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Abstract A new series of 3-(4-substituted phenyl)-1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenyl-

sulfonyl)-1-substituted urea (5a–o) was synthesized by an effectual route via sulfonylcarbamates

and explores the novel site for substitution in sulfonylurea as well as the way of thiazine can be pre-

pared. The molecules were established by elemental analysis and spectroscopic viz. IR, 1H NMR,
13C NMR and MS techniques. All the fifteen derivatives were shown very prominent oral hypogly-

cemic effect at the dose of 40 mg/kg body weight (p.o.) in respect of standard drug glibenclamide

and control. The hypoglycemic effect was studied using oral glucose tolerance test in normal and

NIDDM in STZ-rat model. The compounds 5a, 5d, 5f, 5i, 5k and 5n were dominant out of fifteen

derivatives for blood glucose lowering activity (more than 80%) when comparing with NIDDM

control. These derivatives were either containing simply phenyl ring (5a, 5f and 5k) on to the second

amine of sulfonylurea (R0 =H) or nitro group at the para position in compound 5d, 5i and 5n

(R0 = NO2) to produce significant oral hypoglycemic effect. Other structural activity relationship

is also observed regarding the heteroaromatic and substituted aromatic group at R and R0 position

respectively.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Type 2 diabetes mellitus is the very common metabolic disease,
which is illustrated by the blemish of insulin secretion as well
as its sensitivity. Generally it is considered as sulfonylureas

exert the hypoglycemic effect through promoting the insulin
secretion from receptor of pancreatic b-cell (Kecskemeti
et al., 2002). However some reports have been published to

suggest that the sulfonylureas do not penetrate the b-cell of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsps.2014.11.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:alokthakur1985@yahoo.com
http://dx.doi.org/10.1016/j.jsps.2014.11.017
http://www.sciencedirect.com/science/journal/13190164
http://dx.doi.org/10.1016/j.jsps.2014.11.017
http://creativecommons.org/licenses/by-nc-nd/3.0/


476 A.S. Thakur et al.
pancreas which results the binding of this pharmacophore in
very specific sites of plasma membrane of b-cell (Flatt et al.,
1994). It may be due to lower lipophilicity or due to ionized

form of sulfonylureas. The second generation sulfonylurea is
so potent stimulator of insulin secretion shown a great success
for the treatment of type 2 diabetes, but due to exert hyperin-

sulinemia that causes the weight gain or hypoglycemia bears
hindrance on their success (Hamaguchi et al., 2004). Other
than hypoglycemic effect sulfonylurea are established for cyto-

toxicity (Jung et al., 1996), antimicrobial (Krajacić et al.,
2005), vasodilator (Khelili et al., 1995) and antitubercular
(Pan et al., 2012) all these consideration persuade the
researcher to develop an effective oral hypoglycemic sulfonyl-

urea derivative.
Sulfonylureas are generally undergone the chemical hydro-

lysis at ionizable hydrogen atom containing nitrogen which is

situated between sulfonyl and carbonyl groups. The ionization
leads the early cleavage of Sulfonylurea bridge, producing CO2

and the corresponding sulfonamide and amine (Zheng et al.,

2008). Although the second generation sulfonylurea glibencla-
mide have longer duration of action but accumulates progres-
sively in the b-cell (Kamp et al., 2003). The efficacy and

penetration of sulfonylureas can be enhanced by decreasing
the rate of ionizable metabolism. This article presents the
synthesis of some new trisubstituted sulfonylurea derivatives
containing substitution at ionizable nitrogen atom with some

aromatic and heteroaromatic groups.
The synthesis of compounds was initiated by the

preparation of unsubstituted phenyl ring containing thiazine
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Scheme 1 Reagents and reaction conditions: (i) Ammonium thiocy

dioxane, stirring at r.t., (iii) Pyridine, aniline (3a), p-nitro aniline (3

anhydrous K2CO3, dry acetone, reflux 18–20 h, (v) Substituted prima
heterocyclic compound (1). This compound was actually pre-
pared from the condensation of acetylacetone with the ammo-
nium thiocyanate and benzaldehyde under reflux. When it was

further reacted with chlorosulfonic acid at the room tempera-
ture by using dioxane it results sulfonyl chloride group at the
para position of the phenyl ring (2). Which on treatment with

the primary amines were produced different sulfonamides (3)

under mild acidic condition of acetic acid that further con-
verted to sulfonylcarbamates (4) after treatment with the ethyl

chloroformate in the presence of pyridine base. Finally the
hydrolysis of ethyl ester of sulfonylcarbamates with primary
amines results the different trisubstituted sulfonylurea deriva-
tives (5a–o) (Scheme 1, Table 1).
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2. Result and discussion

The targeted trisubstituted sulfonylurea derivatives were pre-
pared and confirmed by various spectroscopic and elemental

analyses. Mass spectra and NMR data were helpful to con-
clude the molecular formula and weight as well as the chemical
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anate, gla. CH3COOH, reflux 3–4 h, (ii) Chlorosulfonic acid, 1,4

b), 2-amino pyridine (3c), reflux 3–4 h, (iv) Ethyl chloroformate,

ry aromatic amines (R0NH2), toluene, reflux 3–4 h.



Table 1 List of substitutions for different derivatives.

Compounds R R0 M.p. (�C) Overall yield (%)

5a Phenyl H 224–226 80

5b Phenyl Cl 254–258 84

5c Phenyl OH 246–248 76

5d Phenyl NO2 241–245 79

5e Phenyl OCH3 252–253 68

5f Phenyl-4-NO2 H 254–255 79

5g Phenyl-4-NO2 Cl 257–259 76

5h Phenyl-4-NO2 OH 259–260 86

5i Phenyl-4-NO2 NO2 258–260 84

5j Phenyl-4-NO2 OCH3 248–250 75

5k Pyridin-2yl H 236–237 74

5l Pyridin-2yl Cl 238–240 82

5m Pyridin-2yl OH 258–259 72

5n Pyridin-2yl NO2 264–267 69

5o Pyridin-2yl OCH3 257–259 78
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condition of atoms in the structure along with the data from
the elemental analysis. The progress and completion of syn-

thetic reactions were evaluated by the TLC. FTIR spectra were
playing a crucial role in authenticating the presence functional
group in the target structure and confirmation for the conver-

sion of intermediates to next compound.
It can be seen into the FTIR spectra of compound 3a–c, the

presence of peak for the secondary amine group (ANHA),

were absent in the FTIR spectra of compound 4a–c, where
the amine was substituted with ethylformate. This substitution
made the amine to trisubstituted and the peak was become dis-
appear due to the absence of NAH stretching. Further support

for was made by the appearance of spectra for carbonyl group
which given a hint for the presence of ethyl ester. The forma-
tion of sulfonylurea from the sulfonylcarbamate was con-

firmed by the FTIR spectra of compound 5a–o, where peak
Table 2 Effect of sulfonylurea derivatives on blood glucose levels i

Compounds R/R0 Blood glucose leve

On fasting conditio

Control – 79.3 ± 3.4

Standard (Glibenclamide) – 78.7 ± 2.4

5a C6H5/H 76.5 ± 3.7

5b C6H5/Cl 72.3 ± 3.6

5c C6H5/OH 73.6 ± 5.6

5d C6H5/NO2 77.4 ± 3.1

5e C6H5/OCH3 74.3 ± 4.7

5f 4-NO2C6H4/H 78.5 ± 4.6

5g 4-NO2C6H4/Cl 76.3 ± 3.4

5h 4-NO2C6H4/OH 79.4 ± 5.4

5i 4-NO2C6H4/NO2 78.7 ± 3.8

5j 4-NO2C6H4/OCH3 77.2 ± 2.8

5k Pyridin-2yl/H 78.2 ± 2.7

5l Pyridin-2yl/Cl 74.7 ± 3.6

5m Pyridin-2yl/OH 76.4 ± 4.2

5n Pyridin-2yl/NO2 76.2 ± 2.8

5o Pyridin-2yl/OCH3 74.2 ± 4.8

Data are expressed as value of mean ± SEM, n= 6. The noninsulin dep

40 mg/kg body weight by i.p. injection.
for ANAHA stretching was appeared again in terms of second
amine group in sulfonylurea as it should be secondary amine.

The type II diabetes (NIDDM) was induced by streptozoto-

cin i.p. injection in rats successfully. The antidiabetic study was
evaluated for fifteen derivatives of trisubstituted sulfonylurea
(5a–o) by oral glucose tolerance (OGT) test and NIDDM rat

model. The glucose lowering effect of test compounds is pre-
sented in Table 2 and the oral glucose tolerance test results
are shown in the form of bar chart to compare the effects of

most active derivative (Fig. 1).
All test compounds were shown remarkable antidiabetic

effect at 100 mg/kg body weight (p.o.). Out of these fifteen
derivatives the compounds 5a, 5d, 5f, 5i, 5k and 5n were

reduced the highest percentage of blood glucose level in dia-
betic rats. In glucose fed normal rats these compounds reduced
the more than 80% of blood glucose as compared to control.

These active compounds either possessed simply phenyl
ring (5a, 5f and 5k) on to the second amine of sulfonylurea
(R0 = H) or nitro group at the para position in compound

5d, 5i and 5n (R0 = NO2) to produce significant blood glucose
lowering activity. The para methoxy (R0 = OCH3) derivatives
(5e, 5j, 5o) were given a little inferior activity compare to rest

of the test compounds. While the chloro and hydroxyl deriva-
tives were given considerable blood glucose lowering effect.
Out of these six most active derivative, the compound contain-
ing nitro substituted phenyl ring at both the amine groups of

sulfonylurea (5i) (R = R0 = NO2) is most effectively reduce
the blood glucose level in both OGT test and NIDDM induced
rats. The oral glucose tolerance test chart (Fig. 1) elucidates

the effect of most active derivative on normal rat’s blood glu-
cose level after glucose fed (2 g/kg b w p.o.) to assure the anti-
hyperglycemic effect. So the conclusion for the SAR study of

test compounds can be summarized as the tertiary nitrogen
group containing sulfonylurea is useful for the antidiabetic
drug development. The unsubstituted phenyl ring is favorable

for activity and the presence of electron withdrawing nitro
moiety in phenyl ring increase the activity very significantly.
n NIDDM induced rats.

l (mg/dl) in STZ rats Percent inhibition in the rise of blood

glucose level in STZ rats
n After 90 min of fed

116.2 ± 2.5 –

74.1 ± 4.8 112.4

82.3 ± 4.6 84.3

80.7 ± 2.9 77.3

80.2 ± 3.8 82.1

81.4 ± 2.4 89.2

83.9 ± 4.7 73.9

83.1 ± 5.1 87.5

82.4 ± 4.8 83.5

86.4 ± 4.7 77.8

82.0 ± 3.6 91.1

83.5 ± 5.1 83.0

83.2 ± 4.7 89.7

81.7 ± 4.5 81.0

83.9 ± 5.7 79.7

82.1 ± 5.3 84.0

82.3 ± 5.5 78.1

endent diabetes (NIDDM) was induced by streptozotocin (STZ) at



Figure 1 Comparative chart of oral glucose tolerance test result of active derivatives. *Data expressed as the lowering of blood glucose

level in mg/dl. n= 6, the normal rats were used for study at the dose of 2 g/kg body weight (p.o.) dose.
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3. Conclusion

From spectral and analytical data it can be easily concluded
that the preparation of trisubstituted sulfonylurea is achieved
successfully along with oral hypoglycemic activity. The struc-

tures suggested for synthesized compounds (5a–o) are well
established by spectroscopic data and elemental analysis bear-
ing thiazine containing trisubstituted sulfonylurea. All the syn-

thesized compounds are active for oral hypoglycemic activity.
Some of the compounds (5a, 5f and 5k) are showing strong glu-
cose lowering effect in all test animals. The application was

illustrated by the incorporation of various heterocyclic rings
in the sulfonylurea pharmacophore which explore more direct-
ing site for the substitution than the previous synthesized
sulfonylureas.

4. Experimental

All the chemicals used were procured from Qualigens, Fine

Chemicals, Mumbai and CDH (P) Ltd., New Delhi. Melting
point ranges of the newly synthesized compounds were deter-
mined by open capillary method and are uncorrected. Thin

layer chromatography using Silica gel G (E. Merck) plates
was used to assess the completion of reaction and purity of
synthesized compounds by using combination of acetonitrile

and carbontetrachloride (60:40) as mobile phase. Elemental
analysis was obtained for all the newly synthesized compounds
on Carlo Erba EA 1108 elemental analyzer. IR spectrum of

compounds in KBr pellets were recorded on a FTIR spectro-
photometer (JASCO) using KBr disk, 1H NMR spectra were
recorded in DMSO on a Bruker Advance (400 MHz) NMR
spectrophotometer using TMS as internal standard, 13C

NMR were recorded at 75 MHz by using DMSO-d6 and mass
spectra were taken by EIMS on SHIMADZU-2010 AT.

4.1. Procedure for synthesis of 4,6-dimethyl-2-phenyl-2H-1,3-
thiazine (1) Pattan et al., 2009

In a 250 ml round bottom flask a mixture of 0.05 mol acetyl-

acetone (5.0 g), 0.05 mol benzaldehyde (5.30 g) and 10 g of
ammonium thiocyanate was refluxed with 15 ml of glacial
acetic acid for 3–4 h using water condenser. The mixture was
left for 12–14 h at room temperature and filtered. To this mix-
ture around 200 ml of distilled water was added for precipita-

tion of compound and the filtrate was neutralized with weak
base hydroxide solution for further precipitation. Both the sol-
ids were combined and recrystallized from ethanol. Yield 89%
and m.p. 144–46oC.

4.2. Procedure for synthesis of 4-(4,6-dimethyl-6H-1,3-thiazin-

2-yl)benzene-1-sulfonyl chloride (2)

Two equimolar (25 mmol) solutions of chlorosulfonic acid and
compound 1 were prepared separately by using 25 ml of 1,4-
dioxane at room temperature. The exothermic solution of

chlorosulfonic acid was added into the second solution with
constant stirring to produce a homogenous solution. This solu-
tion was added into the crushed ice for precipitation of com-
pound. The solid was filtered and recrystallized from

ethanol. Yield 80% and m.p. 152–54 �C.

4.3. General procedure for synthesis of 4-(4,6-dimethyl-6H-1,3-
thiazin-2-yl)-N-substituted benzenesulfonamide (3a–c)

An equimolar mixture of compound 2 (20 mmol) and substi-
tuted primary amine was prepared in 20 ml of pyridine base

in a 250 ml round bottom flask and refluxed for 3–4 h. The
solution was cooled and added into the acidified water with
stirring to produce solid product which was filtered and recrys-

tallized with ethanol. Yield 75–80% and m.p. 142–146 �C.

4.3.1. 4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)-N-phenyl
benzenesulfonamide (3a)

IR vmax (KBr, in cm�1): 1432–44 (ArAC‚CA), 1193 (CAN),
2356 (CASAC), 1380–76 (CACH3), 1356 and 1174 (SO2N),
3282 (ANHA), 3086 (ArACAH); 1H NMR (300 MHz,

DMSO-d6, d): 5.60 (1H, d, CAH of thiazine), 3.46 (1H, m,
CHAS of thiazine), 1.53 (3H, d, CH3 of thiazine) 1.72 (3H,
s, CH3 of thiazine), 7.94–8.14 (4H, m, ArASO2), 4.04 (1H, s,
NH), 6.41-7.15 (5H, m, ArAN); 13C NMR (75 MHz,

DMSO-d6, d, ppm): 24.2 and 27.5 (CH3), 30.8 (CH3A CHAS
of thiazine), 120.1 (CH3ACHA CH3 of thiazine) 167.1
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(NACAS of thiazine), 142.4 (CASO2), 115.0–135.8 (C of Ar);
FAB-MS (m/z): 358 [M+].

4.3.2. 4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)-N-(4-
nitrophenyl)benzenesulfonamide (3b)

IR vmax (KBr, in cm�1): 1441–54 (ArAC‚CA), 1205 (CAN),
2346 (CASAC), 1378–82 (CACH3), 1352 and 1164 (SO2N),

3312 (ANHA), 3074 (ArACAH), 1536 and 1310 (ANO2),;
1H NMR (300 MHz, DMSO-d6, d): 5.46 (1H, d, CAH of
thiazine), 3.32 (1H, m, CHAS of thiazine), 1.68 (3H, d, CH3

of thiazine) 1.77 (3H, s, CH3 of thiazine), 7.93–8.14 (4H, m,
ArASO2), 4.12 (1H, s, NH), 6.34–7.19 (4H, d, ArAN); FAB-
MS (m/z): 403 [M+].

4.3.3. 4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)-N-(pyridine-2-
yl)benzenesulfonamide (3c)

IR vmax (KBr, in cm�1): 1431–52 (ArAC‚CA), 1225 (CAN),

2340 (CASAC), 1365–78 (CACH3), 1341 and 1159 (SO2N),
3346 (ANHA), 3092 (ArACAH); 1H NMR (300 MHz,
DMSO-d6, d): 5.46 (1H, d, CAH of thiazine), 3.43 (1H, m,

CHAS of thiazine), 1.47 (3H, d, CH3 of thiazine) 1.78 (3H,
s, CH3 of thiazine), 7.87–8.02 (4H, m, ArASO2), 4.03 (1H, s,
NH), 6.47–7.91 (4H, d, pyridin); FAB-MS (m/z): 359 [M+].

4.4. General procedure for the synthesis of ethyl 4-(4,6-dimethyl-

6H-1,3-thiazin-2-yl)phenylsulfonyl(substituted) carbamate
(4a–c) Rathish et al., 2009

The corresponding sulfonamide (3a–c) (20 mmol) was mixed
with the solution of ethyl chloroformate (26 mmol) and anhy-
drous potassium carbonate (3 g) in dry acetone (250–300 ml)

and was refluxed for 18–20 h. Acetone was removed by distil-
lation under reduced pressure. The solution was left overnight
and added in water (100–150 ml) and neutralized with acetic

acid. The solid product was filtered and washed with distilled
water. The product was dried and recrystallized from ethanol.
Yield 85–92% and m.p. 142–158 �C.

4.4.1. Ethyl 4-(4,6-dimethyl-6H-1,3-thiazin-2-
yl)phenylsulfonyl(phenyl)carbamate (4a)

IR vmax (KBr, in cm�1): 1440–46 (ArAC‚CA), 1190 (CAN),

2345 (CASAC), 1387–81(CACH3), 1351 and 1172 (SO2N),
1751 (AC‚O), 1274 and 1095 (ACAOA, str.), 3029
(ArACAH), 2980 (CAH, alkyl); 1H NMR (300 MHz,
DMSO-d6, d): 5.61 (1H, d, CAH of thiazine), 3.33 (1H, m,

CHAS of thiazine), 1.67 (3H, d, CH3 of thiazine) 1.86 (3H,
s, CH3 of thiazine), 1.42 (3H, t, CH3 of ethyl ester), 4.22
(2H, m, CH2 of ethyl ester), 7.81–8.03 (4H, m, ArASO2),

6.36–7.05 (5H, m, ArAN); 13C NMR (75 MHz, DMSO-d6,
d, ppm): 24.3 and 28.2 (CH3), 30.4 (CH3A CHAS of thiazine),
120.6 (CH3ACHA CH3 of thiazine) 167.7 (NACAS of thia-

zine), 142.4 (CASO2), 154.8 (C‚O), 14.4 (CH3 of ethyl),
58.2 (CH2 of ethyl) 121.2–129.4 (C of Ar); FAB-MS (m/z):
430 [M+].

4.4.2. Ethyl4-(4,6-dimethyl-6H-1,3-thiazin-2-
yl)phenylsulfonyl(4-itrophenyl)carbamate (4b)

IR vmax (KBr, in cm�1): 1432–36 (ArAC‚CA), 1178 (CAN),

2359 (CASAC), 1388–80(CACH3), 1360 and 1168 (SO2N),
1748 (AC‚O), 1287 and 1086 (ACAOA, str.), 3041
(ArACAH), 2907 (CAH, alkyl), 1536 and 1302 (ANO2);
1H

NMR (300 MHz, DMSO-d6, d): 5.59 (1H, d, CAH of thia-
zine), 3.57 (1H, m, CHAS of thiazine), 1.54 (3H, d, CH3 of thi-

azine) 1.78 (3H, s, CH3 of thiazine), 1.32 (3H, t, CH3 of ethyl
ester), 4.17 (2H, m, CH2 of ethyl ester), 7.95–8.14 (4H, m,
ArASO2), 7.72–7.86 (4H, m, ArAN); FAB-MS (m/z): 475

[M+].

4.4.3. Ethyl4-(4,6-dimethyl-6H-1,3-thiazin-2-

yl)phenylsulfonyl(4-methoxyphenyl)carbamate (4c)

IR vmax (KBr, in cm�1): 1443–47 (ArAC‚CA), 1165 (CAN),
2361 (CASAC), 1382–78 (CACH3), 1350 and 1161 (SO2N),
1695 (AC‚O), 1282 and 1092 (ACAOA, str.), 3029

(ArACAH), 2914 (CAH, alkyl), 1540 and 1311 (ANO2);
1H

NMR (300 MHz, DMSO-d6, d): 5.71 (1H, d, CAH of thia-
zine), 3.34 (1H, m, CHAS of thiazine), 1.56 (3H, d, CH3 of thi-

azine) 1.60 (3H, s, CH3 of thiazine), 1.34 (3H, t, CH3 of ethyl
ester), 4.20 (2H, m, CH2 of ethyl ester), 7.82–8.07 (4H, m,
ArASO2), 6.57–7.72 (4H, m, ArAN), 3.63 (1H, s, AOCH3);
FAB-MS (m/z): 460 [M+].

4.5. General procedure for the synthesis of 1-(4-(4,6-dimethyl-

6H-1,3-thiazin-2-yl)phenylsulfonyl)-3-substituted-1-
(substituted)urea (5a–o) Rathish et al., 2009

The specified carbamate derivative (4a–c) was dissolved in hot
toluene (30 ml). In the above solution the corresponding pri-

mary aromatic amine was added slowly and refluxed for 3–
4 h. On cooling the refluxed solution, precipitation of desired
product was occurred. After filtration solid was recrystallized

from toluene and methanol.

4.5.1. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
1,3-diphenylurea (5a)

IR vmax (KBr, in cm�1): 1178 (CAN), 2355 (CASAC), 1349
and 1180 (SO2N), 1697 (AC‚O), 3029 (ArACAH), 3346
(ANHA); 1H NMR (300 MHz, DMSO-d6, d): 5.68 (1H, d,

CAH of thiazine), 3.31 (1H, m, CHAS of thiazine), 1.55
(3H, d, CH3 of thiazine) 1.73 (3H, s, CH3 of thiazine),
7.87–8.02 (4H, m, ArASO2), 7.01–7.70 (10H, m, Ar), 6.02
(1H, s, ANHA of ureido); 13C NMR (75 MHz, DMSO-d6,

d, ppm): 24.1 and 28.7 (CH3), 30.8 (CH of thiazine), 168.1
(NACAS of thiazine), 141.9 (CASO2), 154.3 (AC‚O),
121.0–129.8 (C of Ar); FAB-MS (m/z): 477 [M+]; Anal.

Calcd for C25H23N3O3S2: C, 62.87; H, 4.85; N, 8.80; O,
10.05; S, 13.43 Found: C, 62.82; H, 4.89; N, 8.75; O, 10.06,
S, 13.37.

4.5.2. 3-(4-chlorophenyl)-1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-
yl)phenylsulfonyl)-1-phenylurea (5b)

IR vmax (KBr, in cm�1): 1159 (CAN), 2358 (CASAC), 1356

and 1191 (SO2N), 1707 (AC‚O), 3020 (ArACAH), 3341
(ANHA), 745 (CACl); 1H NMR (300 MHz, DMSO-d6, d):
5.61 (1H, d, CAH of thiazine), 3.35 (1H, m, CHAS of thia-

zine), 1.54 (3H, d, CH3 of thiazine) 1.74 (3H, s, CH3 of thia-
zine), 7.78–8.01 (4H, m, ArASO2) 7.0–7.65 (9H, m, Ar), 6.07
(1H, s, ANHA of ureido); FAB-MS (m/z): 511 [M+]; Anal.
Calcd for C25H22ClN3O3S2: C, 58.64; H, 4.33; N, 8.21; O,

9.37; S, 12.52. Found: C, 58.58; H, 4.37; N, 8.18; O, 9.32; S,
12.56.
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4.5.3. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-

3-(4-hydroxyphenyl)-1-phenylurea (5c)

IR vmax (KBr, in cm�1): 1152 (CAN), 2343 (CASAC), 1341
and 1175 (SO2N), 1710 (AC‚O), 3021 (ArACAH), 3324
(ANHA), 3421 (AOH); 1H NMR (300 MHz, DMSO-d6, d):
5.62 (1H, d, CAH of thiazine), 3.33 (1H, m, CHAS of
thiazine), 1.57 (3H, d, CH3 of thiazine) 1.74 (3H, s, CH3 of
thiazine), 7.87–8.00 (4H, m, ArASO2) 7.03–7.74 (9H, m, Ar),

6.05 (1H, s, ANHA of ureido), 5.01 (AOH); FAB-MS (m/z):
493 [M+]. Anal. Calcd for C25H23N3O4S2: C, 60.83; H, 4.70;
N, 8.51; O, 12.97; S, 12.99. Found: C, 60.78; H, 4.72; N,
8.54; O, 12.90; S, 12.94.

4.5.4. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-nitrophenyl)-1-phenylurea (5d)

IR vmax (KBr, in cm�1): 1141 (CAN), 2334 (CASAC), 1344
and 1187 (SO2N), 1707 (AC‚O), 3028 (ArACAH), 3332
(ANHA), 1537 and 1334 (CANO2);

1H NMR (300 MHz,
DMSO-d6, d): 5.60 (1H, d, CAH of thiazine), 3.30 (1H, m,

CHAS of thiazine), 1.52 (3H, d, CH3 of thiazine) 1.70 (3H,
s, CH3 of thiazine), 7.90–8.03 (4H, m, ArASO2) 7.00–7.71
(9H, m, Ar), 6.03 (1H, s, ANHA of ureido); FAB-MS (m/z):

522 [M+]. Anal. Calcd for C25H22N4O5S2: C, 57.46; H, 4.24;
N, 10.72; O, 15.31, S, 12.27. Found: 57.46; H, 4.24; N,
10.72; O, 15.31, S, 12.27.

4.5.5. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-methoxyphenyl)-1-phenylurea (5e)

IR vmax (KBr, in cm�1): 1147 (CAN), 2340 (CASAC), 1347

and 1176 (SO2N), 1687 (AC‚O), 3031 (ArACAH), 3346
(ANHA); 1H NMR (300 MHz, DMSO-d6, d): 5.70 (1H, d,
CAH of thiazine), 3.34 (1H, m, CHAS of thiazine), 1.56

(3H, d, CH3 of thiazine) 1.78 (3H, s, CH3 of thiazine), 7.86–
8.00 (4H, m, ArASO2), 7.12–7.76 (9H, m, Ar), 6.08 (1H, s,
ANHA of ureido), 5.01 (3H, s, AOCH3); FAB-MS (m/z):
507 [M+]; Anal. Calcd for C26H25N3O4S2: C, 61.52; H, 4.96;

N, 8.28; O, 12.61, S, 12.63. Found: C, 61.57; H, 4.90; N,
8.21; O, 12.67, S, 12.62.

4.5.6. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
1-(4-nitrophenyl)-3-phenylurea (5f)

IR vmax (KBr, in cm�1): 1148 (CAN), 2312 (CASAC), 1336
and 1128 (SO2N), 1706 (AC‚O), 3029 (ArACAH), 3403

(ANHA), 1547 and 1348 (CANO2);
1H NMR (300 MHz,

DMSO-d6, d): 5.72 (1H, d, CAH of thiazine), 3.29 (1H, m,
CHAS of thiazine), 1.55 (3H, d, CH3 of thiazine) 1.72 (3H,

s, CH3 of thiazine), 7.91–8.18 (8H, m, ArASO2 and ArANO2),
7.04–7.61 (5H, m, Ar), 6.12 (1H, s, ANHA of ureido); FAB-
MS (m/z): 522 [M+]; Anal. Calcd for C25H22N4O5S2: C,

57.46; H, 4.24; N, 10.72; O, 15.31; S, 12.27. Found: C, 57.41;
H, 4.19; N, 10.78; O, 15.24; S, 12.21.

4.5.7. 3-(4-chlorophenyl)-1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-
yl)phenylsulfonyl)-1-(4-nitrophenyl) urea (5g)

IR vmax (KBr, in cm�1): 1154 (CAN), 2321 (CASAC), 1331
and 1135 (SO2N), 1710 (AC‚O), 3018 (ArACAH), 3308

(ANHA), 1539 and 1352 (CANO2), 754 (CACl); 1H NMR
(300 MHz, DMSO-d6, d): 5.75 (1H, d, CAH of thiazine),
3.31 (1H, m, CHAS of thiazine), 1.62 (3H, d, CH3 of thiazine)
1.69 (3H, s, CH3 of thiazine), 7.84–8.14 (8H, m, ArASO2 and
ArANO2), 7.25–7.51 (4H, m, Ar), 6.08 (1H, s, ANHA of ure-
ido); FAB-MS (m/z): 556 [M+]; Anal. Calcd for C25H21ClN4-

O5S2: C, 53.90; H, 3.80; N, 10.06; O, 14.36; S, 11.51. Found: C,
53.92; H, 3.87; N, 10.09; O, 14.28; S, 11.

4.5.8. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-hydroxyphenyl)-1-(4- nitrophenyl)urea (5h)

IR vmax (KBr, in cm�1): 1148 (CAN), 2321 (CASAC), 1339
and 1141 (SO2N), 1697 (AC‚O), 3010 (ArACAH), 3315

(ANHA), 1542 and 1357 (CANO2), 3414 (CAOH); 1H
NMR (300 MHz, DMSO-d6, d): 5.64 (1H, d, CAH of thia-
zine), 3.27 (1H, m, CHAS of thiazine), 1.58 (3H, d, CH3 of thi-

azine) 1.74 (3H, s, CH3 of thiazine), 7.93–8.18 (8H, m,
ArASO2 and ArANO2), 6.14–7.32 (4H, m, Ar), 6.04 (1H, s,
ANHA of ureido), 5.02 (1H, s, OH); FAB-MS (m/z): 538

[M+]; Anal. Calcd for C25H22N4O6S2: C, 52.75; H, 3.73; N,
12.34; O, 19.73; S, 11.30. Found: C, 52.71; H, 3.64; N, 12.27;
O, 19.76; S, 11.36.

4.5.9. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
1,3-bis(4-nitrophenylurea) (5i)

IR vmax (KBr, in cm�1): 1142 (CAN), 2324 (CASAC), 1336

and 1151 (SO2N), 1687 (AC‚O), 3021 (ArACAH), 3325
(ANHA), 1547 and 1346 (CANO2);

1H NMR (300 MHz,
DMSO-d6, d): 5.68 (1H, d, CAH of thiazine), 3.30 (1H, m,
CHAS of thiazine), 1.61 (3H, d, CH3 of thiazine) 1.78 (3H,

s, CH3 of thiazine), 7.91–8.08 (12H, m, ArASO2 and
ArANO2), 6.09 (1H, s, ANHA of ureido); FAB-MS (m/z):
567 [M+]; Anal. Calcd for C25H21N4O7S2: C, 55.75; H, 4.12;

N, 10.40; O, 17.82; S, 11.91. Found: C, 55.70; H, 4.09; N,
10.34; O, 17.87; S, 11.85.

4.5.10. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-methoxyphenyl)-1- (4-nitrophenyl)urea (5j)

IR vmax (KBr, in cm�1): 1151 (CAN), 2331 (CASAC), 1332
and 1148 (SO2N), 1701 (AC‚O), 3030 (ArACAH), 3321

(ANHA), 1546 and 1339 (CANO2);
1H NMR (300 MHz,

DMSO-d6, d): 5.59 (1H, d, CAH of thiazine), 3.27 (1H, m,
CHAS of thiazine), 1.63 (3H, d, CH3 of thiazine) 1.75 (3H,

s, CH3 of thiazine), 7.90–8.12 (8H, m, ArASO2 and
ArANO2), 6.32–7.50 (4H, m, Ar), 6.02 (1H, s, ANHA of ure-
ido), 3.35 (3H, s, AOCH3); FAB-MS (m/z): 552 [M+]; Anal.
Calcd for C26H24N4O6S2: C, 56.51; H, 4.38; N, 10.14; O,

17.37; S, 11.60. Found: C, 56.53; H, 4.32; N, 10.17; O,
17.32; S, 11.57.

4.5.11. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-phenyl-1-(pyridin-2-yl) urea (5k)

IR vmax (KBr, in cm�1): 1146 (CAN), 2341 (CASAC), 1328
and 1124 (SO2N), 1712 (AC‚O), 3027 (ArACAH), 3326

(ANHA); 1H NMR (300 MHz, DMSO-d6, d): 5.67 (1H, d,
CAH of thiazine), 3.34 (1H, m, CHAS of thiazine), 1.72
(3H, d, CH3 of thiazine) 1.55 (3H, s, CH3 of thiazine),

7.87–8.02 (9H, m, Ar), 6.62–8.10 (4H, m of pyridine), 6.05
(1H, s, ANHA of ureido); FAB-MS (m/z): 478 [M+]; Anal.
Calcd for C24H22N4O3S2: C, 60.23; H, 4.63; N, 11.71; O,

10.03; S, 13.40. Found: C, 60.18; H, 4.65; N, 11.68; O,
10.07; S, 13.44.
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4.5.12. 3-(4-chlorophenyl)-1-(4-(4,6-dimethyl-6H-1,3-thiazin-

2-yl)phenylsulfonyl)-1-(pyridin-2-yl) urea (5l)

IR vmax (KBr, in cm�1): 1149 (CAN), 2354 (CASAC), 1322
and 1131 (SO2N), 1707 (AC‚O), 3022 (ArACAH), 3314
(ANHA), 1528 and 1329 (CANO2);

1H NMR (300 MHz,

DMSO-d6, d): 5.76 (1H, d, CAH of thiazine), 3.32 (1H, m,
CHAS of thiazine), 1.68 (3H, d, CH3 of thiazine) 1.51 (3H,
s, CH3 of thiazine), 7.87–8.02 (8H, m, Ar), 6.62–8.10 (4H, m

of pyridine), 6.05 (1H, s, ANHA of ureido); FAB-MS (m/z):
512 [M+]; Anal. Calcd for C24H21ClN4O3S2: C, 56.19; H,
4.13; N, 10.92; O, 9.36; S, 12.50. Found: C, 56.15; H, 4.11;
N, 10.88; O, 9.31; S, 12.45.

4.5.13. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-hydroxyphenyl)-1-(pyridin-2-yl)urea (5m)

IR vmax (KBr, in cm�1): 1142 (CAN), 2337 (CASAC), 1327
and 1126 (SO2N), 1713 (AC‚O), 3027 (ArACAH), 3323
(ANHA), 3420 (CAOH); 1H NMR (300 MHz, DMSO-d6,
d): 5.70 (1H, d, CAH of thiazine), 3.33 (1H, m, CHAS of thi-

azine), 1.71 (3H, d, CH3 of thiazine) 1.53 (3H, s, CH3 of thia-
zine), 6.87–8.02 (8H, m, Ar), 6.66–8.17 (4H, m of pyridine),
6.01 (1H, s, ANHA of ureido), 5.02 (1H, s, AOH); FAB-MS

(m/z): 494 [M+]; Anal. Calcd for C24H22N4O4S2: C, 58.28;
H, 4.48; N, 11.33; O, 12.94; S, 12.97. Found: C, 58.22; H,
4.43; N, 11.26; O, 12.90; S, 12.94.

4.5.14. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-nitrophenyl)-1-(pyridin-2-yl)urea (5n)

IR vmax (KBr, in cm�1): 1147 (CAN), 2324 (CASAC), 1322

and 1124 (SO2N), 1709 (AC‚O), 3025 (ArACAH), 3319
(ANHA), 1537 and 1347 (CANO2);

1H NMR (300 MHz,
DMSO-d6, d): 5.73 (1H, d, CAH of thiazine), 3.30 (1H, m,

CHAS of thiazine), 1.69 (3H, d, CH3 of thiazine) 1.52 (3H,
s, CH3 of thiazine), 7.87–8.12 (8H, m, Ar), 6.68–8.08 (4H, m
of pyridine), 6.05 (1H, s, ANHA of ureido); FAB-MS (m/z):
523 [M+]; Anal. Calcd for C24H21N5O5S2: C, 55.05; H, 4.04;

N, 13.38; O, 15.28; S, 12.25. Found: C, 55.09; H, 4.08; N,
13.31; O, 15.22; S, 12.21.

4.5.15. 1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-
3-(4-methoxyphenyl)-1-(pyridin-2-yl)urea (5o)

IR vmax (KBr, in cm�1): 1140 (CAN), 2337 (CASAC), 1335
and 1131 (SO2N), 1702 (AC‚O), 3034 (ArACAH), 3329

(ANHA); 1H NMR (300 MHz, DMSO-d6, d): 5.70 (1H, d,
CAH of thiazine), 3.32 (1H, m, CHAS of thiazine), 1.72
(3H, d, CH3 of thiazine) 1.49 (3H, s, CH3 of thiazine), 6.77–

8.03 (8H, m, Ar), 6.88–8.13 (4H, m of pyridine), 6.02 (1H, s,
ANHA of ureido), 3.71 (3H, s, of OCH3); FAB-MS (m/z):
508 [M+]; Anal. Calcd for C25H24N4O4S2: C, 59.04; H, 4.76;

N, 11.02; O, 12.58; S, 12.61. Found: C, 59.10; H, 4.72; N,
11.07; O, 12.51; S, 12.54.

4.6. Blood glucose lowering studies

In the present study effects of oral administration of synthe-
sized trisubstituted sulfonylurea compounds on glucose toler-
ance in normal and streptozotocin induced type II diabetic

(NIDDM) rats have been investigated. The animal study was
performed under the supervision of expert following all the
guidelines of CPCSEA in the approved laboratory (Reg no.
1171/c/08/CPCSEA) under the controlled condition with the
proposal no. 35/14/IAEC/SPS/SOA.

4.6.1. Study of streptozotocin induced non-insulin dependent
diabetes mellitus (NIDDM) in rats

Healthy adult wistar rats (160–200 g) were housed in standard
conditions and fasted overnight. To induce acute NIDDM,

streptozotocin (STZ) 40 mg/kg body weight was freshly dis-
solved in citrate buffer solution (pH 4.5) was administered
intraperitoneally. The rats were kept separately with food

and water ad libitum. The blood glucose level was checked
for fasting glucose levels. When the animals showing fasting
glucose levels > 140 mg/dl and 200 mg/dl 2 h after the normal

fed.
Diabetes induced rats were classified into groups of six ani-

mals each. Group I was fed with the control vehicle (1% tween

20 in distilled water) in a volume of 10 ml/kg. The reference
drug glibenclamide (20 mg/kg) and synthesized compounds
(5a–o) in the dose of 100 mg/kg suspended in vehicle were
administered per oral in volume of 10 ml/kg to respective

groups. The rats were fed with their normal diet after
15 min. of dosing. The blood was collected by retro orbital
prexus technique just prior to and 90 min after the normal

fed loading then serum was separated. The Blood glucose
changes were measured in blood serum by semiauto biochem-
ical analyzer (Erba Mannheim chem 5·) using glucose oxidase

peroxidase (GOD/POD) kit of erba Mannheim.

4.6.2. Oral glucose tolerance (OGT) test in normal rats

Standard experimental procedure was followed for the OGT

test; normal rats were used for the experiment. In short, the
base line blood glucose level was measured. The respective
groups of rats were administered the respective compounds

(i.e. control, standard and test compounds) in specified dose
used in previous procedure of induced NIDDM. All the ani-
mals were given glucose (2 g/kg p.o.) 15 min after dosing.
Blood samples were collected prior to and after 0, 30, 60, 90,

120 min. of the glucose loading then the glucose levels were
measured by semi-auto biochemical analyzer.

Data of antidiabetic study were presented in the form of

±SEM and percent reduction in blood glucose level by test
drug. The percent reduction was calculated by taking differ-
ence of blood glucose levels of animals at fasting and at

90 min. after fed of derivatives and comparing it with the data
of control at 90 min. after fed. 0% reduction indicates there is
no reduction in the level of blood sugar.
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