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Abstract

Despite the anatomical overlap between the brain’s fear/threat and olfactory systems, a very 

limited number of investigations have considered the role of odors and the central olfactory 

system in the pathophysiology of PTSD. The goal of the present study was to assess structural 

differences in primary and secondary olfactory cortex between combat veterans with and without 

PTSD (CV+PTSD, CV−PTSD, respectively). An additional goal was to determine the relationship 

between gray matter volume (GMV) in olfactory cortex and the distressing properties of burning-

related odors. A region of interest voxel-based morphometric (VBM) approach was used to 

measure GMV in olfactory cortex in a well-characterized group of CV+PTSD (n=20) and CV

−PTSD (n=25). Prior to the MRI exam, combat-related (i.e., burning rubber) and control odors 

were systematically sampled and rated according to their potential for eliciting PTSD symptoms. 

Results showed that CV+PTSD exhibited significantly reduced GMV in anterior piriform (primary 

olfactory) and orbitofrontal (secondary olfactory) cortices compared to CV−PTSD (both p<.01). 

For the entire group, GMV in bilateral anterior piriform cortex was inversely related to burning 

rubber odor-elicited memories of trauma (p<.05). GMV in orbitofrontal cortex was inversely 

related to both clinical and laboratory measures of PTSD symptoms (all p<.05). In addition to 

replicating an established inverse relationship between GMV in anxiety-associated brain structures 

and PTSD symptomatology, the present study extends those findings by being the first report of 

volumetric decreases in olfactory cortex that are inversely related to odor-elicited PTSD 

symptoms. Potential mechanisms underlying this finding are discussed.
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Introduction

Over the past 20 years, a large literature of neuroimaging studies investigating the structural 

brain changes associated with PTSD has emerged. While important initial investigations 

revealed PTSD-related volumetric reductions in hippocampus (Bremner et al., 1995, Gurvits 

et al., 1996, Stein et al., 1997), subsequent studies have described gray matter volume 

(GMV) reductions extending throughout limbic and paralimbic structures, as well as 

prefrontal cortical regions (Aupperle et al., 2013, Chen et al., 2006, Geuze et al., 2008, 

Keding and Herringa, 2015, Kuhn and Gallinat, 2013, Nardo et al., 2010, Rauch et al., 2003, 

Yamasue et al., 2003). To date, an inverse relationship between limbic/paralimbic GMV and 

PTSD severity, as well as the severity of the individual symptom clusters of re-experiencing, 

avoidance/numbing, and hyperarousal, has predominated (Araki et al., 2005, Kroes et al., 

2011, Lindauer et al., 2004, Shucard et al., 2012, Thomaes et al., 2010, Villarreal et al., 

2002, Yamasue, Kasai, 2003); yet, other reports of positive associations between PTSD and 

early life trauma severity, and hippocampal/amygdala volume have also been reported 

(Baldacara et al., 2014, Weber et al., 2013).

Although the full range of pathophysiological processes that underlie PTSD-related 

decreases in brain volume are not completely understood, one mechanism by which severe 

stress may contribute to brain atrophy (e.g., hippocampal) has a great deal of support in both 

animal and human research. Evidence for the “glucocorticoid hypothesis” suggests that 

chronic stress, accompanied by dysregulation of glucocorticoids (i.e., cortisol), leads to 

hippocampus vulnerability and potential structural insult that could negatively impact 

cognitive function including learning and memory (Lindauer et al., 2006, Lupien et al., 

1998, McEwen, 2000). In addition to increased baseline levels of salivary cortisol (Young et 

al., 2004), trauma-exposed individuals also exhibit memory-triggered augmented cortisol 

responses (Dekel et al., 2013) that can modulate regional brain activity (Liberzon et al., 

2007). These studies suggest that traumatic reminders and re-experiencing of cues that 

resemble or symbolize the original trauma [termed conditioned stimuli, which from a fear 

conditioning perspective is believed to underlie the fear-related symptoms of PTSD 

(Briscione et al., 2014)] may contribute to the chronicity of glucocorticoid dysregulation and 

subsequent changes in brain structure and function.
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Situated at the junction of the temporal and frontal corticies, the primary olfactory (piriform) 

cortex, along with the extended olfactory circuit, shares common neuroanatomy with the 

brain’s fear/threat circuit (LeDoux, 2012, Price, 1990), including many of the same limbic/

paralimbic structures identified in the pathophysiology of PTSD (e.g., amygdala, 

hippocampus and surrounding cortex, anterior insula, and orbitofrontal cortex). Emerging 

evidence suggests that the olfactory system is particularly susceptible to insult and thus may 

serve as a sensitive indicator of structural integrity in these limbic/paralimbic and frontal 

neural networks. For example, olfactory dysfunction is reported in laboratory animals 

following exposure to environmental toxins (Blechinger et al., 2007), chronic stress (Mo et 

al., 2014), as well as mechanical percussion-induced closed head injury (Siopi et al., 2012); 

this type of dysfunction is also considered a prodromal marker of human neurodegeneration 

(Devanand et al., 2000, Lerche et al., 2014). Given that glucocorticoid receptors are widely 

distributed from the olfactory bulb throughout the olfactory cortex (Morimoto et al., 1996), 

and that hypercortisolemia can negatively affect olfactory structure (Kratskin et al., 1999) 

and function (Ezeh et al., 1992), the olfactory system and/or olfactory function is likely 

impaired by chronic stress and subsequent psychiatric conditions including PTSD.

Despite the anatomical overlap between the olfactory and fear/threat systems, as well as its 

vulnerability to insult, a limited number of investigations (Hinton et al., 2004, Vermetten 

and Bremner, 2003, Vermetten et al., 2007) have considered the role of the central olfactory 

system in their study of PTSD. To our knowledge, only one study assessed olfactory-related 

brain volume and reported reduced olfactory bulb volume in women with a history of 

childhood maltreatment (Croy et al., 2013). Other studies designed to assess clinical 

olfactory function in PTSD have been inconsistent (Croy et al., 2010, Dileo et al., 2008, 

Vasterling et al., 2000, Vasterling et al., 2003). However, recent preliminary data from our 

laboratory suggest that trauma-exposed combat veterans with and without PTSD may have a 

decreased ability to detect odors (Cortese et al., 2014), in addition to a self-reported 

reduction in general odor sensitivity (Cortese et al., 2015). It remains to be seen the degree 

to which this reduced sensitivity to odor is the result of generalized hyposmia, damage to the 

olfactory mucosa/receptors, perceptual difficulties mediated by cortical damage, or some 

combination of these factors.

Given our promising preliminary olfactory findings and the notion that re-experiencing 

trauma-related triggers may be associated with decreased GMV, as well as the fact that 

trauma-related differences in GMV along the olfactory pathway have not been adequately 

studied, we sought to assess GMV in combat veterans utilizing a region of interest (ROI) 

approach focused along the central olfactory pathway. We hypothesized that PTSD-related 

reductions in GMV in primary and secondary olfactory structures would be inversely related 

not only to general PTSD symptomology, but also to specific subjective ratings of odor 

hedonics and, most importantly, to increased odor-elicited re-experiencing of combat 

trauma.
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Methods and Materials

Participants

Combat veterans with PTSD (CV+PTSD: n=23) and without PTSD (CV−PTSD: n=25) were 

recruited from the Ralph H. Johnson Veterans Affairs (VA) Medical Center, as well as the 

greater Charleston, South Carolina community via advertisement to participate in a larger 

study investigating odor-elicited anxiety. To meet eligibility for this study, participants were 

required to 1) have served in a combat zone in Iraq or Afghanistan [Operation Enduring 

Freedom (OEF), Iraqi Freedom (OIF), or New Dawn (OND)]; 2) meet current (past month) 

or lifetime DSM-IV primary diagnosis of combat-related PTSD [assessed by the Clinician 

Administered PTSD Scale (CAPS)] (Blake et al., 1995), or have no history of any DSM-IV 

disorder including alcohol or other substance-use disorder [assessed by the Mini 

International Neuropsychiatric Interview (MINI)] (Sheehan et al., 1998); 3) have no history 

of self-reported head injury/trauma (e.g., blast exposure; given the association between head 

trauma and olfactory dysfunction); 4) be psychiatric medication-free; 5) be able to undergo 

an MRI exam (contraindications such as shrapnel injuries, pregnancy, and claustrophobia 

excluded); 6) be right handed; and 7) pass a urine drug screen (CLIAwaived ™, San Diego, 

CA). All study procedures were approved by the Institutional Review Board at the Medical 

University of South Carolina and the Research and Development (R&D) Committee at the 

Charleston VA. All participants provided informed consent prior to the start of any study 

procedures.

Three CV+PTSD were not included in the analyses. One participant had a large nasal polyp 

that was discovered during the MRI exam, while another was unable to tolerate the scan due 

to claustrophobia. The third participant was excluded due to a suspected head injury/

concussion. The final sample consisted of 20 CV+PTSD and 25 CV−PTSD.

Procedure

Odor sampling—Prior to the MRI exam, combat veterans systematically sampled and 

provided self-report ratings for a total of 4 odor cues. Odor intensity (i.e., “the odor was 

strong”) and negative valence (i.e., “the odor was unpleasant”), as well as baseline and odor-

elicited ratings along the 3 symptom clusters of PTSD including re-experiencing (i.e., “the 

odor triggered memories of my trauma”), avoidance and numbing (i.e., “the odor made me 

feel numb”), and hyperarousal (i.e., “the odor made me feel anxious”) were acquired on 

100mm visual analog scales (VAS) with anchor points of “not at all” to “extremely”. The 

odor cues (ScentAir™, Charlotte, NC) were selected based upon survey data collected in our 

laboratory (Cortese, Leslie, 2015) and included burning rubber (BR), a trauma-related 

“burning” odor cue; lavender (LAV), a relatively pleasant non-trauma-related control odor 

cue; cigarette smoke (SMK), a “burning” odor that was generally not identified as an odor 

related to combat experiences in our sample; and propylene glycol (PG) which served as the 

odorless control as well as the base oil for preparing the other odor cues. Similar to 

previously published methods, the odor cues were prepared and pilot tested for an average 

intensity rating of 50mm (Khan et al., 2007).
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All odor sampling studies were carried out in the MUSC Department of Psychiatry Sleep 

Laboratory, which provided a dimly-lit, climate-controlled, well-ventilated, video-/audio-

equipped testing room with an adjacent control/monitoring room. Each session, which lasted 

about 1 hour, was conducted using Superlab 4 (Cedrus Corp., San Pedro, CA) stimulus 

presentation software that delivered all pre-recorded odor-sampling instructions in order to 

ensure consistent testing across participants. The session began with baseline self-reports 

after which the first odor flask and VAS was delivered. The automated instructions for 

sampling the odor began shortly after the study assistant exited the room and directed 

participants to sniff the odor a total of 4 times on a 6-s breathing cycle (3-s inhale and 3-s 

exhale), providing a total of 12 seconds of odor inhalation. Once sampled, participants 

completed the odor VAS, the study assistant removed all items from the testing room, 10 

minutes of nature slides were presented, and the entire sequence of events was repeated for 

the next odor until all 4 odors were sampled. All odors were presented in a counterbalanced 

design to offset potential order effects.

VBM data acquisition—The MRI study was conducted within 1 week from odor 

sampling. The entire session, acquired on a 3 T Siemens (Erlangen, Germany) TIM Trio 

scanner equipped with a standard head coil, included a localizer scan, a high-resolution 

anatomical scan, 2 odor cue-reactivity functional scans, and a resting-state functional scan 

(functional imaging reports forthcoming). The high-resolution, T1-weighted structural 

images were acquired with a ~6-minute, magnetization-prepared rapid gradient-echo (MP-

RAGE) sequence. Image acquisition parameters were: repetition/echo time =2250/4 ms; flip 

angle =9°; matrix=256 × 256; voxel size=1.0 mm3, which yielded 176 contiguous, sagittal 

slices.

VBM data processing—Structural images were pre-processed using the VBM8 toolbox 

(dbm.neuro.uni-jena.de/vbm8) for SPM12 (www.fil.ion.ucl.ac.uk/spm). Data were 

preprocessed according to default toolbox settings: bias correction; tissue classification/

segmentation (Rajapakse et al., 1997); partial volume estimation (Tohka et al., 2004); 

denoising/filtering (Manjon et al., 2010, Rajapakse, Giedd, 1997); warping to the DARTEL 

IXI-550 template in Montreal Neurologic Institute (MNI) space; resampling to a 1.5 mm3 

voxel-size using high-dimensional affine and nonlinear transforms (Ashburner, 2007); 

voxelwise modulation by nonlinear transform components only (Ashburner and Friston, 

2001); and finally, smoothing of normalized gray matter (GM) tissue maps with a 6mm3 

FWHM Gaussian filter. First principle eigenvariates (i.e., weighted means) were extracted 

for each subject from a priori ROIs that were determined from an fMRI meta-analysis for 

the statistical localization of the human olfactory cortex (Seubert et al., 2013a). The regions 

included bilateral anterior piriform cortex (aPC), lateral amygdala (AMYG), head of the 

hippocampus (HPC), anterior insula (aINS), and orbitofrontal cortex (OFC). Each ROI was 

created in MARSBAR (marsbar.sourceforge.net) as a 5mm-radius sphere centered around 

the coordinates provided by Seubert and colleagues (Seubert, Freiherr, 2013a): bilateral aPC 

(±22, −2 −14), bilateral AMYG (±26, −6, −16), bilateral HPC (±24, −10, −24), bilateral 

aINS (±38, 14, −8), and bilateral OFC (−28, 34, −12; 26, 34 −12).
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Statistical analyses

Gray matter volume (GMV) in μL/voxel was calculated by multiplying mean voxel intensity 

value by voxel volume for each olfactory ROI (Radua et al., 2014), and was then exported, 

along with participant demographics, clinical variables, and odor ratings, into an IBM SPSS 

Statistics 22 data editor (www-01.ibm.com/software/analytics/spss/products/statistics/

index.html). Separate ANCOVA, with age as a covariate, was used to determine significant 

group differences in GMV for each olfactory ROI. Repeated-measures ANOVA was used to 

determine group (CV+PTSD versus CV−PTSD) differences in ratings of odor intensity and 

pleasantness, as well as ratings of odor-elicited changes in mood. Pearson’s correlation was 

utilized to demonstrate the relationship between participant characteristics, odor ratings, and 

gray matter volume within olfactory ROIs.

Results

Participant characteristics

The 20 combat veterans with PTSD (CV+PTSD) comprised 16 veterans that met DSM-IV 

criteria (APA, 1994) for current combat-related PTSD and 4 veterans that met current 

subclinical PTSD (i.e., met criterion A and 2/3 symptom clusters) and met diagnostic criteria 

for lifetime PTSD related to their combat experiences. Of the 20 CV+PTSD, 6 met 

diagnostic criteria for secondary depression, 3 had comorbid panic disorder and 1 had 

comorbid generalized anxiety disorder, but no other Axis I disorders. The 25 combat 

veterans without PTSD (CV−PTSD) had no history of any DSM-IV disorder. All 

participants, regardless of group, were psychiatric medication-free, right-handed, had no 

history of blast exposure/head injury, and did not abuse alcohol or other drugs (caffeine and 

cigarette use was permitted). Table 1 provides a summary of demographic and clinical 

variables, showing that the CV+PTSD and CV−PTSD were well-matched on age, sex, race, 

education, cigarette use and combat exposure (Keane et al., 1989), but were significantly 

different on CAPS total score.

Odor ratings

Repeated-measures ANOVA revealed a main effect of odor as well as a diagnosis by odor 

interaction for odor intensity [F(3,43)=58.7, p<.001; F(3,43)=2.91, p<.05, respectively] and 

odor unpleasantness [F(3,43)=47.9, p<.001; F(3,43)=3.32, p<.05, respectively]. Figure 1 

demonstrates that the CV+PTSD, compared to CV−PTSD, rated the “burning” odors (BR 

and SMK), but not the pleasant odor (LAV) or odorless control (PG), to have significantly 

greater intensity and unpleasantness. Figure 2 represents the findings for odor-elicited PTSD 

symptomatology. The assessment of odor-elicited re-experiencing revealed both a main 

effect of odor [F(3,43)=7.92, p<.001] and an odor by diagnosis interaction [F(3,43)=3.18, 

p<.05], indicating that CV+PTSD, but not the CV−PTSD, rated BR and SMK to elicit 

significantly more memories of trauma than LAV and PG. The assessment of odor-elicited 

avoidance revealed no main effect of odor or odor by diagnosis interaction (p>.1). And 

finally, the assessment of odor-elicited hyperarousal revealed a main effect of odor 

[F(3,43)=5.18, p<.01], but no diagnosis by odor interaction [F(3,43)=0.38, p=.77], indicating 

that the combined group of veterans rated BR (M=13.6, SD=20.5) and SMK (M=14.4, 
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SD=17.0) as more anxiety-inducing than either LAV (M=5.2, SD=13.6) or PG (M=8.8, 

SD=16.6).

Gray matter volume (GMV)

One-way ANCOVA, controlling for age, revealed that CV+PTSD, compared to CV−PTSD, 

had significantly less GMV in left aINS [CV+PTSD: M=2.59, SD=0.34; CV−PTSD: 

M=2.76, SD=0.27; F(1,42)=4.25, p<.05] and right aINS [CV+PTSD: M=3.29, SD=0.49; CV

−PTSD: M=3.52, SD=0.31; F(1,42)=4.73, p<.05], and less GMV in left AMYG that 

approached significance [CV+PTSD: M=3.06, SD=0.20; CV−PTSD: M=3.18, SD=0.22; 

F(1,42)=3.96, p=.053]. PTSD-related GMV reductions that remained significant after 

Bonferroni correction for multiple ROI comparisons were found in left aPC [F(1,42)=8.48, 

p<.01] and right OFC [F(1,42)=8.90, p<.01; Figure 3].

Relationship between olfactory GMV and demographic/clinical measures

Pearson’s correlations between regional GMV and demographic and clinical measures for 

the entire group of combat veterans are provided in Table 2. While regional (i.e., left and 

right anterior insula and right piriform cortex) decreases in GMV were related to advancing 

age (all p<.05), no relationship between GMV and education was revealed for any olfactory 

regions. Olfactory GMV was also not related to the degree of combat exposure, but was 

inversely related to PTSD symptomology in several regions (see Table 2 for specific 

details).

Relationship between olfactory GMV and burning rubber odor-elicited ratings

Pearson’s correlations between regional GMV and burning rubber odor-elicited ratings for 

the entire group of combat veterans (n=45) are provided in Table 3. There was no significant 

relationship between olfactory GMV and ratings of odor intensity or negative valence. 

However, GMV in bilateral aINS and OFC was inversely related to burning rubber odor-

elicited ratings of re-experiencing (“memories”), avoidance (“numb”), and hyperarousal 

(“anxiety”) (all p<.05). GMV in bilateral aPC was inversely related to burning rubber odor-

elicited ratings of re-experiencing (“memories”) as well (p<.05; see Table 3 for specific 

details and Figure 4 for scatter plots in CV+PTSD). In contrast, no significant relationships, 

nor any trends, were noted for regional GMV and lavender odor-elicited ratings of intensity, 

negative valence, re-experiencing (“memories”), avoidance (“numb”), and hyperarousal 

(“anxiety”) (all p>0.1).

Discussion

Our recent survey findings revealed a PTSD-related sensitivity to specific odors, with a 

significantly greater percentage of combat veterans with PTSD, compared to healthy combat 

veterans and civilians, reporting “burning” odors to be distressing (Cortese, Leslie, 2015). 

The present laboratory results are consistent with these and reveal that burning odors 

(burning rubber and smoke), but not lavender, were rated as more intense and unpleasant, as 

well as significantly more effective at eliciting memories of trauma in the combat veterans 

with PTSD compared to the healthy combat veterans. Moreover, burning rubber odor-
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elicited memories of trauma were inversely related to GMV in bilateral anterior piriform and 

orbitofrontal cortices.

With a direct connection to the olfactory bulb, anterior piriform cortex (i.e., primary 

olfactory cortex) is one of the first brain regions to process odor information (Price, 1990). 

Gray matter volume in piriform cortex is related to general olfactory function, with smaller 

volumes indicative of odor-detection deficits (Bitter et al., 2010, Peng et al., 2013, 

Wattendorf et al., 2009). While odor-detection deficits in PTSD would require additional 

study to confirm, preliminary work in our laboratory (Cortese, Leslie, 2014) revealed mild 

hyposmia in combat trauma-exposed veterans with and without PTSD. In our study, we 

reported significantly higher odor-detection thresholds in OEF/OIF/OND combat veterans, 

regardless of PTSD status, compared to published age norms (Pierce et al., 1996). These 

data, in addition to other findings of a self-reported reduction in general odor sensitivity in 

combat veterans (Cortese, Leslie, 2015), led us to question whether indigenous 

environmental factors and/or war-related chemical hazards in Iraq and Afghanistan (e.g., 

sand, dust, particulates, toxins released from burn pits, etc.) could cause irreversible damage 

to the olfactory system. Given that deployment-related insults to peripheral olfactory 

structures (e.g., olfactory mucosa/epithelium, receptors, and/or nerve damage due to 

environmental exposure) in OEF/OIF/OND military personnel could potentially produce 

atrophy of downstream olfactory targets, this specific hypothesis should be tested in future 

investigations. At this point however, we have no reason to believe that the combat veterans 

with PTSD had different environmental exposures than the healthy combat veterans in our 

study, given their similar deployment histories and combat experiences.

An alternative mechanism for our findings of significantly reduced GMV in primary (left 

anterior piriform) and secondary (right orbitofrontal) olfactory cortex in combat veterans 

with PTSD, compared to healthy combat veterans, relates to odor-triggered fear and anxiety 

and subsequent brain insult. It is well known that odors are effective retrieval cues for 

stressful events (Wiemers et al., 2013), and that odors trigger involuntary memories of 

traumatic events and precipitate trauma-related flashbacks (Kline and Rausch, 1985, 

Vermetten and Bremner, 2003). It is therefore reasonable to speculate that trauma odors may 

play a significant role in PTSD-related brain atrophy, and perhaps contribute to the 

particular damage of the olfactory cortex, which is known to be especially vulnerable to 

insult (Devanand, Michaels-Marston, 2000, Lerche, Seppi, 2014).

Situated on the ventral surface of the frontal lobe, the OFC is a relatively large and complex 

region thought to have numerous functional roles (Price, 2007, Rolls, 2004b) including, but 

not limited to, emotion regulation (Golkar et al., 2012, Kross et al., 2009), decision making 

(Fellows, 2007, Gourley et al., 2013), sensory integration (Rolls, 2004a), as well as a critical 

role in olfactory functioning (Gottfried, 2006). Like the piriform cortex, a positive 

relationship between gray matter volume in OFC and general olfactory performance has 

been reported (Seubert et al., 2013b). Many, but not all (Anderson et al., 2003), have also 

reported that the right OFC, in particular, is involved in odor learning as well as the affective 

evaluation of odors (Gottfried et al., 2002, Li et al., 2010). Consistent with a hypothesis of 

PTSD-related brain atrophy due to the chronic triggering of symptoms by a trauma-

associated odor, we found reduced gray matter volume in right OFC that was strongly 
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related to increased CAPS scores (total and symptom clusters), as well as laboratory ratings 

of burning rubber-elicited re-experiencing (i.e., memories of trauma), avoidance (i.e., 

numbing), and hyperarousal (i.e., anxiety). In fact, GMV in right OFC related to each of the 

clinical and odor-elicited measures of PTSD, while showing no relationship to odor intensity 

or negative valence ratings for burning rubber. These results are not surprising, given that 

odor-elicited activity in OFC is highly influenced by experience (Gottfried, 2007, Li et al., 

2006).

In the present study, a significant group difference in GMV of bilateral aINS did not survive 

correction for multiple comparisons. However, correlational results revealed a clear inverse 

relationship between GMV in aINS and burning rubber odor-elicited, as well as CAPS-

measured, PTSD symptomatology in the overall group. This finding is consistent with a 

prior report of an inverse relationship between posttraumatic symptom severity and GMV in 

anterior insula (Herringa et al., 2012), but extends it to an association with odor-elicited 

anxiety in particular. With direct connections between piriform cortex and anterior insula, as 

well as bidirectional connections via the mediodorsal nucleus of the thalamus (Ray and 

Price, 1992), the anterior insula has major roles in chemoreception (i.e. gustation and 

olfaction) and is consistently active during odor processing (Seubert, Freiherr, 2013a). 

Anterior insula has also been strongly implicated in interoceptive awareness and 

homeostatic regulation, as well as the processing of emotions (Craig, 2009, Critchley, 2005). 

Together, these diverse roles may allow the anterior insula to shape the emotional 

perceptions and bodily experience of odor-related cues.

While a major strength of this study includes a well-characterized group of non-medicated 

veteran participants with similar combat experiences, there are some limitations. Our 

findings should be considered preliminary, given group sizes that were comparatively small 

for VBM studies. However, while single case VBM studies are extremely susceptible to 

high false positive rates and thus should be avoided, a recent study revealed no significant 

impact of sample size (n=8, 12, and 16) on detecting false positive group differences 

(Scarpazza et al., 2015). We also did not include a comparison group of non-deployed 

veterans. Therefore, our methodology does not allow us to determine if healthy veterans also 

had combat-related, but less severe, reductions of GMV in olfactory cortex. A finding of 

olfactory GMV reductions in both veterans groups would lend support to speculation that 

unknown environmental toxins (e.g., volatile chemicals released from burn pits) in the 

combat zone, at least in part, may lead to brain atrophy of olfactory cortex. Another 

limitation relates to the retrospective design of the investigation. Through prospective 

testing of olfactory function and GMV assessment, we could examine whether baseline 

deficits in olfactory function, as well as pre-deployment reductions in olfactory GMV, are 

biomarkers for combat trauma-related PTSD.

A rich literature of imaging studies have endorsed PTSD-related differential patterns of 

brain function (Etkin and Wager, 2007, Fonzo et al., 2010, Hopper et al., 2007, Rauch et al., 

1996, Sartory et al., 2013, Shin et al., 2001, Sripada et al., 2012), as well as structure (Araki, 

Kasai, 2005, Herringa, Phillips, 2012, Kroes, Whalley, 2011, Lindauer, Vlieger, 2004, 

Thomaes, Dorrepaal, 2010, Villarreal, Hamilton, 2002, Yamasue, Kasai, 2003). Our results, 

therefore, replicate an established relationship between PTSD symptomatology and gray 
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matter volume in fear-, threat-, and anxiety-associated brain structures. We extend those 

findings by being the first to report, to our knowledge, on odor-elicited, PTSD-related gray 

matter volume changes in primary and secondary olfactory cortex.
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Highlights

Combat veterans commonly report odors associated with their traumatic experiences.

Volumetric imaging revealed insult of the olfactory cortex in combat-related PTSD.

Olfactory cortical atrophy was inversely related to odor-elicited PTSD symptoms.
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Figure 1. 
Figure 1 illustrates participant ratings of odor intensity and negative valence 

(unpleasantness) on 100mm visual analog scales. Combat veterans with PTSD (CV+PTSD) 

compared to combat controls (CV−PTSD) rated burning rubber (BR) and cigarette smoke 

(SMK), but not lavender (LAV) or the odorless control (PG), as significantly more intense 

and unpleasant. The dashed line represents the average odor intensity of LAV, BR, and 

SMK, acquired in healthy adult civilians during the formulation of odor cues. *=p<.05
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Figure 2. 
Figure 2 displays odor-elicited PTSD symptomatology, measured on 100mm visual analog 

scales, in combat veterans. Combat veterans with PTSD (CV+PTSD) compared to combat 

controls (CV−PTSD) rated burning rubber (BR) and cigarette smoke (SMK), but not 

lavender (LAV) or an odorless control (PG), as eliciting significantly more memories of 

trauma. *=p<.05
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Figure 3. 
Figure 3 demonstrates that combat veterans with PTSD (CV+PTSD) compared to combat 

controls (CV−PTSD) had significantly reduced GMV in primary and secondary olfactory 

cortex (i.e., left anterior piriform and right orbitofrontal). These differences remained 

significant after Bonferroni correction for multiple brain region comparisons. *=p<.01
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Figure 4. 
Figure 4 illustrates the inverse relationship between burning rubber (BR) odor-elicited 

reexperiencing (i.e. ratings for “the odor triggered memories of my trauma”) and gray matter 

volume (GMV) in bilateral anterior piriform (aPC) and orbitofrontal cortices (OFC) in 

combat veterans with PTSD (CV+PTSD; n=20).
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Table 1

Demographic and clinical characteristics of study participants

CV+PTSD (n=20) CV−PTSD (n=25) χ2 or t p

Sex - n (%) male 19 (95.0) 24 (96.0) 0.03 ns

Race - n (%) minority 6 (30.0) 3 (12.0) 2.76 ns

Smokers - n (%) regular users 7 (35.0) 4 (16.0) 4.67 ns

Employment - n (%) employed 12 (60.0) 15 (60.0) 0.23 ns

Age in years (mean ± SD) 30.5±8.6 30.6±7.1 0.00 ns

Education in years (mean ± SD) 14.4±1.1 14.8±2.3 0.50 ns

Combat Exposure (mean ± SD) 20.8±7.5 20.0±10.0 0.31 ns

CAPS total score (mean ± SD) 59.4±23.1 14.8±12.4 8.30 <.001

CV+PTSD = combat veteran with PTSD, CV−PTSD = combat veteran without PTSD

CAPS=Clinician Administered PTSD Scale

Combat Exposure Scale (Keane et al., 1989)
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