction, a process where it is learned that 

cues associated with a traumatic event no longer predict that event (Maren and Quirk, 2004; 

Myers and Davis, 2002). In the laboratory, after the acquisition of fear conditioning, 

extinction training is initiated when the CS (e.g., tone) is presented alone and no longer 

paired with the US (e.g., footshock). The subject then learns that the CS no longer predicts 

the US and freezing decreases and potentially disappears. The acquisition of extinction 

learning requires the BLA, while the consolidation of extinction depends on the infralimbic 

region of the prefrontal cortex (reviewed in Pape and Pare, 2010; Quirk and Mueller, 2007; 

Sotres-Bayon and Quirk, 2010). The role of CRF in extinction has recently been examined 

in male rats (Abiri et al., 2014). Both endogenous and exogenous increases in CRF in the 

BLA prior to extinction training impaired extinction recall 24 hours later. Conversely, 

administering a non-selective CRF receptor antagonist into the BLA had the opposite effect 

(i.e., it improved extinction recall; Abiri et al., 2014). Similarly, treatment with a CRF1 

receptor antagonist rescued an extinction deficit seen in mice with increased CRF in the 

amygdala due to the GABA(A)α1 receptor deletion in CRF neurons (Gafford et al., 2012). 

Although the role of CRF during extinction has been evaluated for the BLA, no studies, to 

our knowledge, have examined the role of CRF in the infralimbic cortex during extinction, 

despite high expression of CRF1 receptors there (Justice et al., 2008; Van Pett et al., 2000).

As noted, PTSD is thought to result, at least in part, from enhanced memories of cues 

associated with trauma, as well as from a resistance to extinguishing responses to those cues 

(Blechert et al., 2007; Orr et al., 2000; Pitman, 1989; Wessa and Flor, 2007). The preclinical 

work suggests that excessive CRF release could contribute to these mnemonic changes, 

depending on the timing of the CRF elevation. Although high levels of CRF in the amygdala 

around the time of fear conditioning disrupt consolidation (Isogawa et al., 2012), later 

increases in CRF enhance retention and impair extinction (Abiri et al., 2014; Isogawa et al., 

2012). If similar effects hold true in humans, it would be unlikely that CRF hypersecretion 

prior to a traumatic event contributes to PTSD. However, if the trauma itself induces CRF 

hypersecretion, this increase in CRF could drive mnemonic changes that contribute to PTSD 

symptoms. Future studies in clinical populations will be needed to test this idea.
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Fear conditioning studies in rodents not only reveal potential mechanisms that contribute to 

stress-related psychiatric disorders, but they also suggest a possible pharmacotherapy. A 

drug that can enhance extinction learning (i.e., the partial NMDA agonist, D-Cycloserine) 

has been shown to improve exposure therapy in patients with phobias and PTSD (de Kleine 

et al., 2013; Norberg et al., 2008; Rothbaum et al., 2014). If CRF1 receptor antagonists 

improve extinction in humans as they do in rodents (Abiri et al., 2014; Gafford et al., 2012), 

these compounds may represent a new pharmaceutical approach that can be used as an 

adjunctive treatment to facilitate the effects of exposure therapy in patients with PTSD.

CRF, Declarative Memory, and the Hippocampus

Declarative memory is the conscious recollection of facts and events, and requires medial 

temporal lobe structures, particularly the hippocampus (Squire and Zola-Morgan, 1991). The 

hippocampus is not only required for the formation of declarative memories, but it is also 

necessary for their consolidation (Squire and Alvarez, 1995). Interestingly, patients with 

stress-related psychiatric disorders have impaired declarative memory (Bremner et al., 2004; 

Burt et al., 1995; Dresler et al., 2011; Samuelson, 2011). These deficits are not surprising 

given that the hippocampus is actually smaller in adults with PTSD and depression (Karl et 

al., 2006; Kitayama et al., 2005; MacQueen et al., 2003; Sheline, 2000; Sheline et al., 1996). 

In addition to problems with declarative memory, patients with PTSD and depression also 

show deficits in another type of memory mediated by the hippocampus, spatial learning 

(Moser et al., 1995; O'Keefe and Nadel, 1979; Richards and Ruff, 1989; Tempesta et al., 

2012; Veiel, 1997). Collectively, these findings indicate that a number of memory functions 

involving the hippocampus are disrupted in stress-related psychiatric disorders.

The hippocampus is also involved in responding to stressors. It mediates the endocrine limb 

of the stress response, regulating glucocorticoid negative feedback of the HPA axis 

(McEwen and Gianaros, 2011; Sapolsky et al., 1985). Additionally, in preclinical models, 

stressor exposure alters the physiology and morphology of hippocampal neurons (for review 

see, Buwalda et al., 2005; Howland and Wang, 2008; Leuner and Shors, 2012; McEwen, 

1999; McLaughlin et al., 2007). These cellular changes in the hippocampus can translate 

into changes in learning and memory (Conrad et al., 1996; McEwen et al., 1997; Watanabe 

et al., 1992), indicating that the hippocampus mediates stress and learning interactions 

(Bangasser and Shors, 2007, 2010). The mechanisms by which stress alters hippocampal 

structure and function involve a variety of stress hormones, neuropeptides, and 

neurotransmitters, including CRF (for review see, Joels and Baram, 2009; McEwen, 1999; 

McLaughlin et al., 2007). CRF is well positioned to alter hippocampal function, as it is 

actually produced locally within the hippocampus by interneurons (Chen et al., 2001; Chen 

et al., 2004; Yan et al., 1998). Additionally, CRF1 and CRF2 receptors are both present in 

the hippocampus (Primus et al., 1997; Van Pett et al., 2000), however, their distribution is 

different (Joels and Baram, 2009). On hippocampal pyramidal neurons, CRF1 receptors are 

located on the soma and at excitatory synapses in dendritic spines, while CRF2 receptors are 

found in axons (Chen et al., 2004; Chen et al., 2000; Joels and Baram, 2009). Given this 

anatomy, it is not surprising that non-human animal studies have identified a critical role for 

CRF in the modulation of mnemonic processes that require the hippocampus.
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Anecdotally, it is easy to think of examples of how stress can impair declarative learning. 

However, the effect of CRF on hippocampal-dependent learning is not always detrimental. 

In fact, acute CRF exposure can enhance memory. Specifically, CRF can enhance the 

acquisition of hippocampal dependent contextual and spatial tasks when infused centrally or 

directly into the hippocampus, respectively (Blank et al., 2003; Koob and Bloom, 1985). 

Memory consolidation also is improved by infusion of a moderate dose of CRF into the 

hippocampus of male rodents (Hung et al., 1992; Lee et al., 1992; Ma et al., 1999; 

Radulovic et al., 1999). Enhancements in learning following CRF administration have been 

linked to changes in intracellular signaling and the modulation of growth factors (Hung et 

al., 1992; Lee et al., 1992; Ma et al., 1999), and may also be attributable to the fact that CRF 

applied to hippocampal slices enhances long-term-potentiation (LTP), a putative learning 

mechanism (Blank et al., 2002; Blank et al., 2003). Actually, a moderate amount of CRF 

activation of the hippocampus may be required for optimal learning, as CRF1 and CRF2 

receptor knockout mice do not perform as well on hippocampus-dependent learning tasks as 

wild type animals (Contarino et al., 1999; Risbrough et al., 2009).

In contrast to the beneficial effects of moderate amounts of acute CRF on learning, too much 

CRF, especially if elevated chronically, has a detrimental effect on mnemonic processes 

mediated by the hippocampus. For instance, five hours of multimodal stress in adult male 

rats impairs learning that requires the hippocampus, an effect associated with a spine loss on 

apical dendrites in the CA3 region of the hippocampus (Chen et al., 2010). These mnemonic 

and morphological effects are prevented by CRF1 receptor antagonism (Chen et al., 2010). 

Although the time course of this stressor is acute, its severity likely increases CRF above 

levels that would be beneficial, suggesting that too much CRF can remodel hippocampal 

neurons and cause memory impairments. Chronically elevated levels of CRF also can impair 

hippocampal learning and alter neuronal morphology. Memory impairments were first 

demonstrated in male mice overexpressing CRF throughout their lifetime, which have 

spatial learning deficits that are not attributable to sensory or motor effects (Heinrichs et al., 

1996). CRF overexpression, when restricted to adulthood, also impairs hippocampal-

dependent contextual learning in female, but not male mice (Toth et al., 2014). In contrast, 

this type of learning is not affected by lifetime CRF overexpression (Toth et al., 2014). 

These studies highlight that the timing of expression, nature of the task, and the sex of the 

animal can affect the degree to which genetic CRF overexpression impairs hippocampal-

dependent memory. Another manipulation that can persistently elevate CRF is chronic stress 

(Chappell et al., 1986; Imaki et al., 1991). In adult male rodents, this type of stress has 

detrimental effects on spatial and recognition learning, which require the hippocampus 

(Broadbent et al., 2010; Clark et al., 2000), and these effects are mediated by CRF1 

receptors (Wang et al., 2011a). When compared to adults, young animals are perhaps even 

more vulnerable to the effects of high levels of CRF exposure. Chronic early-life stress 

impairs spatial learning in adulthood and this effect is mimicked by increasing CRF levels 

early in development (Brunson et al., 2001; Wang et al., 2011b). Mechanistically these 

impairments may result from a CRF-induced reduction in LTP, as well as CA3 neuronal and 

spine damage (Brunson et al., 2001; Wang et al., 2011b). Unfortunately, the deleterious 

effects of early CRF exposure on memory only worsen with age (Brunson et al., 2001; Ivy et 

al., 2010). They are, however, ameliorated by removing or antagonizing CRF1 receptors (Ivy 

Bangasser and Kawasumi Page 7

Horm Behav. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2010; Wang et al., 2011b). Thus, CRF1 receptor antagonists may be a potential 

treatment for mnemonic deficits caused by early-life stress.

When taken together, these preclinical studies indicate that although hippocampal-dependent 

memory may benefit from acute, moderate elevations in CRF, this type of memory is 

disrupted by high, chronically elevated levels of CRF, an effect which is more severe if it 

occurs early in life. Unfortunately, the link between chronically high levels of CRF and 

memory deficits has yet to be studied in humans. In light of the preclinical findings, 

however, it is likely that the persistently high levels of CRF in patients with PTSD and 

depression contribute to their deficits in declarative and spatial memory.

CRF and Executive Functions

Executive functions are a collection of processes aimed at regulating thought, action, and 

emotion. These functions include attention, working memory, cognitive flexibility, 

inhibitory control, and planning. Executive functions are impaired in patients with stress-

related psychiatric disorders. For example, compared to healthy and trauma exposed 

controls, PTSD patients have impaired attention and working memory (Koso and Hansen, 

2006; Vasterling et al., 1998; Vasterling et al., 2002). Depressed patients also have difficulty 

with executive functions, such as trouble with cognitive flexibility and sustaining attention 

(Farrin et al., 2003; Fossati et al., 1999; McDermott and Ebmeier, 2009). Because executive 

functions regulate other cognitive domains, these deficits disrupt a number of cognitive 

abilities, and thus understanding how executive functions become impaired could improve 

daily function for patients with stress-related psychiatric disorders.

Broadly speaking, the prefrontal cortex (PFC) mediates executive functions (Funahashi and 

Andreau, 2013; Robbins, 1996). More specifically, different aspects of executive function 

are associated with different divisions within the PFC. For example, the right inferior frontal 

cortex controls inhibition, while the dorsolateral PFC is critical for working memory 

(Arnsten and Jin, 2014; Aron et al., 2014). Some executive functions engage other cortical 

regions in addition to the PFC, as exemplified by the fact that the anterior cingulate and 

parietal cortices work with the PFC to regulate attention (Fink et al., 1997; Han and Marois, 

2014; Petersen and Posner, 2012). Moreover, these cortical structures do not operate in 

isolation, but instead interact heavily with basal forebrain and brainstem ascending 

modulatory systems, including the cholinergic, noradrenergic, dopaminergic, and 

serotonergic systems. In a top-down fashion, the PFC can regulate these modulatory systems 

(Amat et al., 2005; Jodo et al., 1998; Zaborszky et al., 1997). Conversely, these 

neurotransmitter systems influence the PFC so that information about state (e.g., arousal, 

alertness, and motivation) can alter executive functions (for review see, Chandler et al., 

2014; Robbins and Arnsten, 2009; Sarter et al., 2001).

The CRF dysregulation observed in stress-related psychiatric disorders could contribute to 

impaired executive function because CRF is poised to modulate both cortical and subcortical 

structures involved in these processes. Studies in rodents have found that CRF1 receptors are 

highly expressed in cortical areas, including the PFC (Fig. 2; Primus et al., 1997; Van Pett et 

al., 2000). CRF receptors are also present in the modulatory regions that project to the PFC 
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to regulate executive function. Specifically, CRF1 receptors are present on cholinergic 

neurons in the basal forebrain that release acetylcholine into the PFC (Chen et al., 2000; 

Sauvage and Steckler, 2001; Zaborszky et al., 2012). The ventral tegmental area, which 

releases dopamine in cortical regions, contains both CRF1 and CRF2 receptors (Sauvage and 

Steckler, 2001; Ungless et al., 2003). CRF1 receptors are also found on noradrenergic 

neurons in the locus coeruleus (LC; Curtis et al., 2006; Reyes et al., 2008) that are the source 

of norepinephrine for the cortex (Aston-Jones et al., 1995), while both CRF1 and CRF2 

receptor subtypes are found on serotonergic and non-serotonergic neurons in the dorsal 

raphe (Reyes et al., 2006; Waselus et al., 2009). Local infusions of CRF into LC and the 

dorsal raphe increase norepinephrine and serotonin release in the PFC, respectively, 

revealing a mechanism by which CRF modulation of brainstem structures can affect cortical 

processing (Curtis et al., 1997; Forster et al., 2008; Smagin et al., 1995). Collectively, these 

findings reveal that direct and indirect (via subcortical projection systems) modulation of 

frontal-executive functions by CRF is possible (Fig. 2).

Some executive functions, such as planning, cannot be studied in rodent models, yet for 

most executive functions (e.g., attention, inhibition, cognitive flexibility, working memory) 

there are relevant non-human animal tasks. Surprisingly, direct effects of CRF in the PFC 

have not been evaluated with any of these tasks, to our knowledge. However, executive 

functions have been examined following brain-wide changes in CRF levels, as well as 

following site specific infusions of CRF into subcortical modulatory regions. Here we will 

highlight studies that have investigated the role of CRF in attention, cognitive flexibility, 

and working memory.

CRF and Attention

Patients with PTSD and depression have attentional disruptions and show impairments on 

the continuous performance task that measures sustained and selective attention (Canpolat et 

al., 2014; Vasterling et al., 2002). In rodents, these attentional processes are often tested 

with the 5-choice serial reaction time task (5-CSRTT), which models some aspects of the 

continuous performance task (Robbins, 2002). In this task, a rodent is required to monitor 

the location of a light briefly presented in one of five spatial locations. In order to obtain a 

reward, the rodent must poke with its nose the lit aperture within several seconds of light 

offset (Bari et al., 2008; Robbins, 2002). Performance measures on the task include accuracy 

(i.e., correct responses), incorrect responses, and omissions (i.e., trials during which no 

response is made; Bari et al., 2008). Additionally, aspects of inhibitory control can be 

measured by counting premature responses (nose pokes that occur prior to the light 

presentation) or perseverative responses (repeated nose pokes to a previously lit aperture; 

Robbins, 2002). Alterations in these different performance measures reflect disruptions in 

different cortical and sub-cortical systems (Robbins, 2002).

The effects of global increases in CRF on 5-CSRTT performance have been evaluated in 

several ways. For example, attentional impairments have been examined in male mice that 

overexpress CRF throughout development (Stenzel-Poore et al., 1992; van Gaalen et al., 

2003). On the 5-CSRTT, these CRF overexpressing mice take longer to acquire the task 

contingencies than wild type controls (van Gaalen et al., 2003), which likely reflects 
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mnemonic deficits that are separate from attentional impairments. However, disrupted 

attentional processes are observed once the task is acquired, as CRF overexpressing mice 

have impaired accuracy, longer correct response latencies, and increased omissions (van 

Gaalen et al., 2003). These performance measures improve to wild type levels if attentional 

demands are decreased (i.e., when the light stimulus duration is increased), suggesting that 

these effects are due to disruptions in attention, not other performance issues (e.g., sensory 

or motor impairments). In addition to CRF overexpressing mice, the central effects of CRF 

on 5-CSRTT performance also have been examined in male rats. Central CRF 

administration affects accuracy in a dose-dependent fashion, such that a low dose of CRF 

increases accuracy, while higher doses impair accuracy (Ohmura et al., 2009; Van't Veer et 

al., 2012). High doses of CRF also increase omissions and the latency to make a correct 

response, effects similar to that observed in CRF overexpressing mice (Van't Veer et al., 

2012). Collectively, these findings demonstrate that high levels of CRF can impair attention.

As noted, a number of brain regions work in concert to mediate attentional processes. 

Because the aforementioned studies examined the effects of central changes in CRF, the 

precise structures targeted by CRF to alter attention remain unknown. However, previous 

studies have linked specific deficits in 5-CSRTT performance to certain brain regions and 

neurotransmitter systems (Robbins, 2002). Medial PFC lesions impair accuracy and increase 

correct response latencies (Muir et al., 1996). This pattern of performance is observed 

following high levels of CRF (Van't Veer et al., 2012; van Gaalen et al., 2003), and thus 

suggests that CRF may be directly affecting the medial PFC. Altering cholinergic and 

dopaminergic function in the PFC also affects accuracy (Granon et al., 2000; Robbins, 2002; 

Robbins et al., 1998), which suggests that CRF could also act at the level of the basal 

forebrain or ventral tegmental area to alter attention. High levels of CRF also increased 

omissions (Van't Veer et al., 2012; van Gaalen et al., 2003), and omissions are often 

mediated by changes in the dopaminergic system (Baunez and Robbins, 1999; Cole and 

Robbins, 1989; Robbins, 2002). Thus, the combined pattern of decreased accuracy and 

increased omissions could indicate that the disruptions in attention are primarily driven by 

the effects of CRF on dopaminergic neurons in ventral tegmental area. Because a goal of 

modern pharmacology is to develop drugs that target certain brain regions, identifying the 

location(s) where CRF acts to disrupt attention would help guide the development of novel 

treatments to mitigate stress-induced attentional impairments.

CRF and Cognitive Flexibility

Another executive function mediated by the PFC is cognitive flexibility, which is the ability 

to shift between rules or concepts (Sohn et al., 2000; Stuss et al., 2000). Some patients with 

depression and PTSD show impairments in tests of cognitive flexibility, such as the 

Wisconsin Card Sorting Test that examines the ability to shift between different cognitive 

strategies in response to changing contingencies (Channon, 1996; LaGarde et al., 2010; 

Merriam et al., 1999, but see Vasterling et al., 2002). A rodent cognitive flexibility task that 

is analogous to the Wisconsin Card Sorting Test is attentional set shifting (Birrell and 

Brown, 2000). In this task, rats are trained to discriminate between two pots in order to 

receive a buried food reward (only one pot is baited with food). These pots are 

distinguishable by cues in two stimulus dimensions (e.g., odor and digging medium). During 
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the task, rats perform a series of discriminations including reversals, intradimensional shifts 

(e.g., shifting from one set of odor cues to another set of odor cues), and extradimensional 

shifts (e.g., shifting from odor cues to digging medium). Much like its role in cognitive 

flexibility in humans, the PFC is also involved in aspects of set shifting in rats. Specifically, 

lesions to the medial PFC selectively disrupt the extradimensional shift, suggesting that this 

region is critical for inhibiting responses to old cues and shifting the strategy to respond to 

newly relevant cues (Birrell and Brown, 2000). Cognitive flexibly is mediated by 

norepinephrine in the medial PFC, such that increasing norepinephrine neurotransmission in 

this region improves performance on the extradimensional shift (Lapiz and Morilak, 2006). 

This exemplifies the important role that brainstem modulatory systems play in executive 

function.

CRF modulation of attentional set shifting has been investigated in male rats (Snyder et al., 

2012). In this study, CRF injections into the LC affected performance on the 

extradimensional shift in an inverted U-shaped dose-response relationship, such that low and 

high doses of CRF have no effect on performance, while a moderate dose improves 

extradimensional shifting. The moderate dose of CRF in the LC also activates the medial 

PFC, as assessed by immunoreactivity for the immediate early gene cFOS (Snyder et al., 

2012). As noted, CRF in the LC can increase norepinephrine release in cortical regions 

(Curtis et al., 1997; Smagin et al., 1995), so the improvement in the extradimensional shift 

likely results from increased cortical norepinephrine induced by CRF activation of the LC. 

Interestingly, this enhanced extradimensional shifting actually may be an adaptive response 

that promotes behavioral flexibility under moderately stressful conditions (Snyder et al., 

2012).

In contrast to the effects in the LC, central administration of CRF impairs several aspects of 

the attentional set shifting task, including the reversal, intradimensional shift, and 

extradimensional shift (Snyder et al., 2012). The difference between the central and LC-

specific effects of CRF is likely due to the fact that central CRF is acting on a number of 

different brain regions, some of which may have opposing effects to that of the LC, and this 

discrepancy has implications for treatment. Currently, pharmacotherapies targeting the CRF 

system (e.g., CRF antagonists) are aimed at causing a global decrease in CRF effects. 

Presumably these drugs would eliminate any positive effects of CRF in the LC on cognitive 

flexibility. Thus, this study highlights the need for more selective treatments that perhaps 

target CRF dysregulation in specific brain regions. In order to develop such compounds, 

clearly more basic research is needed to identify the brain regions where positive versus 

negative effects of CRF secretion occur, and to identify the molecular and cellular 

differences between these regions that would allow them to be more selectively targeted 

pharmacologically.

CRF and Working Memory

Working memory requires storing and manipulating multiple pieces of transitory 

information in order to carry out complex cognitive tasks. This type of memory is mediated 

by the dorsolateral PFC along with other cortical structures (Barbey et al., 2013; Levy and 

Goldman-Rakic, 2000; Nee et al., 2013). Much like other executive functions, working 
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memory is disrupted in stress-related psychiatric disorders (Rose and Ebmeier, 2006; 

Vasterling et al., 2002). Although there are many working memory tasks for non-human 

animals, to our knowledge, the effect of CRF on working memory has not been investigated 

in rodents.

Working memory deficits in humans have been linked to the interaction between the 

environmental factor, early life stress, and differences in the CRF1 receptor gene. Early life 

stress is a risk factor for the development of both cognitive deficits and stress-related 

psychiatric disorders in adulthood (for review see, Gutman and Nemeroff, 2002; Heim and 

Binder, 2012; Pechtel and Pizzagalli, 2011). However, only a portion of people who 

experience early life stress suffer impairments as adults, suggesting that genetic factors 

moderate the effect of stressful environmental influences. The SNPs, rs110402 and 

rs242924, on the CRF1 receptor gene have been shown to confer resilience to the 

detrimental effects of early life stress on working memory and depression. Specifically, 

while moderate exposure to early life stress impaired working memory in healthy adult 

subjects who were homozygous GG for both rs110402 and rs242924, it took severe stressor 

exposure to impair memory in those with the less common combination of homozygous AA 

and TT alleles for these genes, respectively, suggesting that this combined genotype is 

protective (Fuge et al., 2014). These SNPs also moderate the effects of early life stress on 

HPA axis dysregulation and depression, such that subjects with one copy of either the 

rs110402 A-allele or rs242924 T-allele are protected as adults from the endocrine and 

psychiatric consequences of certain types of childhood trauma (Bradley et al., 2008; Heim et 

al., 2009; Polanczyk et al., 2009; Tyrka et al., 2009). Despite these interesting findings, the 

nature of the relationship between working memory deficits and depression in patients 

homozygous GG for rs110402 and rs242924 genotype is, at this point, unclear. It could be 

that working memory deficits are a risk factor for depression in people with this genotype, 

or alternatively that depression causes greater cognitive disruptions in patients with this 

genotype. Surprisingly, the consequences of these SNPs for CRF1 receptor function also are 

unknown. It is tempting, however, to speculate that these SNPs alter CRF signaling in brain 

regions implicated in depression and working memory, such as the dorsolateral PFC. 

Although more research is clearly needed, the current data do highlight the important role of 

CRF1 receptors in moderating the effects of early life stress on executive function and mood.

Sex Differences in the CRF system

Women are twice as likely as men to suffer from PTSD and depression (Breslau, 2002; 

Kendler et al., 1995; Kessler, 2003; Kessler et al., 1993; Tolin and Foa, 2006). Despite this 

reliably reported epidemiological difference, the neurobiological basis for the sex bias in 

these disorders remains largely unknown. However, preclinical research suggests that sex 

differences in the CRF system contribute to increased susceptibility to stress in females, 

which could account for the higher rates of stress-related disorders in women (for review 

see, Bangasser, 2013; Bangasser and Valentino, 2012; Valentino et al., 2012).

Most preclinical research has focused on how sex differences in the CRF system can impact 

anxiety and endocrine responses to stress (Babb et al., 2013; Bale and Vale, 2003; Duncko 

et al., 2001; Iwasaki-Sekino et al., 2009). Cognition may also be altered by sex differences 
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in the CRF system because sex differences in CRF expression and its receptors are found 

within regions critical for memory formation. Adult female rats have greater CRF 

expression in the CE and more CRF1 receptor binding in the BLA than males (Iwasaki-

Sekino et al., 2009; Weathington and Cooke, 2012), effects that could increase fear 

consolidation and impair extinction in females. Sex differences in CRF1 receptor binding 

also are found in the hippocampus, such that binding increases during puberty in females, 

but not males in the CA3 region (Weathington et al., 2014). Given that chronically elevated 

levels of CRF impair declarative memory via CRF1 receptor activation (Wang et al., 2011a), 

this sex difference in binding could render females more vulnerable to these negative 

mnemonic effects, especially after puberty. In support of this, CRF overexpression that was 

restricted to adulthood impaired hippocampal-dependent contextual conditioning in female 

but not male mice (Toth et al., 2014). Unfortunately, the extent of sex differences in the 

effects of CRF on fear conditioning and declarative memory are largely unknown because 

most of the studies conducted thus far have used only male subjects, or were otherwise not 

designed to detect sex differences.

Executive functions mediated by the cortex also could be differentially altered by CRF in 

males versus females due to complex sex differences in the cortical CRF system. Not only 

do females have greater cortical CRF1 receptor binding than males (Weathington et al., 

2014), but there are also sex differences in cortical CRF1 receptor signaling (Bangasser et 

al., 2010; Valentino et al., 2013). For example, CRF receptors are G-protein coupled 

receptors that preferentially bind Gs to activate the cyclic AMP and protein kinase A (PKA) 

signaling cascade leading to a variety of downstream cellular changes (Grammatopoulos et 

al., 2001; Hauger et al., 2009; Hillhouse and Grammatopoulos, 2006; Jedema and Grace, 

2004). However, cortical CRF1 receptors of females are more highly coupled to the Gs 

protein than those of males (Bangasser et al., 2010). This sex difference can lead to 

increased PKA signaling in females under conditions of excessive CRF release (Valentino et 

al., 2013). It is clear from these studies that cortical CRF1 receptors are functionally very 

different in males and females. However, whether these differences result in sex differences 

in CRF’s modulation of executive functions remains unknown.

Sex differences in CRF are also observed in brainstem structures that regulate cognition. In 

the dorsal raphe-serotonin system, local infusions of CRF increase depressive-like behavior 

and HPA axis activity in male but not female mice (Howerton et al., 2014). This could 

indicate that males are more sensitive to CRF-induced changes in cognition mediated by 

serotonin, an idea that has yet to be explored. Sex differences in CRF modulation of the LC-

norepinephrine system also have been identified. CRF activates LC neurons to a greater 

degree in female than male rats, an effect linked to sex differences in CRF-induced PKA 

signaling (Bangasser et al., 2010; Curtis et al., 2006). Given that higher LC neuronal activity 

increases norepinephrine release in target regions, such as the cortex (Curtis et al., 1997; 

Smagin et al., 1995), this sex difference could differentially alter executive function in males 

versus females. CRF1 receptors in the LC are also trafficked differently in male and females 

following stress and CRF hypersecretion (Bangasser et al., 2010; Bangasser et al., 2013). 

Specifically, these manipulations increase CRF1 receptor internalization in LC dendrites 

only in males. As internalized receptors can no longer be activated by CRF, this 

compensatory mechanism can explain why male CRF overexpressing mice can maintain 
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their LC neuronal response to CRF hypersecretion at wild type level (Bangasser et al., 

2013). In contrast, LC neurons of female CRF overexpressing mice fire roughly three times 

faster than their wild type counterparts. This high level of neuronal firing in females under 

conditions of CRF hypersecretion is expected to result in high levels of norepinephrine 

release in the cortex, an effect associated with “going off task” (Aston-Jones and Cohen, 

2005). Thus, females may be less likely to sustain or focus attention during conditions of 

high CRF release. Collectively, these sex differences in brainstem modulatory systems could 

impact several aspects of executive function that are disrupted in stress-related psychiatric 

disorders. However to date, only male subjects have been included in basic research studies 

examining the effects of CRF on executive function.

Clearly more preclinical work that includes both male and female subjects is required to 

elucidate the extent to which sex differences in the CRF system result in sex differences in 

cognition. Clinical studies are also needed, as researches have only recently begun to 

systematically investigate sex difference in cognition in patients with stress-related 

psychiatric disorders. For instance, new studies in PTSD patients reveal that women with 

this disorder show enhanced fear conditioning, while men with PTSD have deficits in 

extinction recall (Inslicht et al., 2013; Shvil et al., 2014). Women also have greater 

impairments in declarative memory than men following acute tryptophan depletion, a 

manipulation that mimics low levels of serotonin thought to be found in depression 

(Sambeth et al., 2007). In the future, it would also be useful to examine whether sex 

differences in cognition in patient populations are associated with CRF dysregulation, as this 

could help guide treatment.

Implications for Treatment

First-line pharmacotherapies for stress-related psychiatric disorders are selective serotonin 

reuptake inhibitors (SSRIs; Altshuler et al., 2001; Krystal et al., 2011). In fact, these 

compounds are the only drug approved by the Food and Drug Administration for the 

treatment of PTSD, and thus are widely prescribed (Krystal et al., 2011; Mohamed and 

Rosenheck, 2008). Yet SSRIs are not very effective at treating male combat veterans with 

PTSD (Friedman et al., 2007; Hertzberg et al., 2000). Similarly SSRIs and other approved 

pharmacotherapies are unable to adequately treat 20-30% of depressed patients (Fava, 2003; 

Rush et al., 2006). Thus, there is a need to develop more effective compounds. Given that 

CRF hypersecretion is found in patients with PTSD and depression (Baker et al., 2005; 

Baker et al., 1999; Banki et al., 1992; Bremner et al., 1997; Nemeroff et al., 1984; Sautter et 

al., 2003), CRF receptor antagonists are one class of drug being designed to treat these 

disorders (Holsboer and Ising, 2008; Ising et al., 2007; Nemeroff, 1996; Zobel et al., 2000). 

Although the main focus has been to ameliorate the anxiety and depressive symptoms 

(Zobel et al., 2000), the studies detailed here suggest that CRF receptor antagonists may also 

treat some of the cognitive alterations that characterize these disorders. In fact, these drugs 

could potentially outperform SSRIs in this regard, because there is evidence that SSRIs fail 

to treat the cognitive impairments in patients with remitted depression (Smith et al., 2006). 

Of course, the existing data indicate that the effects of CRF on cognition depend on the 

timing, dose, brain region, and sex, so simply blocking CRF receptors may not be sufficient. 
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Instead, identifying new ways to target the actions of these or related compounds may be 

required to maximize their benefits.

Conclusions

It has long been thought that CRF hypersecretion contributes to the changes in emotion and 

mood observed in PTSD and depression. The studies reviewed here suggest that the 

cognitive deficits that disrupt daily function in these patients could also be caused by CRF 

hypersecretion. More clinical and preclinical studies are needed to further our understanding 

of the circuits and mechanisms by which CRF can contribute to changes in cognition. It is 

notable, however, that the existing literature that covers multiple cognitive domains 

consistently implicates CRF1 receptors in mediating the deleterious effects of CRF on 

cognition. Therefore, efforts to develop safe and effective CRF1 receptor antagonists and 

related compounds may not only improve the affective symptoms of these disorders, but 

they may also treat their associated cognitive disruptions, thus greatly improving the quality 

of life for patients with PTSD and depression.
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Highlights

• Corticotropin releasing factor (CRF) is hypersecreted in PTSD and depression.

• Preclinical studies reveal that high levels of CRF disrupt many cognitive 

processes.

• CRF dysregulation could impair cognition in patients with PTSD and 

depression.
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Figure 1. 
Schematic illustrating CRF receptors in regions critical for fear conditioning. CRF is poised 

to modulate regions involved in sensory processing, fear learning, and fear expression. 

Regions with CRF1 receptors are shaded in blue, while those with both CRF1 and CRF2 

receptor expression are shaded in red. B: basal nucleus of the amygdala; CE: central nucleus 

of the amygdala; ITC: intercalated masses; LA: lateral nucleus of the amygdala; LH: lateral 

hypothalamus; PAG: periaqueductal gray; PVN: paraventricular nucleus of the 

hypothalamus
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Figure 2. 
Schematic depicting the circuitry by which CRF can regulate executive functions. CRF 

could regulate the PFC directly or alter executive functions indirectly by activating basal 

forebrain and brainstem ascending systems. Regions with CRF1 receptors are shaded in 

blue, while those with both CRF1 and CRF2 receptor subtypes are shaded in red. BF: basal 

forebrain; DR: dorsal raphe; LC: locus coeruleus; PFC: prefrontal cortex; VTA: ventral 

tegmental area
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