
Abstract
Vitamin A and its derivatives, retinoids, have been 
widely studied for their use as cancer chemotherapeutic 
agents. With respect to colorectal cancer (CRC), several 
critical mutations dysregulate pathways implicated in 
progression and metastasis, resulting in aberrant Wnt/
β-catenin signaling, gain-of-function mutations in K-ras 
and phosphatidylinositol-3-kinase/Akt, cyclooxygenase-2 
over-expression, reduction of peroxisome proliferator-
activated receptor γ activation, and loss of p53 function. 
Dysregulation leads to increased cellular proliferation 
and invasion and decreased cell-cell interaction and 
differentiation. Retinoids affect these pathways by 
various mechanisms, many involving retinoic acid 
receptors (RAR). RAR bind to all -trans -retinoic acid 
(ATRA) to induce the transcription of genes responsible 
for cellular differentiation. Although most research 
concerning the chemotherapeutic efficacy of retinoids 
focuses on the ability of ATRA to decrease cancer 
cell proliferation, increase differentiation, or promote 
apoptosis; as CRC progresses, RAR expression is often 
lost, rendering treatment of CRCs with ATRA ineffective. 
Our laboratory focuses on the ability of dietary vitamin 
A to decrease CRC cell proliferation and invasion via  
RAR-independent pathways. This review discusses our 
research and others concerning the ability of retinoids 
to ameliorate the defective signaling pathways listed 
above and decrease tumor cell proliferation and invasion 
through both RAR-dependent and RAR-independent 
mechanisms.
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Core tip: Vitamin A and its derivatives, the retinoids, 
have been widely studied in many types of cancer for 
their ability to increase cell differentiation and decrease 
cell proliferation. This review focuses on the ability 
of retinoids to affect signaling pathways commonly 
disrupted in colorectal cancer. We discuss vitamin A 
metabolism and signaling, how this process becomes 
aberrant as colorectal cancer progresses, and how 
treatment with both dietary vitamin A and exogenous 
retinoids can alter these dysregulated signaling 
pathways to decrease colorectal cancer cell proliferation 
and invasion. 
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INTRODUCTION
Colorectal cancer (CRC) is the third most commonly 
diagnosed cancer in men and the second most com­
monly diagnosed cancer in women worldwide[1,2]. An 
estimated 1.2 million cases occurred worldwide in 2008, 
with the highest incidence rates occurring in developed 
countries including North America, Australia, New 
Zealand, Japan and Europe[1]. Global trends reflect an 
overall increase in the incidence of CRC, with the highest 
increases observed throughout Asia and Europe[1]. 
About 608700 deaths occurred as a result of CRC in 
2008, accounting for 8% of all cancer-related deaths 
worldwide[1]. Approximately 50% of those patients 
diagnosed with CRC will experience metastasis to the 
liver, which is the primary site of CRC metastasis[3]. Risk 
factors for CRC are both genetic and environmental. 
A personal or family history of CRC and a personal 
history of chronic inflammatory bowel disease increase 
the risk for CRC[4]. Physical inactivity, obesity, smoking, 
and dietary patterns such as high red and processed 
meat consumption as well as moderate-to-heavy 
alcohol use also increase the risk for CRC[4]. Retinoids 
have long been studied for their effects on organismal 
development and cellular differentiation, particularly 
with respect to cancer. Retinoids are currently used 
as chemotherapies against cancers of epithelial 
origin, including basal and squamous cell carcinomas. 
Furthermore, retinoids (whose metabolism is shown 
in Figure 1) are known to affect signaling pathways 
frequently altered which result in the development and 
progression of CRC (Figure 2 and Table 1). CRC is highly 
influenced by diet, therefore it stands to reason that 
direct contact with retinoids from supplemented diets or 
exogenous retinoids administered as medication may 
have chemotherapeutic effects on CRC tumors. 

VITAMIN A METABOLISM
Vitamin A (retinol) and its derivatives, the retinoids, are 
a group of fat-soluble compounds composed of a similar 
structure in which a hydrophobic β-ionone ring is joined 
to a hydrophilic polar moiety by a conjugated tetraene 
linear chain[5]. Retinol is also able to be synthesized 
from some types of fat-soluble, antioxidant carotenoids 
found in fruits and vegetables. While there are several 
different carotenoid molecules found in plants, only 
β-carotene, α-carotene, and β-cryptoxanthin have 
provitamin A activity[6,7]. In the diet, these carotenoids 
are consumed primarily through carrots, cantaloupes, 
sweet potatoes, and spinach[6]. Theoretically, cleaving 
the β-carotene molecule would yield two retinal 
molecules, each with a β-ionone ring, which can then 
be converted to two retinol molecules for cellular use[6]. 
However, this conversion occurs at a much lower rate 
in vivo, with the retinol activity equivalent of β-carotene 
being much lower than a 1:2 ratio of β-carotene:
retinol[6]. Both α-carotene and β-cryptoxanthin only 
contain one β-ionone ring each and thus have about 
50% of the provitamin A activity of β-carotene[6]. 

Retinol is derived from retinyl esters found in 
animal sources such as butter, eggs, and meats[8,9]. 
During digestion in the intestinal lumen, the long-
chain fatty acids are cleaved from the retinyl esters via 
hydrolysis, yielding free retinol[10]. The free retinol is 
then absorbed into the mucosal cells where it is bound 
by cellular retinol binding protein-II (CRBP-II), which 
facilitates the re-esterification of retinol by lethicin 
retinol acyltransferase (LRAT)[10]. Once re-esterified with 
long-chain fatty acids such as palmitate, the resulting 
retinyl esters are incorporated into chylomicrons and 
secreted into the lymphatic circulation[10]. After draining 
into the general circulation and transferring their lipid 
contents into peripheral cells, the remaining chylomicron 
remnants containing the retinyl esters are taken up 
by hepatocytes[5]. Depending on bodily needs, the 
liver either stores the retinyl esters in stellate cells 
or hydrolyzes the retinyl esters to once again yield 
free retinol, which binds to retinol binding protein 
(RBP)[5]. The resulting RBP-retinol complex is released 
into circulation, where it binds to a small protein, 
transthyretin (TTR), which prevents the retinol from 
being excreted by the kidneys[5]. This RBP-retinol-
TTR complex circulates in the plasma, until retinol 
dissociates from the protein complex to enter target 
cells[11]. The transport of retinol into the cell and its 
intracellular fate is shown in Figure 1. Because retinol 
is lipophilic, the molecule can freely diffuse through 
the plasma membrane of cells[11]. In some cells or 
during vitamin A deficiency, retinol may be taken up 
by cells through the RBP receptor, STRA6 (stimulated 
by retinoic acid 6’)[5,11,12]. Cellular uptake of retinol via 
STRA6 is highly preserved in ocular cells, in which the 
loss of STRA6 leads to visual impairments[13]. However, 
in STRA6-null mice, retinoid homeostasis was only 
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moderately affected, with physiological functions that 
critically depend on all-trans-retinoic acid (ATRA) in 
both the adult and embryo remaining intact[14]. This 
indicates that while the receptor functions to assist cells 
in taking up retinol, STRA6 is not necessary to sustain 
normal function in cells other than those in the eyes. 
After diffusion into cells, the internalized free retinol 
is bound to CRBP or is oxidized to retinal by retinol 
dehydrogenases (RDH) or alcohol dehydrogenases 
(ADH) and then to ATRA by retinaldehyde dehydro­
genases (RALDH)[5]. ATRA then binds to cellular retinoic 
acid binding proteins (CRABPs)[5]. CRABP-II shuttles 
ATRA to the nucleus of the cell, where ATRA serves as a 
ligand for retinoic acid receptors (RAR).

The RAR and retinoid X receptors (RXR) belong 
to the nuclear hormone receptor superfamily and are 
ligand-dependent transcription factors[15]. Each receptor 
occurs in three subtypes: RARα, -β, and -γ; and RXRα, 
-β, and -γ. Further, seven different splice variants of 
RARα (RARα1-7), four different splice variants of RARβ 
(RARβ1-4), and seven different splice variants of RARγ 
(RARγ1-7) have been identified[16]. Two different splice 
variants of each RXR subtype have also been identified 

that RXRα1 and 2, RXRβ1 and 2, and RXRγ1 and 2[17]. 
ATRA binds to and activates all subtypes of RAR with a 
high affinity[15,17]. While the only known retinoid ligand 
for RXR is 9-cis-RA, there has been a general inability to 
detect this retinoid isomer in vivo[18,19]. Recently, 9-cis-
RA was detected in pancreatic tissue, but the ability 
of 9-cis-RA to act as a ligand for RXR in cells other 
than pancreatic cells remains controversial[20]. In the 
absence of ATRA, the RAR/RXR heterodimer binds to RA 
response elements (RARE) present on DNA promoter 
regions of ATRA-target genes[21]. The RAR/RXR complex 
recruits co-repressor proteins, which in turn recruit 
histone deacetylases (HDAC) to the DNA region[21]. 
HDAC remove acetyl groups from histone proteins, 
changing the chromatin structure and negatively regula­
ting gene transcription[21]. By the binding of ATRA, RAR 
undergoes a conformational change to release inhibitory 
co-repressor proteins and recruit co-activator proteins, 
such as histone acetyl transferases, to enhance trans­
criptional activity[22]. The vast majority of research 
regarding the ability of retinoids to prevent cancer 
progression has focused on ATRA and RAR-mediated 
phenomena. However, as discussed below, cells become 
resistant to the effects of ATRA on cellular proliferation 
and differentiation as tumors progress[8,15]. To this end, 
our laboratory has shown that retinol has non-genomic 
effects, exclusive of ATRA, such as interference with 
pathways involving phosphatidylinositol 3-kinase (PI3K) 
and β-catenin, which play key roles in the progression 
of cancer[23-29].

ABBERANT VITAMIN A SIGNALING AND 
METABOLISM IN COLORECTAL CANCER
The luminal side of the colon is an epithelial layer 
of tissue which is composed of a single sheet of 
columnar epithelial cells which are folded into finger-
like invaginations that are supported by the lamina propria 
to form a functional unit called a Lieberkuhn’s crypt[30]. 
Different types of epithelial cells line the crypt, including 
epithelial colonocytes, goblet cells, and endocrine 
cells[31]. The cells at the bottom of the crypt are stem 
cells that differentiate into the various epithelial cell 
types as they move upward to the top of the crypt in a 
process known as “upward migration”[31]. As the cells 
migrate upwards, they become terminally differentiated 
and stop proliferating[31]. Once the cells reach the top 
of the crypt, they undergo apoptosis and are sloughed 
off into the lumen[31]. When these cells mutate to 
retain their proliferative capacity and avoid apoptosis 
once they reach the top of the crypt, they have the 
potential to form an adenomatous polyp[31]. These 
abnormalities may result as a process of inherited 
genetic mutations, replicative mistakes, or epigenetic 
changes. If undetected, these polyps may progress into 
a cancerous lesion[31].

The growth and differentiation of epithelial cells is 
strongly controlled by retinoid-activated genes. Genes 
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the cell membrane. Intracellularly, retinol can be stored as retinyl esters or 
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dehydrogenase; CRABP: Cellular retinoic acid binding protein; CYP26A1: 
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re-establishment of RARβ2 expression, indicating a 
potential role for the combined chemotherapeutic 
action of DNA methylation inhibitors and retinoids[39]. In 
contrast, Lee et al[32] demonstrated that treatment of 
RA-sensitive and RA-resistant human colon cancer cell 
lines with ATRA induced the expression of RARα in all 
cell lines while only increasing the expression of RARβ in 
colon cancer cell lines sensitive to RA. Over-expression 
of RARβ in the RA-resistant colon cancer cell line, 
DLD-1, resulted in the re-acquisition of RA-sensitivity, 
inducing growth inhibition and apoptosis in this cell line 
with ATRA treatment[32]. Over-expression of RARβ in 
LoVo cells, another RA-resistant human colon cancer 
cell line, showed similar results in which treatment with 
ATRA resulted in retinoid-mediated growth inhibition[40].

In addition to the loss of RAR expression and the 
consequential ATRA resistance, as CRC progresses, 
colorectal tumor cells appear to lose the ability to 
produce ATRA[26,41,42] while, at the same time, increasing 
ATRA degradation via the cytochrome P450 enzyme, 
CYP26A1[43]. Recently, Kropotova et al[41] found that all 
genes involved in ATRA synthesis were decreased in 
CRC tumors and colorectal cell lines. The researchers 
also found that ADH IB and IC, the most abundant 
retinol oxidizing enzymes, exhibited decreased gene 

involved in transcription, cell signaling, and tumor 
suppression contain RAREs in their promoter regions, 
indicating the importance of ATRA in gene expression[18]. 
In many epithelial-derived adenomas and carcinomas, 
the expression of one or more RAR is lost and the cell 
loses its ability to regulate normal growth[17,32]. This 
phenomenon is termed “ATRA-resistance”. The RARs 
themselves contain RAREs in their regulatory regions 
and are thus RA-inducible genes[21,33]. Treatment of 
patients with premalignant oral lesions with 13-cis-RA, 
a synthetic retinoid, increased the expression of RARβ, 
which correlated with clinical response, signifying the 
beneficial effects of retinoid treatment in increasing 
anti-tumor gene activity in cancers[33,34]. However, the 
loss of tumor-suppressive RARβ is common in premalig­
nant and malignant tissues and cells, as reviewed in 
Xu[33]. Loss of RAR has been shown to be partly due 
to epigenetic changes such as histone modification 
and DNA methylation becoming aberrant during 
carcinogenesis, silencing RAR gene expression[33,35-38]. 
The loss of RARβ2 in the HCT-116 colon cancer cell 
line has been suggested to originate as a result of 
hypermethylation and the ensuing loss of RARα, which 
is an upstream regulator of RARβ2[39]. Restoration of 
RARα by a DNA methylation inhibitor resulted in the 
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expression when adenomas were compared to more 
advanced carcinomas. Similarly, mRNA levels for RDH-5 
and L were decreased in colon tumors and CRC cell 
lines when compared to normal colon cells[42]. As a 
result, the CRC cell lines produced only small amounts 
of ATRA from retinol, a phenomenon our group also 
observed with the ATRA-resistant CRC cell lines 
HCT-116, SW620 and WiDR[26]. Loss of adenomatous 
polyposis coli (APC) function, as seen in the SW620 
cell line[44], inhibits RDH expression, the enzyme which 
converts retinol to retinaldehyde[42]. Interestingly, 
transfection of APC into an APC-deficient cell line 
increased the expression of RDH-L and the formation 
of ATRA, indicating crosstalk between Wnt/β-catenin 
signaling and retinoid metabolism[42]. To elaborate, APC 
mediates the proteosomal degradation of C-terminal 
binding protein 1 (CtBP1). Loss of APC increases the 
levels of CtBP1. Increased CtBP1, in turn, decreases 
RDH levels, inhibiting the production of ATRA[45]. Loss of 
ATRA ultimately leads to less colonocyte differentiation, 

as ATRA is necessary for epithelial cell differentiation[46]. 
In fact, homozygous loss of APC causes failed intestinal 
cell differentiation independent of catenin-mediated 
gene transcription but dependent upon CtBP1, leading 
to the hypothetical two-step model of colon adenoma 
initiation and progression[47]. In this model, APC loss 
and the resulting increase in CtBP1 leads to adenoma 
initiation, successive K-ras activation, and the nuclear 
translocation of β-catenin causing progression to a 
carcinoma. An incongruity with this model is that 
administration of ATRA to ApcMin mice, which are heter­
ozygous for a dysfunctional APC mutation, did not 
prevent tumor formation[48]. Shelton et al[43] found 
that CYP26A1 was increased in tumors from APCMin 
mice, spontaneous human CRC, and in tumors from 
patients with familial adenomatous polyposis coli 
(FAP). These researchers also showed that CYP26A1 
expression was dependent upon β-catenin-induced 
gene expression[43]. Finally, retinoid storage may be 
altered in cancer. Lecithin retinol acyltransferase (LRAT) 
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  Protein Mutation rate Result of gene mutation Response to retinoid treatment

  APC 80%[57,65] Loss of β-catenin degradation[58]; constitutive 
activation of the Wnt/β-catenin pathway[59]; 

decreased RDH levels inhibiting formation of 
ATRA[42]

Not determined

  β-Catenin 5%[56] Loss of β-catenin degradation[56]; constitutive 
activation of the Wnt/β-catenin pathway[56]; 

increased CYP26A1 levels resulting in increased 
degradation of ATRA

Increased degradation of β-catenin via RXR-mediated pathway[23,24]

  PI3K 30%-50%[77,78] Activation of Akt and loss of GSK3β function[80,82]; 
increased cancer metastasis[88], partially through NF-

κB activation and increased expression of MMP-2 
and -9[87,89,90]; positive cell cycle progression through 

cyclin D1[105]; loss of cell-cell adhesion by Snail 
accumulation to repress E-cadherin[106]

Decrease MMP-2 and MMP-9 activity[28]; increase TIMP-1 
expression[28]; decrease the phosphorylation of GSK3β, decrease 

cellular proliferation, and increase the expression of pro-apoptotic 
proteins in human leiomyoma and myometrial cells[115]; CRBP-I 

inhibits PI3K/Akt activation in breast cancer cells[116]; inhibit PI3K 
activity to decrease CRC cell invasion in vitro and metastasis in 

vivo[25]

  PTEN 20%-40%[80] Loss of PI3K/Akt inhibition[80]; correlation with 
tumor aggressiveness and invasiveness[109-111]

Suppression of cellular proliferation and enhanced apoptosis by 
increasing PTEN expression in smooth muscle cells, neuroblastoma 
and glioblastoma cells, promyelocytes, leukemia cells, fibroblasts, 
and breast, endometrial, and hepatocellular carcinoma cells[119-128] 

  COX-2 80%-90%[134-136] Increased PGE2 signaling[133,137,138], ERK activation[140], 
PI3K/Akt signaling through increased EGFR[133,140,141], 
β-catenin stabilization[142,143], and MMP-2 and MMP-9 

expression to promote cellular proliferation[144,145] 

Decrease COX-2 expression[146], PGE2, β-catenin levels, and 
MMP-9[135,144]; inhibition of cell growth[151]; increased apoptosis and 

RARβ expression[152]

  PPARγ 8%[161] Loss of inhibitory action of gene transcription of pro-
survival and growth amplification genes[155,162-165]; 

increased expression of COX-2[154]

Suppress COX-2 and MMP-7 expression and induction of cell cycle 
arrest and apoptosis[171]; induce expression of RARβ mRNA in breast 
cancer cells[175]; increase apoptosis in glioblastoma cells[176]; stimulate 

PTEN expression in leukemia cells and fibroblasts[121,128]

p53 50%[177,178] Loss of anti-growth and apoptotic activity; loss of 
p53/Siah-1-mediated β-catenin degradation[187] 

Increase retinyl ester storage through transcription of retSDR1[54]; 
enhance p53-mediated cell cycle inhibition and apoptosis through 
activation of AP-2α and p21 in breast cancer cells[192], caspases in 

keratinocytes[188], Btg2 and CRABP-II in breast cancer cells[191]; STRA6 
induction in ovarian cancer cells, fibroblasts, and CRC cells[193]

Table 1  Summary of pathways dsyregulated in colorectal cancer and the effect of retinoids on these pathways in both colorectal 
cancer and other tumor types

APC: Adenomatous polyposis coli; RDH: Retinol dehydrogenase; ATRA: All-trans-retinoic acid; CYP26A1: Cytochrome P450 26A1; RXR: Retinoid X 
receptor; PI3K: Phosphatidylinositol-3-kinase; GSK3b: Glycogen synthase kinase 3b; NF-kB: Nuclear factor-kappa B; MMP: Matrix metalloproteinase; 
TIMP-1: Tissue inhibitor of matrix metalloproteinase 1; CRBP: Cellular retinol binding protein; CRC: Colorectal cancer; PTEN: Phosphatase and tensin 
homolog deleted on chromosome 10; COX2: Cyclooxygenase 2; PGE2: Prostaglandin E2; ERK: Extracellular signal-regulated kinase; EGFR: Epidermal 
growth factor receptor; RARb: Retinoic acid receptor b; PPARg: Peroxisome proliferator-activated receptor g; AP-2a: Activator protein 2a; Btg2: Beta cell 
translocation gene 2; CRABP-II: Cellular retinoic acid binding protein II; STRA6: Stimulated by retinoic acid 6. 
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esterifies retinol to retinyl esters, the storage form of 
vitamin A while retSDR1 converts retinal to retinol. 
The promoter of the LRAT gene is hypermethylated in 
CRC cell lines and tumors when compared to normal 
tissue[49]. This hypermethylation would decrease LRAT 
gene expression, potentially decreasing the availability 
of intracellular retinoids; however, the role of LRAT in 
cancer progression is controversial with some studies 
in non-CRC models showing that decreased LRAT levels 
are protective against carcinogens and correlate with 
better patient outcomes[50-52]. Proteins in the p53 family 
have also been shown to affect retinoid metabolism 
by modulating the expression of retinal short-chain 
dehydrogenase/reductase (retSDR1). The retSDR1 
enzyme is important in regulating retinoid metabolism 
and storage in many different cell types[53]. Treatment 
of neuroblastoma cells with physiological concentrations 
of retinol leads to the accumulation and storage of 
retinyl esters through the induction of retSDR1 enzyme 
levels[53]. The overexpression of p53 in the colorectal 
adenocarcinoma cell line DLD-1 and the CRC cell line 
HCT-116 yielded a strong induction of both retSDR1 
mRNA expression and protein level, even in cells 
with truncated reporters[54]. The binding of p53 to the 
retSDR1 promoter was further increased following 
DNA damage to the cells[54,55]. Importantly, retSDR1 
mRNA was shown to be elevated in CRC tumor tissues 
when compared with healthy samples from the same 
individuals[54]. These results signify that one mechanism 
by which p53 acts as a tumor suppressor is by inducing 
retSDR1 expression in carcinomas to work against 
tumor progression by supporting retinoid metabolism in 
these cells[54].

In summary, colorectal tumors often (1) lack RAR, 
the receptors for ATRA; (2) lose the ability to synthesize 
ATRA, the RAR ligand, from vitamin A; (3) exhibit 
increased degradation of ATRA via CYP26A1 to 4-oxo-
retinoic acid (4-oxo-RA) and (4) may have altered 
retinoid storage. The regulation of retinoid metabolism 
is controlled by proteins such as APC, β-catenin, 
and p53 that play crucial roles in the promotion and 
progression of CRC as we elaborate below.

THE WNT/b-CATENIN SIGNALING 
PATHWAY
The Wnt/β-catenin signaling pathway is an important 
process that regulates the proliferation, differentiation, 
and motility of cells in normal intestinal epithelium[3,56]. 
This pathway, and others affecting CRC progression, are 
shown in Figure 2. During normal intestinal functioning, 
the APC protein forms a cytoplasmic complex with Axin, 
another protein present in the cytosol. Both proteins 
contain binding sites for other members of their 
functional complex[57]. Together, the APC-Axin complex 
recruits other functional members, the serine and 
threonine kinases glycogen synthase kinase 3β (GSK3β) 
and casein kinase 1 (CK-1)[57]. Together, these proteins 

form what is known as the β-catenin “destruction 
complex”[57]. β-catenin, when present in the cytosol, 
is sequentially bound and phosphorylated by these 
kinases and thus earmarked for degradation through an 
ubiquitin-proteasome-mediated pathway[57]. 

β-catenin performs a dual function in the cell, where 
it acts as both a transcription factor in the nucleus 
and as a cell adhesion stabilizer at the cell membrane. 
When in the cytosol, β-catenin binds to E-cadherin, a 
transmembrane protein responsible for the formation 
and maintenance of intercellular adherens junctions 
formed when epithelial cells come into contact[58]. 
E-cadherin binds to catenin p120 and β-catenin, 
which then binds to α-catenin and γ-catenin to anchor 
E-cadherin to the actin cytoskeleton[58,59]. Together, 
these proteins form a functional unit termed the 
E-caderhin-catenin unit (ECCU), in which β-catenin 
plays the role of an intermediary protein connecting 
E-cadherin to the α- and γ-catenin proteins that bind 
to the actin cytoskeleton[58]. The loss of E-cadherin 
function is thought to occur late in carcinogenesis and 
leads to the destruction of the ECCU, which causes a 
loss of the adherens junction and subsequent increase 
in cell motility and migration[58]. While the function of 
APC results in the degradation of β-catenin and β-catenin 
is necessary to form the ECCU, APC and E-cadherin 
compete for binding of β-catenin and work together to 
maintain the equilibrium of β-catenin concentration in 
the cell[58]. Loss of APC function results in E-cadherin 
saturation and the consequent accumulation of cytosolic 
β-catenin, which then translocates to the nucleus to 
enhance the transcription of genes important in cell 
growth and motility[58,59]. Thus, loss of APC function 
leads to a disruption in the equilibrium of β-catenin 
concentration and increased Wnt signaling[58,59]. Similarly, 
truncation of APC may result in β-catenin binding but not 
degradation, making β-catenin unavailable for E-cadherin 
binding[58]. While the over-expression of β-catenin is 
an important step in early tumorigenesis, later stages 
of carcinogenesis and loss of tumor differentiation 
may lead to loss of both β-catenin and E-cadherin 
expression, leading to the loss of ECCU formation and 
increased ability to metastasize[58].

Because β-catenin is both degraded and sequestered 
to the cell membrane during normal APC and E-cadherin 
function, it is unable to accumulate in the cytosol and 
translocate to the nucleus, where it binds to proteins 
of the T-cell factor/lymphoid enhancer factor (TCF/
LEF) families[56,57]. If allowed to form a complex with 
TCF/LEF proteins, β-catenin acts as a transcription 
co-factor to allow TCF/LEF transcription factors to 
bind to the regulatory regions of genes regulating 
cell differentiation, proliferation, and migration such 
as c-Myc, matrix metalloproteinase-7 (MMP-7), and 
cyclin D1[3,57,60,61]. Ligand-bound RARs have been 
shown to compete with TCF in breast cancer cells to 
decrease β-catenin-mediated gene transcription[62]. 
In contrast, others have shown that overexpression 
of RARγ in cholangiocarcinoma cells increases the 
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nuclear translocation of β-catenin[63], indicating that 
the effect of RARs on β-catenin varies with tumor type. 
In phosphorylating β-catenin and thus marking it for 
ubiquitin-mediated proteasomal degradation, APC 
and its protein complex constituents act as negative 
regulators of the Wnt/β-catenin signaling pathway and 
maintain the homeostasis of intestinal crypt cells and 
stem cells[3,57,60,64].

Due to its importance in negatively regulating the 
Wnt/β-catenin signaling pathway, mutations resulting 
in the loss of APC function are generally thought to be 
the earliest step in CRC tumorigenesis[56,57]. As a result, 
APC mutations are found in approximately 80% of 
human CRCs while mutations involving β-catenin are 
found in about 5% of all human CRCs[56,57,65]. This APC 
mutation can be due to an inherited mutation, as in 
the case of FAP, or due to environmentally-regulated 
hypermethylation or dysregulation of the APC gene[61,66]. 
In loss-of-function APC mutations, the ability to degrade 
β-catenin is lost, allowing the Wnt/β-catenin signaling 
pathway to become constitutively active and upregulate 
the transcription of oncogenes important in tumor cell 
proliferation and metastasis[56]. The mutation of the 
APC gene leads to the inability of the APC protein to be 
exported from the nucleus into the cytoplasm, where 
APC normally forms a complex with the other proteins 
involved in the β-catenin destruction complex[61]. The 
loss of APC results in the increased ability of Wnt 
proteins to bind to membrane-bound receptors in the 
Frizzled (FZD) and low density lipoprotein receptor-
related families to activate kinases that phosphorylate 
GSK3β[60,61]. The phosphorylation of GSK3β causes the 
cytosolic β-catenin destruction complex to become de-
stabilized, allowing for the accumulation of β-catenin 
in the cytosol and its subsequent translocation to the 
nucleus[60]. When Wnt[66] receptors are not engaged, 
CK-1 and GSK3β are available to phosphorylate β-catenin 
to mark it for degradation. 

K-RAS MUTATIONS AND CROSSTALK 
WITH OTHER PATHWAYS 
While the APC mutation is found in most colon tumors 
and is generally regarded to be the earliest step in 
carcinogenesis, doubt has been placed on its ability 
to single-handedly cause neoplastic formation. In 
30%-50% of CRC tumors, mutation of the K-ras gene 
has also been found, implicating its co-involvement 
in tumorigenesis[3,60,65,67]. K-ras is responsible for the 
transduction of mitogenic signals from growth factor 
receptors on the cell surface to the nucleus[65]. K-ras 
acts as a molecular switch to regulate the extracellular 
signal-regulated kinase (ERK) and PI3K/Akt signaling 
pathways[3]. During K-ras activation, the binding of 
growth factors to receptor tyrosine kinases causes the 
recruitment of the growth factor receptor-bound protein 
2/son of sevenless (GRB2/SOS) protein complex to the 
inner cell membrane[60]. This protein complex activates 

the G-protein Ras (rat sarcoma), resulting in the 
phosphorylated ERK translocation to the nucleus[60]. In 
the nucleus, ERK interacts with transcription factors to 
induce the transcription of target genes such as c-FOS 
and c-JUN, which regulate proliferation, differentiation, 
and apoptosis[60]. 

Additionally, K-ras activation results in the increased 
transcription of β-catenin, resulting in the increased 
accumulation of β-catenin in the cytosol[60]. Mutations of 
K-ras destroy the GTPase activity of K-ras and fix K-ras 
in its GTP-bound active forms to permanently activate 
K-ras and increase ERK signaling[3,60,65,67]. The K-ras 
mutation interacts with the Wnt/β-catenin signaling 
pathway by causing the phosphorylation of GSK3β 
through activation of PI3K[60]. As previously discussed, 
inactivation of GSK3β leads to de-stabilization of the 
destruction complex and the resultant stabilization and 
mobilization of cytosolic β-catenin to the nucleus[60]. 
Normal activity of GSK3β contributes to negative 
regulation of both the K-ras and Wnt/β-catenin signaling 
pathways by phosphorylating K-ras, contributing to 
its degradation[64]. Thus, GSK3β plays an important 
role in regulation of both the K-ras and Wnt/β-catenin 
signaling pathways by degrading key intermediates of 
each pathway and preventing the transcription of genes 
important in tumor promotion[64]. 

K-ras mutations develop after APC loss during pro­
gression and metastasis of CRCs, enhancing neoplastic 
growth[3]. This enhancement of neoplastic growth is 
achieved by enhanced activation of Wnt/β-catenin 
signaling[3]. In many cancers, simultaneous activation 
of K-ras- and β-catenin-dependent pathways are often 
seen[60]. In human CRC cells and CRC mouse models, 
gain-of-function K-ras mutations coupled with loss-of-
function APC mutations were associated with increased 
nuclear β-catenin levels and increased size, number, 
and incidence of tumors when compared to cells or 
mice with K-ras or APC mutations alone[3]. The resulting 
tumors displayed an increased migration rate and 
invasive capability through the increased activity of 
cyclin D1, which promotes cell cycle progression[3,60]. 
This evidence results in the theory that carcinogenesis 
in colon cells requires APC loss with an additional K-ras 
mutation[3]. Administration of ATRA to mice treated with 
the carcinogen deoxycholic acid (DCA) decreased colon 
tumor incidence, but ATRA did not affect the rate of 
K-ras mutation due to DCA administration[68]. Although 
we are not aware of any additional research regarding 
the ability of retinoids to affect K-ras expression or 
function in CRC, our laboratory and others have shown 
that retinoids can decrease β-catenin levels and thereby 
β-catenin-dependent gene transcription as described 
below.

Table 1 summarizes the effect of retinoids on 
proteins that affect CRC progression. Although retinoids 
do not appear to directly alter APC or K-ras activity, 
they do directly affect β-catenin levels. β-catenin 
degradation has been shown to be mediated by 
the activity of three pathways: (1) the APC/GSK3β 
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pathway; (2) the p53/Siah-1 pathway; and (3) 
an RXRα-dependent pathway. The RXR-mediated 
pathway was discovered when Xiao et al[69] showed 
that RXR agonists caused the degradation of RXRα 
and reduced β-catenin-mediated activation of gene 
transcription and cell proliferation. Additional work 
has shown that there is a direct interaction between 
RXRα and β-catenin[70]. Specifically, in the RXRα-
dependent pathway, RXRα binds to nuclear β-catenin 
and facilitates the transport of β-catenin back into the 
cytosol where β-catenin is ubiquitinated and degraded 
by the proteosome. Interestingly, RXRα expression is 
decreased in advanced CRC when compared to normal 
adjacent tissue and this decrease is associated with 
aberrant β-catenin expression[71]. Retinoids increase 
β-catenin degradation in a variety of tumor types. For 
example, N-(4 hydroxyphenyl)retinamide (fenretinide) 
induced the degradation of β-catenin in prostate cancer 
cells[72] and ATRA decreased β-catenin levels in head 
and neck cancer stem cells[73]. With respect to CRC, our 
laboratory has shown that retinol treatment increased 
β-catenin degradation in ATRA resistant CRC cell lines 
via a RXR-mediated pathway[23,24]. 

PHOSPHATIDYLINOSITOL 3-KINASE/AKT 
SIGNALING
The PI3K/protein kinase B (Akt) signaling pathway 
is another important pathway, the activation of 
which induces cellular transformation, proliferation, 
migration, and survival, all of which work together to 
promote tumor progression[74-76]. Mutations resulting 
in aberrant activation of this pathway have been 
implicated in 30%-50% of all human CRCs[77,78]. 
This dysregulation occurs via three mechanisms: (1) 
activating mutations in exons 9 and 20 on the PIK3CA 
gene; (2) overexpression of Akt itself or activating 
mutations in the Akt PH domain to increase signaling; 
and (3) loss of function or expression of the negative 
regulator phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN)[79-81]. PI3K belongs to a family 
of lipid kinases, and is characterized by its ability to 
phosphorylate the inositol rings of phospholipids on 
the inner cell membrane[82]. PI3K is present on the 
cell membrane as a heterodimer, consisting of one of 
four catalytic p110 subunits and one of two regulatory 
subunits[80,82]. P110α (PIK3CA) and p110β (PIK3CB) are 
ubiquitously expressed, with PIK3CA commonly being 
the more abundant catalytic subunit[82]. PIK3CA and 
PIK3CB bind to one of two regulatory subunits: p85α or 
p85β[82]. Class I PI3K enzymes bind Akt via pleckstrin 
homology (PH) domain-containing proteins and are 
activated mainly by receptor tyrosine kinases, such as 
those belonging to the epidermal growth factor receptor 
(EGFR) family, which accept a variety of extracellular 
signals necessary to stimulate cellular proliferation[80,82]. 
Once activated, PI3K catalyzes the phosphorylation of 
membrane-bound phosphatidylinositol-4,5-bisphosphate 

(PIP2) to generate the second messenger phospha­
tidylinositol-3,4,5-triphosphate (PIP3)[82]. The generation 
of PIP3 allows for the recruitment of PH domain-
containing proteins to the inner plasma membrane[80]. 
Most notably, the PH domains of 3-phosphoinositide-
dependent protein kinase 1 (PDK1) and Akt are drawn 
together, and PDK1 mediates the phosphorylation of Akt 
at the threonine 308 site[80,83]. 

Activating mutations in the Akt1 gene are rare, 
occurring in less than 2% of all CRCs[80]. Activating 
mutations in PDK1 are even rarer, occurring in less 
than 1% of all CRCs[80]; however, because these 
proteins are immediately downstream of PI3K, over-
activation of PI3K due either to activating mutations 
of the PI3K gene or due to mutations of PTEN, the 
PI3K inhibitor, ultimately results in the over-activation 
of Akt. Akt occurs in three isoforms: Akt1, 2, and 
3, with Akt1 being most broadly expressed[82]. Akt 
contains two phosphorylation sites, both of which are 
required to be phosphorylated for full Akt activation[84]. 
Phosphorylation of Akt at the threonine 308 site by 
PDK1 partially activates Akt, whereas full activation 
requires conjunctive phosphorylation of the serine 473 
site by other kinases, such as the mammalian target 
of rapamycin (mTOR) complex 2 (mTORC2)[83,85]. Full 
activation of Akt enables Akt to modulate the activity 
of pathways and expression of genes involved in the 
regulation of cell survival and proliferation as well as 
metastasis[86]. As reviewed in Fresno Vara et al[82] and 
Danielsen et al[77], Akt prevents the anti-proliferative 
activities of tumor suppressor genes p21, p27, and p53. 
Akt also blocks apoptosis in cancer cells by inactivating 
signals produced by Bcl-2 associated-death promoter 
(Bad) and caspase-9 proteins, and activates nuclear 
factor-kappa B (NF-κB), a transcription factor involved 
in the transcription of genes important in maintaining 
cell survival and increasing cell invasion[77,82,87]. The 
mechanism by which Akt activation promotes meta­
stasis is incompletely understood, but elevated Akt 
phosphorylation has been shown to be correlated with 
the invasiveness of cancer in human CRC tissues[88]. 
Specifically, increased levels of phosphorylated Akt 
are associated with venous invasion of colorectal 
carcinomas, tumor depth, and the presence of lymph 
node metastases[88].

One possible mechanism linking Akt activity to 
cell invasion relies on the activation of NF-κB. NF-
κB upregulates the transcription of matrix metallo
proteinases (MMPs), which are a class of zinc-depen­
dent enzymes responsible for the degradation of 
the extracellular matrix[87,89,90]. Specifically, MMP-2 
(gelatinase A) and MMP-9 (gelatinase B) belong to a 
family of gelatinase enzymes that degrade the collagen 
component of the extracellular matrix[90,91]. Both MMP-2 
and MMP-9 are overexpressed in many colon carcinomas 
when compared with non-cancerous tissue and are 
associated with increased invasiveness of cancers, 
advanced tumor stage, and poor survival[87,89,91,92]. 
Relevant to this review, MMP-9 and MMP-2 have been 
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shown to be overexpressed in colorectal carcinomas, 
but not adenomas, indicating their importance in 
tumor promotion and progression[93]. MMP-2 and -9 
are present in the cytosol in inactive pro forms, and 
cleavage of MMP-2 and -9 by membrane-type matrix 
metalloproteinases (MT-MMP), such as MT1-MMP, 
convert inactive pro-MMP-2 and -9 to active MMP-2 and 
-9[94,95]. This cleavage is inhibited by tissue inhibitors 
of metalloproteinases (TIMPs), specifically TIMP-1 
and -2, which interact with the intermediate (inactive) 
MMP-9 and -2, respectively, before the proteases are 
fully activated[94,96]. TIMP-1 expression is regulated 
by activator protein-1 (AP-1), a transcription factor 
regulated by the activation of the mitogen-activated 
protein kinase (MAPK) pathway[90]. Thus, it has been 
suggested that both PI3K/Akt and MAPK signaling 
activation must occur simultaneously to regulate MMP-2 
and -9 activity and thereby cell invasion[90]. ATRA has 
been shown to decrease MMP-2 and -9 activity as well 
as protein and mRNA levels and increase TIMP-1 in 
a variety of cancers[97-101]. With respect to CRC, our 
laboratory has shown that treatment of the ATRA-
resistant human CRC cancer cell lines HCT-116 and 
SW620 with retinol resulted in decreased MMP-9 
mRNA levels[28]. MMP-2 mRNA levels were decreased in 
SW620 cells but not in HCT-116 cells[28]. Importantly, 
the reduction of MMP-2 and MMP-9 mRNA was matched 
by a reduction in MMP activity[28]. Retinol treatment of 
HCT-116 and SW620 cells also increased the expression 
of TIMP-1, potentiating the inhibition of MMP-9 activity 
in these cells[28]. 

While TIMP-1 and MMP-2 and 9 expression are 
regulated by AP-1 and AP-1 activity is in turn repressed 
by retinoids, this is not thought to be the mechanism 
by which retinoids affect TIMP-1 and MMP-2 and 9 
expression. AP-1 is composed of the proto-oncogenes 
c-JUN and c-FOS and its activity is associated with 
cellular proliferation and invasion[102]. Suppression of 
AP-1 by 9-cis-RA led to the inhibition of cyclin D1 and 
MMP-2 and 9 in breast cancer cells, however this effect 
was not matched in SW480 CRC cells, which have low 
AP-1 activity[102]. Instead, the trans-repressive effects 
of the cyclin D1 promoter, which contains AP-1 and TCF 
sites, was independent of the AP-1 site in these CRC 
cells and required the involvement of a TCF binding 
element[103]. This data shows that while AP-1 activity is 
involved in cellular proliferation and invasion, retinoids 
appear to exert their repressive effects on MMP levels 
through their interaction with pathways that decrease 
β-catenin, as β-catenin forms a transactivation complex 
with TCF/LEF transcription factors. However, promising 
research involving novel synthetic retinoid derivatives 
may better target AP-1 for tumor suppression. Um 
et al[104] developed the synthetic retinoid 4-amino-2-
(butyrylamino)phenyl-(2E,4E,6E,8E)-3,7-dimethyl-
9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonate­
traenoate (ABPN), which greatly inhibited AP-1 activity 
in HCT-116 cells. ABPN suppressed c-JUN activity, which 
led to a decrease in MMP-2 expression, by directly 

affecting AP-1[104]. 
It is widely accepted that cross-talk between 

the PI3K/Akt pathway and the Wnt/β-catenin signa­
ling pathway occurs with GSK3β. Activated Akt 
phosphorylates GSK3β, inactivating GSK3β and causing 
a loss of function[82]. Without GSK3β to phosphorylate 
cytosolic β-catenin and mark it for degradation, stabilized 
β-catenin can accumulate in the cytosol and eventually 
translocate to the nucleus to act as a co-factor for gene 
transcription, as discussed previously[82,86]. Additionally, 
it has been shown that GSK3β phosphorylation of cyclin 
D1 stimulates cyclin D1 degradation[105]. Therefore, 
in tumor cells with increased Akt signaling and loss of 
GSK3β activation, cyclin D1 remains stable and able 
to positively regulate cell cycle progression[105]. The 
loss of GSK3β functioning also results in the increased 
accumulation of Snail, a zinc-finger transcriptional 
repressor of E-cadherin[106]. Active, unphosphorylated 
GSK3β binds to Snail and activates its degradation[107]. 
Loss of GSK3β function by Akt hyperactivation permits 
Snail to act as a transcription factor to repress E-cadherin 
transcription, decreasing cell-cell adhesion through 
E-cadherin loss[106,107]. As discussed, Akt activation 
also increases NF-κB transcriptional activity, which in 
turn increases Snail expression in epithelial cells[106]. 
Alternatively, it has also been proposed that 3%-5% 
of total cellular GSK3β is stably bound to Axin to form 
a complex reserved specifically for Wnt signaling[108]. 
One study conducted in prostate and breast cancer 
cell lines and C. elegans has shown that inhibition 
of PI3K by the PI3K inhibitor, wortmannin, does not 
affect GSK3β phosphorylation[108]. Thus, Wnt signaling 
by PI3K inhibition remains unchanged, refuting the 
common theory that there is cross-talk between the 
two pathways[108]. Instead, this evidence suggests 
that CRC presents with activating mutations in both 
the Wnt/β-catenin pathway and the PI3K/Akt pathway 
simultaneously, creating the notion that cross-talk 
between the two pathways occurs with a common 
GSK3β protein[108].

PTEN functions as a negative regulator of PI3K 
signaling by dephosphorylating the second messenger 
PIP3 to convert PIP3 back to PIP2[109,110]. PTEN exists 
in the cell as a cytoplasmic protein in an inactive, pho­
sphorylated state[110]. Phosphorylation of PTEN serine 
and threonine residues stabilizes the protein in a closed 
state[110]. Upon activation, dephosphorylated PTEN 
contains an active phosphatase domain[110]. However, 
this active site leaves PTEN in an unstable conformation 
susceptible to proteasomal degradation[110]. In this way, 
the normal negative feedback loop of PI3K signaling 
and PTEN inhibition can proceed[110]. When active, PTEN 
is recruited to the plasma membrane where it binds 
to PIP3 and dephosphorylates the second messenger, 
inhibiting the downstream Akt signaling[110]. The loss 
of PTEN expression results in the accumulation of 
PIP3 at the plasma membrane, resulting in increased 
recruitment of Akt to the plasma membrane and 
increased Akt activation[80]. Because of this negative 
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regulation of PI3K/Akt signaling, PTEN is associated 
with inhibition of cell cycle progression, induction of 
cell death, modulation of cell cycle arrest signals, and 
stimulation of angiogenesis[110]. 

PTEN mutations and loss of PTEN expression 
have been shown to occur in a high number of CRCs, 
with this loss correlating with tumor aggressiveness 
and invasiveness[109-111]. This correlation might be 
explained by the involvement of PTEN with maintaining 
normal cell polarity[109]. Loss of PTEN results in a loss 
of cell polarity, leading to increased epidermal-to-
mesenchymal transition (EMT) of cancer cells and loss 
of tight junctions[109]. Similarly, reduced expression of 
PTEN and loss of PTEN are shown to indicate more 
advanced stages and metastasis of CRC[111]. Loss of 
PTEN occurs due to loss of chromosomal heterozygosity 
in CRC tumors with chromosomal instability and is 
estimated to occur in about 20%-40% of CRCs, while 
PTEN mutations in tumors without chromosomal 
instability occur much less frequently, in less than 5% of 
cases[80,81,110,111]. PTEN expression itself is regulated by 
peroxisome proliferator activated receptor γ (PPARγ) and 
p53 activity, both of which are implicated in CRC and 
will be discussed in further detail later in this review[110]. 

Due to PTEN interaction with the PI3K/Akt sig­
naling pathway, it has been proposed that loss of PTEN 
expression and mutations in PIK3CA may work syner­
gistically to increase the activity of both PI3K/Akt and 
Wnt/β-catenin signaling[79]. However, data obtained 
from the European Prospective Investigation of Cancer 
Norfolk Study showed that loss of PTEN expression 
and PIK3CA mutations occurred independently of 
one another in CRCs[81]. Further mechanistic studies 
involving CRC tumors supported these results and 
showed activating PIK3CA mutations to occur in about 
30% of tumors, independent of PTEN loss[80]. 

As mentioned previously, there is cross-talk between 
the PI3K/Akt pathway and the Wnt/β-catenin pathway. 
Investigation into PIK3CA mutations in CRC revealed 
that in human CRC cells carrying APC mutations and 
showing constitutive Wnt pathway activation, PI3K 
inhibition led to no change in the subcellular localization 
of β-catenin[79]. Interestingly, although the nuclear 
localization of β-catenin was unaffected by PI3K 
inhibition, the concentration of β-catenin phosphorylated 
at the putative Akt serine 552 phosphorylation site was 
lower in cells in which PI3K activity was inhibited[79]. 
β-catenin/LEF/TCF-mediated gene transcription was also 
lower in the PI3K-inhibited cells, resulting in decreased 
expression of Wnt target genes c-Myc, cyclin D1, and 
LEF-1[79]. As a component of the β-catenin transcriptional 
complex, the decrease in LEF-1 expression indicates 
a further decrease in the transcriptional activity of 
β-catenin[79]. Taken together, these results demonstrate 
that the nuclear localization of β-catenin and its 
transcriptional activity are independent processes, but 
are linked by PI3K[79].

Interestingly, retinoid treatment in some cancer cell 
lines has been shown to upregulate the activity of the 

PI3K/Akt signaling pathway, increasing cell proliferation 
and invasion to promote tumor growth[112-114]. However, 
in other cancer cell lines, treatment with retinoids has 
been shown to inhibit PI3K/Akt signaling[115-118]. These 
retinoid effects have mostly been shown to be mediated 
through RAR-mediated pathways involving ATRA binding 
to receptors[115,116]. Specifically, ATRA has been shown 
to decrease the phosphorylation of GSK3β, decrease 
cellular proliferation, and increase the expression of pro-
apoptotic proteins in human leiomyoma and myometrial 
cells[115]. In addition, CRBP-I inhibits PI3K/Akt activation 
in breast cancer cells through a RAR-mediated pathway 
by decreasing the heterodimerization of p85 and 
p110[116]. To our knowledge, our laboratory is the only 
laboratory to investigate retinoid inhibition of the PI3K/
Akt signaling pathway in CRC. Furthermore, because 
retinoid receptor activity is often down-regulated in CRC, 
our laboratory studied the effects of retinol, the dietary 
form of vitamin A, on the PI3K/Akt signaling pathway 
in human CRC cells exhibiting ATRA-resistance[29]. We 
have shown that PI3K activity is inhibited by retinol in a 
dose-dependent manner independent of RAR signaling 
or inhibition of p85/p110 heterodimerization[29]. We 
recently showed that it is the ability of retinol to inhibit 
PI3K activity that confers the ability of vitamin A to 
decrease CRC cell invasion in vitro and metastasis in 
vivo[25]. Specifically, by comparing the effects of retinol 
treatment on parental HCT-116 cells, expressing one 
allele of constitutively active PI3K (caPI3K), to mutant 
HCT-116 cells expressing two alleles of caPI3K, we 
showed that retinol treatment decreased in vitro cell 
invasion in parental HCT-116 cells, but not in mutant 
HCT-116 cells[25]. Retinol treatment also decreased total 
MMP-9 protein levels and active MMP-9 levels in parental 
HCT-116 cells, while these levels remained unchanged 
in HCT-116 cells expressing two alleles of caPI3K[25]. 
Finally, dietary vitamin A supplementation tended to 
result in a lower incidence of hepatic metastases in mice 
intrasplenically injected with parental HCT-116 cells 
but not in mice intrasplenically injected with mutant 
HCT-116 cells. 

More research is needed to determine the mech­
anism by which vitamin A inhibits PI3K activity in CRC, 
but one possible mechanism is by the up-regulation of 
PTEN. Although the effect of retinoids on PTEN activity 
has not been examined in CRC to our knowledge, 
retinoids have been shown to alter PTEN activity in 
smooth muscle cells, neuroblastoma and glioblastoma 
cells, promyelocytes, leukemia cells, fibroblasts, and 
breast, endometrial, and hepatocellular carcinoma 
cells[119-128]. In particular, ATRA treatment of breast 
cancer cells reduced the methylation of the PTEN gene 
promoter to activate PTEN transcription[122]. Suppression 
of growth factors by ATRA in hepatocellular carcinoma 
cells increases PTEN levels and synchronously decreases 
the presence of phosphorylated Akt[123]. Increases of 
PTEN and consequent decreases of Akt occur with 
retinoid treatment of neuroblastoma and glioblastoma 
cells and of smooth muscle cells as well[119,126,127]. By 
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increasing PTEN, cellular proliferation is suppressed 
and apoptosis is induced, perhaps partially through 
the inhibition of NF-κB transcriptional activity[126,127]. 
Concurrent activation of PPARγ with retinoid treatment 
may also be helpful in synergistically reducing carcino­
genesis, which will be discussed further in the following 
section.

CYCLOOXYGENASE-2 AND peroxisome 
proliferator activated receptor-g
The use of non-steroidal anti-inflammatory drugs 
(NSAIDs) such as aspirin reduces the incidence of 
CRC and other cancers of the gastrointestinal (GI) 
tract[129,130]. Chronic NSAID use has been shown to 
reduce the risk of CRC by as much as 40%-50%, as 
well as decrease the multiplicity and size of tumors 
presenting with APC loss[131,132]. These drugs mediate 
their effects through inhibition of cyclooxygenase (COX) 
enzymes. COX-2 is an inducible enzyme expressed 
in the presence of inflammatory cytokines, growth 
factors, and tumor promoters[133]. In the presence of 
these factors, COX-2 converts free arachidonic acid 
to prostaglandin H2 (PGH2), which is the precursor 
to other prostaglandins, specifically prostaglandin E2 
(PGE2)[133,134]. COX-2 over-expression is associated with 
more aggressive tumors of the GI tract and increased 
levels of COX-2 mRNA are present in 80%-90% of 
CRCs[134-136]. This over-expression of COX-2 results in 
the increased levels of PGE2. Elevated PGE2 is present 
in high levels in cancer tissues and increases the car­
cinogenic process by stimulating cell proliferation, 
suppressing apoptosis, increasing cell motility, and 
promoting angiogenesis[133,137,138]. The biological effects 
of PGE2 are mediated by E-prostanoid (EP) G-protein 
coupled receptor subtypes 1-4 which are present in 
high levels in CRCs[133,139]. The loss of these EP receptors 
is associated with decreased PGE2 signaling and 
decreased cancer malignancy[139]. It should be noted 
that carcinoma cells that do not display increased 
COX-2 expression may still receive paracrine signals 
by PGE2 through EP receptors and thus still exhibit the 
growth stimulatory effects of PGE2 as well as increased 
cell motility and activation of ERK signaling[140]. 
PGE2 binding to EP receptors results in increased 
phosphorylation of EGFR and the downstream mediator 
ERK, which induces the expression of c-FOS, a gene 
involved in promoting cell proliferation[133,140,141].

While activation of EGFR contributes to increased 
PI3K/Akt signaling, COX-2 over-expression also results in 
the dissociation of GSK3β from the β-catenin destruction 
complex, leading to the stabilization of β-catenin for 
translocation to the nucleus[142,143]. PGE2 treatment 
in human CRC cells led to rapid phosphorylation of 
GSK3β on its serine 9 residue by Akt, inhibiting the 
kinase activity of GSK3β[143]. This action was, however, 
dependent on the loss of APC function in CRC because 
β-catenin stabilization by PGE2 occurs downstream of 

APC loss[143]. Inhibition of PGE2 in zebrafish embryos 
and human CRC cells demonstrating APC loss increased 
the degradation of β-catenin, with COX-2 knockdown 
reducing the levels of β-catenin[144]. ATRA treatment 
of zebrafish embryos and human CRC cells decreased 
the levels of β-catenin by a mechanism that requires 
the attenuation of COX-2 expression and subsequent 
decrease in PGE2 accumulation[144]. β-catenin reduction 
as a result of ATRA treatment also led to the decreased 
expression of MMP-9[144]. Furthermore, PGE2 led to 
the increased expression of TCF-4, a component 
of the β-catenin transactivation complex, resulting 
in increased transcription of genes downstream of 
β-catenin[142]. PGE2 thus leads to the expression of 
cyclin D1 and vascular endothelial growth factor (VEGF) 
in vitro and in vivo, which contribute to the increased 
formation of intestinal polyps[142]. This effect by PGE2 is 
synergistically perpetuated by mutated β-catenin[142]. 

COX-2 over-expression in CRC is also correlated with 
an increased expression of MMP-2 and MMP-9, both of 
which contribute to CRC motility and metastasis[145]. 
Suppression of COX-2 by selective inhibitors in mouse 
CRC cells decreased proliferation associated with cyclin 
D1 and inhibited cell migration and motility with an 
associated decrease in both MMP-2 and MMP-9[135]. 
This suppression of COX-2 also decreased tumor 
growth both in vitro and in vivo, while also slowing 
liver metastasis[135]. This process may be particularly 
important when considering metastasis of CRC, as 
COX-2 expression has been shown to be even higher 
in metastatic liver tumors[135]. Broad spectrum MMP 
inhibitors decreased the number of adenomas in 
mice lacking APC function by decreasing proliferation, 
inhibiting angiogenesis, and stimulating apoptosis, with 
a synergistic effect seen when combined with COX-2 
inhibitors[145]. 

Moreover, the lack of a functional APC protein is 
correlated with the elevated expression of COX-2[146]. 
APC controls ATRA biosynthesis through the activity 
of RDH enzymes in human CRC, with this loss of RDH 
correlating with the increased expression of COX-2[146]. 
In zebrafish embryos and human CRC cells presenting 
with a functional loss of APC, this over-expression of 
COX-2 was attenuated by treatment with ATRA[146]. 
This attenuation of COX-2 expression was the result 
of a mechanism involving ATRA inhibition of the levels 
of CCAAT/enhancer-binding protein (C/EBP) cis-acting 
elements, which are present in the promoter region 
of the COX-2 gene[146]. ATRA treatment decreased the 
expression of C/EBP-β, which leads to the decreased 
expression of COX-2[146].

The suppression of COX-2 by retinoids has been 
demonstrated in a variety of human epithelial carcino­
mas[147-150]. This suppression has been shown to be 
mediated by a multitude of factors, some of which have 
been described above, and which also includes a RARα-
dependent pathway to limit the amount of CREB-binding 
protein (CBP)/p300 histone acetyltransferase activity 
available for AP-1 induction of COX-2[148]. In human CRC 
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cells, treatment with the retinoid analogue fenretinide 
decreased COX-2 mRNA and inhibited PGE2 expression, 
resulting in inhibition of cell growth[151]. Therapy with 
the selective COX-2 inhibitor celecoxib enhanced 
the growth inhibitory effects of ATRA in both COX-2-
high-expressing HT-29 human CRC cells and COX-2-
low-expressing SW480 human CRC cells, resulting in 
increased apoptosis and elevated RARβ expression 
through COX-2-independent mechanisms[152]. RARβ2 
methylation was inversely associated with COX-2 
expression, with increased methylation of RARβ2 in CRC 
tumors also presenting with high COX-2 expression[153]. 
These tumors correlated with a worse patient prognosis, 
proposing the importance of both COX-2 and RARβ2 
expression in colorectal carcinogenesis[153]. Overall, 
COX-2 is over-expressed in CRC tumors, leading 
to elevated PGE2 and β-catenin and the resulting 
cellular proliferation and tumor metastasis. Treatment 
with retinoids inhibits this over-expression of COX-2, 
suppressing the tumor growth-inducing effects of 
COX-2.

COX-2 expression is regulated in part by PPARγ. 
Specifically, the activation of PPARγ decreases COX-2 
expression by up to 90% and induces caspase-3-
dependent apoptosis in human CRC cells[154]. The COX-2 
gene contains a peroxisome proliferator response 
element (PPRE) in its promoter, which allows the 
binding of PPARγ-RXRα heterodimers to inhibit COX-2 
gene transcription[155,156]. PPARγ belongs to the nuclear 
hormone receptor superfamily of ligand-dependent 
transcription factors[157]. Ligands existing for PPARγ 
include prostaglandins, polyunsaturated fatty acids 
(PUFAs), NSAIDs, and thiazolidinediones (TZDs)[158]. 
TZDs are a class of PPARγ agonist medications, used 
in diabetic patients to regulate lipid and glucose 
metabolism via PPARγ activation[158,159]. Upon ligand 
binding, PPARγ changes conformation to release 
corepressor proteins and recruit coactivator proteins, 
such as PPARγ-coactivator-1 (PGC-1)[160]. PPARγ then 
forms an obligate heterodimer with RXRα, and the 
resulting heterodimer binds to PPREs in the promoter 
regions of target genes to regulate expression[156]. In 
CRC, mutations of PPARγ occur in about 8% of cases, 
indicating its potential role as a tumor suppressor[161]. 
Many studies in CRC cell lines and animal models have 
demonstrated this effect, with PPARγ activation resulting 
in growth inhibition, apoptotic cell death, and decreased 
cell invasion[155,162-165]. However, the opposite effect has 
been observed in mice lacking APC function, with PPARγ 
activation resulting in tumor promotion[166,167]. In rats 
fed a high-fat diet, PPARγ and RARβ mRNA expression 
was suppressed, concomitant with an increase in COX-2 
and β-catenin levels and in the number of aberrant crypt 
foci (ACF)[168]. Supplementing diets with retinyl esters or 
ATRA attenuated the increases in COX-2 and β-catenin 
expression and inhibited the formation of ACF[168]. This 
data indicates that dietary factors, such as lipids and 
retinoids, are strongly influential in protein expression 
and tumor formation.

The mechanisms by which PPARγ act on tumor 
formation are still unknown, yet the evidence presented 
thus far suggests the importance of PPARγ in tumor 
growth inhibition. PPRE-independent mechanisms may 
also be involved, as PPARγ activation has also been 
shown to interfere with NF-κB and AP-1 to inhibit the 
transcription of pro-survival and growth amplification 
genes[157,158,169]. As mentioned, the activation of PPARγ 
by ligand binding results in the suppression of COX-2 
expression in human CRC cells with an ensuing decrease 
in PGE2 accumulation[156,170]. Additionally, PPARγ 
agonists lead to a decrease in both MMP-2 and MMP-9 
and an increase in TIMP-1 and TIMP-2[156,159]. Treatment 
with ATRA and synthetic RXR ligands synergistically 
enhanced this effect, which ultimately led to a decrease 
in cell proliferation, invasion, and an increase in 
apoptosis[156,171]. Treatment of HCT-15 cells with ATRA 
and the TZD rosiglitazone synergistically suppressed 
COX-2 and MMP-7 expression and induced cell cycle 
arrest and apoptosis[171]. The growth suppressing 
effects of PPARγ in CRC have been shown to occur by 
modulating the transcription of genes regulating cell 
cycle progression. Treatment of human CRC cells with 
PPARγ agonists induced apoptosis in cells by halting 
cell cycling progression and inhibiting the expression 
of genes such as cyclin D1 and c-Myc[157,158,172]. Adding 
synthetic RXR ligands to treatment with PPARγ agonists 
can augment cell growth inhibition and induce terminal 
differentiation by increasing the interaction of PPARγ 
and RXRα and their ability to form a heterodimer[169]. 
However, treatment of human CRC cells with RXR 
ligands alone does not cause PPARγ-RXRα heterodimer 
formation in the absence of PPARγ activation[156,172]. 
Therefore, dual treatment with synthetic rexinoid RXR 
ligands and PPARγ agonists may work together to 
inhibit the growth and metastasis of colonic tumors. 
As synthetic RXR ligands, rexinoids are not true 
retinoids. True retinoids bind RAR and are the focus of 
this review. Research regarding PPARγ and retinoids 
in CRC is lacking, as PPARγ only heterodimerizes with 
RXRα and not RAR. Yet, expression of RARβ mRNA can 
be induced by PPARγ activation in other cancers such 
as lung, breast, liver, and brain cancers[173-176]. ATRA 
alone and a combination of PPARγ and RXR ligands 
induced RARβ expression in ATRA-resistant breast 
cancer cells in the presence of HDAC inhibitors[175]. 
This induction of RARβ expression was reduced in 
the presence of a PPARγ antagonist, indicating the 
involvement of PPARγ/RXR heterodimer activity in 
RARβ transcription[175]. Treatment of breast and lung 
cancer cells with PPARγ and RXR ligands also induced 
apoptosis in these cells[175]. Apoptotic glioblastoma cells 
showed an increased level of RARβ expression when 
undergoing apoptosis, and PPARγ agonists induced 
RARβ mRNA in glioblastoma cells, suggesting that 
PPARγ activation may mediate apoptosis through RARβ 
activity[176]. Furthermore, treatment of leukemia cells 
with a combination of ATRA and the PPARγ agonist, 
ciglitazone, synergistically increased PTEN levels and 
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inhibited the growth and proliferation of these cells by 
inducing cell cycle arrest[121]. Both 9-cis-RA and PPARγ 
activation in fibroblasts stimulated PTEN expression, 
which led to a decrease in Akt phosphorylation[128]. 
Because PTEN expression is regulated in part by PPARγ 
activation, PPARγ ligands have been shown to decrease 
proliferation of endometrial cancer cells via PTEN 
induction and the inhibition of VEGF secretion[120]. Taken 
together, this research proposes that retinoid treatment 
in conjunction with PPARγ activation may be helpful in 
overcoming ATRA-resistance, inhibiting tumor growth, 
and promoting cancer cell death in CRC. 

P53/Siah-1 Signaling
Mutations of the tumor suppressor gene p53 are the 
most common mutations found in human cancers, 
with p53 absence or mutations present in 50% of 
CRC cases[177,178]. As a tumor suppressor gene, p53 is 
activated in response to genotoxic stimuli in healthy 
cells, to which p53 responds by arresting cell cycle 
progression and inducing apoptosis[179]. In healthy cells, 
p53 suppression is necessary for normal growth and 
is thus present at low concentrations, its expression 
is regulated through ubiquitin-dependent degradation 
most notably by the ubiquitin ligase, MDM2[179]. MDM2 is 
phosphorylated by kinases such as Akt, after which the 
activated MDM2 localizes to the nucleus and ubiquinates 
p53[179]. The ubiquitinated p53 is then exported from 
the nucleus, where it is degraded in the cytosol to 
maintain cell proliferative activity[179]. Up-regulation of 
MDM2 activity and transcription also occurs downstream 
of other oncogenic pathways to inhibit p53 activity, 
such as ERK and K-ras signaling[179]. Similarly, MDM2 is 
a p53 target gene, creating a negative feedback loop 
to control p53 expression and activity[179]. In response 
to genotoxic damage, p53 is activated by kinases, 
which phosphorylate p53 in its MDM2 binding region, 
stabilizing p53 and allowing it to accumulate and bind 
to DNA to induce the transcription of genes such as 
cyclin kinase-dependent cell cycle inhibitor p21 and 
pro-apoptotic Bcl-2 associated x protein (BAX)[178-181]. 
P53 also directly inhibits anti-apoptotic proteins such as 
B-cell CLL/lymphoma-2 (Bcl-2) and Bcl-2 like isoform 
1 (Bcl-xL), which inhibit the release of cytochrome c 
from the mitochondria to prevent the cell from initiating 
apoptosis[180]. Silencing of Bcl-2 in CRC cells leads to 
major p53-mediated apoptosis, demonstrating that 
Bcl-2 inhibits apoptosis in cells by also inhibiting p53 
activity[180]. In CRC cells with mutant p53, transfection 
with wild-type p53 induces apoptosis and inhibits 
colony formation in vitro and inhibits tumor formation in 
vivo[182]. 

Missense mutations occur in 80% of all p53 muta­
tions, resulting in a stable protein that accumulates 
inside the nucleus of tumor cells but lacks its specific 
DNA-binding activity and, therefore, lacks transcriptional 
activity[183]. As a result, an accumulation of p53 in the 
cell is generally thought to be mutagenic, although it is 

important to distinguish this mutant p53 accumulation 
in tumor cells from wild-type p53 expression[183]. The 
accumulation of mutant p53 in CRC patients is strongly 
correlated with increased metastasis and poor prognosis, 
further implicating the importance of p53 involvement 
in cell cycle regulation and stimulation of apoptosis in 
tumor cells[177]. Most p53 mutations occur in the later 
stages of adenoma-to-carcinoma progression, after 
which time many other pathways such as K-ras and 
the Wnt/β-catenin signaling pathway may already be 
dysregulated[184]. This point is particularly interesting to 
consider when looking at p53 involvement in β-catenin 
degradation. Siah-1 is a p53-inducible protein that binds 
ubiquitin-conjugating enzymes and targets proteins for 
degradation to ultimately result in tumor suppression[185]. 
Specifically, Siah-1 binds to the carboxyl terminus of 
APC and decreases β-catenin via a degradation pathway 
independent of GSK3β phosphorylation[185]. While 
Siah-1 does not affect APC levels, Siah-1 influence on 
β-catenin levels are dependent upon Siah-1 binding 
to APC[185]. In CRC cells with truncated APC, Siah-1 is 
unable to decrease β-catenin levels, making this process 
ineffective in cells expressing APC mutations[186]. Siah-
1-mediated degradation of both mutant and wild-type 
β-catenin in CRC cells was supported by a decrease in 
TCF/LEF reporter activity and the consequent reduction 
of β-catenin target genes cyclin D1 and c-Myc to result 
in cell cycle arrest[185-187]. Increased p53 expression in 
CRC cells resulted in increased degradation of β-catenin 
and a decrease in TCF/LEF activity only in the presence 
of Siah-1, indicating that p53 degradation of β-catenin 
is dependent on Siah-1 activity[185,187]. Because Siah-1 
expression is regulated by p53, the loss of p53 tran­
scriptional activity inhibits Siah-1 expression and 
activity, preventing the p53/Siah-1 pathway activity to 
cause β-catenin degradation[187].

In addition to affecting retinoid metabolism and 
storage, retinoid treatment in many different cell types 
induces p53 mRNA and protein expression to inhibit 
cell cycle progression and promote apoptosis[188-193]. 
ATRA treatment of keratinocytes led to an increase 
in p53 mRNA and protein levels and a corresponding 
increase in caspase-3, 6, 7, and 9 enzyme levels, which 
are responsible for mediating apoptosis[188]. Apoptosis 
and growth inhibition of mammary carcinoma cells 
is controlled by RA-induced p53 activity increase, 
which in turn upregulates the expression of the anti-
proliferative B-cell translocation gene, member 2 
(Btg2)[191]. Btg2 inhibits cell cycle progression by down-
regulating the expression of cyclin D1, and this effect is 
further augmented by the over-expression of CRABP-
II, which transports RA to nuclear RAR, to induce the 
transcription of RA-responsive genes[191]. In murine 
embryonic stem cells, ATRA caused neural differentiation 
and apoptosis through increasing p53 mRNA and 
protein levels to instigate cell cycle arrest[189]. The up-
regulation of p21 protein concentration is an important 
effect of p53 activation as shown in human mammary 
epithelial cells, of which treatment with 9-cis-RA, ATRA, 
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and fenretinide increases p21 expression and thus, cell 
growth, in a p53-dependent manner[190]. Furthermore, 
p21 expression in breast cancer cells and HCT-116 CRC 
cells is increased by p53 interaction with the tumor 
suppressor activating enhancer-binding protein-2 α (AP-
2α), a RA-inducible gene that regulates apoptosis, cell 
growth, and differentiation[192]. AP-2α interaction with 
p53 resulted in enhanced binding to the promoter of 
p21, which led to cell cycle arrest in these cells[192]. The 
induction of STRA6, the RBP receptor, by p53 has also 
been shown to mediate apoptosis in ovarian cancer 
cells, normal human fibroblasts, and HCT-116 cells 
expressing wild type p53[193]. Transfection of these with 
STRA6 increased apoptosis, and inhibition of STRA6 
severely compromised p53-induced apoptosis[193]. While 
the effects of retinoids on p53 expression and activity 
have not been widely studied with regard to CRC, the 
known results are summarized in Table 1. In general, 
retinoid treatment of CRC cells appears to enhance the 
expression and activity of p53 to further increase tumor 
suppressor p21 levels, ultimately leading to cell cycle 
arrest and the initiation of apoptosis. 

CONCLUSION
Retinoids decrease signaling via the major pathways 
that promote CRC progression. Ultimately, each 
pathway is followed to its conclusion, retinoids decrease 
levels of MMPs, cyclin D1, and other factors that induce 
cellular invasion or proliferation. Often, β-catenin is an 
intermediate in these pathways, reflecting the central 
role of β-catenin in CRC progression. Overall pathway 
interactions are illustrated in Figure 2, and effects 
of mutations on CRC progression and the effects of 
retinoids on these mutated proteins are summarized 
in Table 1. Because retinoids inhibit critical pathways 
to decrease CRC progression, dietary vitamin A 
supplementation or retinoid chemotherapy, alone or 
in combination with other medications, may prove 
beneficial for the prevention of the progression and 
metastasis of CRC.
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