
cancer associated fibroblasts and macrophages, as well 
as between macrophages and T cells, and demonstrate 
how each population may support or prevent tumour 
growth in a different immune environment. 

Key words: Colorectal cancer neoplasms; Fibroblasts; 
Immune system processes; Macrophages; T lympho­
cytes
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Core tip: The outcome of patients with colorectal cancer 
is influenced by the complex local immune system. 
Understanding how multiple relationships between 
immune cells may affect tumour growth or elimination 
will be key in designing new therapies to treat this 
disease. 
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PERSPECTIVE
Colorectal cancer (CRC) is the second and third most 
common cancer in women and men, respectively, 
worldwide[1]. In most cases, the disease occurs 
sporadically, but can also be caused by genetic pre­
disposition or prior intestinal inflammation. While 
resection is often curative, approximately 45% of 
patients still die from the disease.

The recent introduction of successful immuno­
therapies against cancer, specifically checkpoint 
blockade antibodies, has increased attention on the 
immune response to tumours. These new treatments 
have provided opportunities for the development of new 
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Abstract
The immune response to colorectal cancer has proven 
to be a reliable measure of patient outcome in several 
studies. However, the complexity of the immune 
response in this disease is not well understood, par­
ticularly the interactions between tumour-associated 
cells and cells of the innate and adaptive immune 
system. This review will discuss the relationship between 
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immune-based therapies for less responsive tumours, 
such as CRC.

The complexity of the anti-tumour immune response 
is vast - not only are there multiple cells, these cells 
interact with each other, and are plastic so can change 
phenotype and function in response to inflammatory 
or suppressive signals from the tumour and tumour 
associated cells[2]. Understanding the relationships 
between cancer cells and immune cells is critical to 
understanding and, ultimately, manipulating the tumour 
immune microenvironment.

The importance of local immunity is particularly true 
in CRC where the immune response in the gut has been 
“trained” to ignore commensal microflora, and yet retain 
the ability to induce an attack against a pathogen. The 
ability of the gut to do this relies on a series of signals 
and interactions between bacteria, epithelial cells, and 
innate cells such as dendritic cells, monocytes and gut 
resident macrophages. In CRC, there are local adaptive 
immune cells such as effector T cells likely to have an 
antitumor effect, and regulatory or inflammatory T cells 
predicted to have a pro-tumour effect[3].

Recent study of the immune response in CRC has 
resulted in the development of the Immunoscore, a 
means of measuring T cell infiltrate into CRCs[4]. The 
Immunoscore thus far has shown to be predictive of 
outcome and also superior to other methods for staging 
patients. Innate immune responses, particularly those 
involving tumour associated macrophages (TAMs), have 
been studied and data show that the frequency of these 
cells infiltrating the tumour can be associated with poor 
patient outcome, although this is controversial[5]. 

Immune responses against colorectal tumours can 
be detected in early stage cancers, indicating that the 
immune system is capable of recognizing a tumour[6]. 
However, the tumour produces molecules that inhibit 
immune cell infiltration, that reduce activity of immune 
cells, or that change the phenotype of immune cells to 
a less effective anti-tumour function, ultimately allowing 
tumour outgrowth[7]. 

The inflammatory immune environment underlying 
tumour initiation and progression in CRC has been 
reviewed extensively[8], although much of the supporting 
data relies on animal models of colitis-induced cancer[9]. 
However, colitis-associated cancer accounts for only a 
small percentage (1%-4%) of CRC cases in humans[10]. 
The influence of inflammation mediated by immune 
cells in established familial or sporadic human CRC 
has been much less studied. In addition, new data 
demonstrate an impressive complexity of innate 
and adaptive immune cells[11], suggesting that some 
associations with cancer progression may have been 
too simplistic in their interpretation.

This review will concentrate on the networks 
of innate and adaptive immune cells, and tumour-
associated immune cells in established CRC, and how 
these interactions can influence subsequent patient 
outcome (Figure 1). Despite recent interest in the 
immunology of CRC, there are limited experimental 

data studying the complexity of the immune response 
and the interactions between cancer cells and 
immune cells, particularly in humans. We will discuss 
(1) the interplay between the tumour stromal cells 
[particularly cancer-associated fibroblasts (CAFs)] and 
the macrophages infiltrating the tumour; and (2) the 
interactions between macrophages and T cells and 
how T cell populations may influence each other. We 
will attempt to describe the complexity and plasticity of 
these immune populations and discuss how they can 
be used to better understand the disease and to predict 
patient outcomes.

Cancer Associated Fibroblasts 
and Tumour Associated 
Macrophages - Innate Cells and 
Tumour Promotion
CAFs in CRC
Fibroblasts are a key component of the connective 
tissue and are found embedded in the extracellular 
matrix (ECM). Fibroblasts have important roles in tissue 
homeostasis and remodelling. They produce multiple 
cytokines and can therefore modulate the immune 
microenvironment. Fibroblasts found in tumour stroma 
are referred to as CAFs.

The exact origin of CAFs is not clear. It has been 
proposed that they are cancer cells that have undergone 
an epithelial-mesenchymal transition[12]. Other research 
suggests that fibroblasts mature from fibrocytes that, 
in turn, have differentiated from monocytes[13] and thus 
have a similar haematopoietic lineage to macrophages. 
It is then not surprising that there is significant pheno­
typic overlap between CAFs and macrophages. 
CAFs do not express the immune cell marker CD45, 
however they can express CD68, a marker commonly 
used to differentiate macrophages[14]. Madar et al[15] 
hypothesised that CAFs were the result of convergent 
differentiation from any one of multiple pathways 
within the tumour microenvironment, and that CAF is 
a description of a functional state rather than a defined 
lineage.

CAFS may have a direct role in promoting CRC cell 
growth. Primary CAFs cultured from human colorectal 
tumours developed into distinct populations, some 
inducing a pro-migratory effect on CRC cells[16]. These 
pro-tumour CAFS had a distinct genetic signature with 
significant prognostic value. In addition, CAFs have 
been shown to promote metastases in CRC[17].

CAF interactions promoting tumour growth 
Because of their role in in tissue homeostasis, CAFs are 
able to promote tumour growth via similar pathways, 
including via inflammatory mediators consistent with 
the wound healing process. These pathways were 
reviewed recently[12], so we will discuss the role of CAFs 
briefly, and focus on their influence on innate immune 
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cells. CAF-derived inflammatory mediators can both 
promote tumour growth and tumour invasion (Figure 1). 
An important inflammatory cytokine produced by CAFs 
in the regulation of wound healing, interleukin (IL)-6, is 
also associated with disease progression in CRC. 

IL-6 in patient serum has been associated with 
poor patient prognosis in many cancers, including 
CRC[18]. IL-6 promotes cell survival and supports 
the production of vascular endothelial growth factor 
(VEGF) from both tumour and immune cells. VEGF 
was associated with enhanced tumour progression 
and poor patient prognosis in CRC[19], likely through its 
role in angiogenesis[20]. CAFs produced more IL-6 than 
cancer cells, and CAF-derived IL-6 was increased in the 
presence of CRC cell lines[21]. In response to greater 
IL-6 production, CAFs up-regulated production of VEGF, 
leading to the proposal that the indirect effect of IL-6 on 
tumour growth via CAFs was more important that the 
direct effect of IL-6 on tumour cells[21]. 

Other inflammatory mediators produced by CAFs 
also increase IL-6 production, including IL-1β and 
TNFα[21]. In patients, high plasma levels of the TNFα 
receptor, TNFR-2, were associated with an increased 

relative risk of CRC[22]. Expression of both VEGF[23] and 
FSTL-1[24] (which enhances inflammatory cytokine and 
chemokine expression) was increased in CRC-associated 
CAFs. Chemotherapy, known to cause inflammation as 
cancer cells are killed[25], resulted in increased numbers 
of active CAFs in a cohort of CRC patients[26], and en­
hanced tumour growth in in vitro assays.

CAF recruitment of inflammatory cells
Fibroblasts both recruit, and are recruited by, mono­
cytes/macrophages[12]. CAFs have been shown to 
recruit monocytes to the tumour microenvironment 
and thus may directly affect the local macrophage 
compartment. Indeed, Schellerer et al[27] showed 
there were more Intracellular Adhesion Molecule-1+ 
fibroblasts in tumour tissue than healthy bowel tissue 
from CRC patients, implying that cancer-associated 
cells have a higher affinity for monocytic cells. In an in 
vitro human breast cancer model, CAFs produced high 
levels of the chemokines CCL2 and CCL5 that attracted 
monocytes[28,29]. The production of these chemokines 
required IL-6, in a suggested IL-6-CCL2 auto-regulatory 
cycle[29]. CCL2 and CCL5 were also produced by tumour 
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Figure 1  Immune cell interplay in established colorectal cancer. CAFs and macrophages play an important role in promoting tumour progression in the stroma, 
mediated by IL-6 (“Bad”). Conversely, immune responses at the invasive margin, including macrophage and T cell compartments inhibit tumour growth (“Good”). 
(1): Unknown factors from colorectal tumours promote IL-6 production from CAFs; (2) IL-6 promotes further IL-6 production from CAFs as well as initiation of VEGF 
production; (3) IL-6, IL-17, VEGF and ECM modulators produced by CAFs promote growth, angiogenesis and invasion of colorectal tumours; (4) IL-6 produced by 
CAFs or stromal macrophages promotes T cell differentiation towards an inflammatory IL-17 producing phenotype; (5) IL-17 producing T cells promote colorectal 
tumour progression and are associated with poorer patient prognosis; (6) Tregs suppress the inflammatory IL-17 response; (7) Macrophages at the invasive margin 
are associated with improved prognosis; (8) IL-6 produced in the stroma enhances the anti-tumour phenotype; (9) Invasive margin macrophages are primed to induce 
good effector T cell responses; (10) IFN-γ+ effector T cells are associated with improved prognosis in CRC; (11) Tregs can inhibit effector anti-tumour T cell responses. 
CAFs: Cancer-associated fibroblasts; IL: Interleukin; VEGF: Vascular endothelial growth factor; ECM: Extracellular matrix. 
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lack of detailed phenotype[33].

Gut resident macrophages and CRC 
Regular interaction between immune cells and microbes 
in the gut creates an immune environment that 
must be tightly regulated. Gut resident macrophages 
provide an important role in regulating this commensal 
barrier. These particular macrophages have an anergic 
phenotype; they destroy any bacteria that breach the 
epithelial barrier but do not initiate an immune reaction 
against them under homeostatic conditions[37,38]. 

Unlike most tissue resident macrophage populations, 
gut resident macrophages are bone marrow derived[32,37]. 
Newly recruited monocytes undergo a conditioning 
process, mediated by the gut epithelia, that matures 
them into the resident anergic phenotype. However, 
upon acute inflammatory insult, such as that seen 
in inflammatory bowel disorders, this conditioning 
process becomes dysregulated, resulting in a mature 
macrophage population that acquires and maintains 
migratory and inflammatory characteristics[37,39].

In the context of CRC, monocyte conditioning is 
unlikely to be modulated only by inflammation, but also 
factors actively produced by the tumour[40], hypoxic 
conditions[41] and glucose starvation[28]. As a result, 
unique macrophage populations will exist depending 
strongly on the context of the local microenvironment. 
Hence, describing a homogeneous macrophage popu­
lation in CRC can be misleading. 

TAMs promote an inflammatory pro-tumour environment
It is well documented that TAMs can promote tumour 
growth, both directly on tumour cells, and indirectly 
via cells in the tumour microenvironment (reviewed 
in[42]). The human monocytic cell line, THP-1, produced 
IL-6 in the presence of a colorectal cell line[43], and 
macrophage-derived IL-6 induced expression of IL-6 by 
the HT29 CRC cell line[44]. TAMs also upregulated the 
expression of metalloproteinase (MMP)-2 and MMP-9 
on cancer cells, molecules associated with lymph node 
metastasis[42,45]. TAM-derived IL-6 promoted STAT-3 
mediated IL-10 production in CRC cells, a cytokine that 
has also been associated with poor patient prognosis[46]. 
In fact, p-STAT3 overexpression in the tumours of CRC 
patients is significantly correlated with tumour specific 
mortality[47]. Together, these studies demonstrate that 
TAMs and CAFs promote an environment to support 
tumour progression in CRC. 

Macrophages have been shown to preferentially 
migrate to hypoxic regions of tumours[48]. In a mouse 
model of colitis-associated CRC, repression of hypoxia 
inducible factor 1 led to decreased macrophage 
infiltration in tumours[49]. Interestingly, under hypoxic 
conditions, macrophages can acquire a phenotype similar 
to that seen in macrophages involved in wound-healing 
role - a phenotype likely to promote tumour growth. 
More specifically, human macrophages in hypoxic 
conditions (0.5% oxygen) up-regulated expression of 
both VEGF and glucose transporter (GLUT)-1 compared 

cells as well as the recruited monocyte/macrophages, 
creating a positive feedback loop and generating an 
inflammatory tumour microenvironment[28]. 

TAMs in CRC
The prognostic significance of TAMs is controversial, 
particularly in CRC[30]. Macrophages are myeloid 
derived cells of the innate immune system. They are 
potent phagocytes and are involved in clearance of 
pathogens and cellular debris. They also initiate the 
adaptive response by functioning as antigen presenting 
cells (APCs). Macrophages reside in all tissues where 
they also maintain tissue integrity (reviewed in[31]). 
The phenotype and ontogeny of tissue resident 
macrophages varies between tissues. Some are freshly 
recruited bone marrow-monocyte derived macrophages, 
whereas others derive from the embryonic yolk sac 
(reviewed in[32]). In most adult tissue, however, resident 
macrophages are fetal liver derived. Both the ontogeny 
and microenvironment of resident macrophages influ­
ence their phenotype. As such, resident macrophage 
populations are often heterogeneous.

The phenotypic diversity of macrophages makes 
analysis of subpopulations challenging. A great deal 
of work has been undertaken assessing macrophage 
subsets using only one or two surface markers to 
determine function. However, a recent opinion suggests 
this approach to be misleading, due to the many causes 
of diversity[33]. Instead, multiple markers must be used 
to estimate the function of macrophage populations, 
or, where possible, primary functional data. It has 
been proposed that minimum reporting standards be 
introduced to allow better meta-analysis of macrophage 
data between research groups. This type of approach is 
paramount when assessing highly plastic macrophages, 
for example, human macrophages were shown to 
switch from anti-inflammatory to pro-inflammatory 
cytokine production within 24 h in response to IFNγ, 
Granulocyte-Monocyte Colony Stimulating Factor and 
lipopolysaccharide in vitro[34].

The link between macrophage infiltration and 
prognosis in CRC is still poorly understood. While some 
studies have shown a positive correlation between 
macrophage infiltration and patient prognosis, others 
have shown the opposite[30]. For example, Forssell et 
al[35] demonstrated that a dense macrophage infiltration 
at the tumour invasive margin was associated with 
improved patient prognosis, and that macrophage 
inhibition of tumour spread and growth required direct 
cell-to-cell contact in an in vitro CRC model. In contrast, 
Kang et al[36] demonstrated that intra-tumoural TAM 
count correlated with parameters of worse disease 
progression (depth of invasion, lymph node metastasis 
and stage). Using an in vitro co-culture macrophage 
and CRC cell lines these researchers also demonstrated 
that macrophages increased cancer cell invasiveness 
and migration. It may be that the conflicting data 
relating to the role of macrophages in CRC prognosis is 
due to inaccuracies of reporting culture conditions or a 
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to normoxia[50]. GLUT-1 is the primary rate limiting 
glucose transporter in inflammatory macrophages[51]. 
Using transgenic RAW264.7 macrophages that stably 
overexpressed GLUT-1, it was shown that high glucose 
trafficking via GLUT-1 promoted a pro-inflammatory 
macrophage phenotype[51]. It is then possible to hypo­
thesise that under hypoxic conditions such as those 
in a tumour, macrophages up-regulate GLUT-1 in an 
attempt to scavenge more glucose in a low glucose 
environment. 

Beyond the production of inflammatory modulators, 
colorectal tumours also cause barrier defects, which 
allow for contact between immune cells and microbial 
products. Myeloid cells showed an increase in production 
of the inflammatory cytokine IL-23 under inflammatory 
conditions compared with homeostatic conditions in 
the APCmin mouse model of CRC[52]. IL-23 stimulates 
and maintains IL-17 production from both tumour cells 
and T cells. In a mouse model of colitis associated CRC, 
IL-23- and IL-17-mediated inflammation disrupted 
the commensal microflora, and created a population 
of microbes that promoted tumour progression[53]. 
Furthermore, confocal microscopy of human CRC patient 
samples revealed that IL-17 production was not limited 
to T cells, but was also co-expressed with the myeloid 
cell marker, CD68[54]. These findings indicate that 
myeloid cells such as macrophages may be capable of 
producing IL-17 in CRC in vivo.

Location of TAMs and influence on CRC prognosis
A high infiltrate of macrophages at the invasive margin 
of colorectal tumours has been associated with improved 
patient prognosis[35], and macrophages at the invasive 
margin of patients with CRC displayed characteristics 
of an anti-tumour phenotype[55]. These cells expressed 
the co-stimulatory molecules CD80 and CD86, and 
apoptotic signalling molecule FasL at greater levels 
than stromal macrophages. Moreover, macrophages 
have been closely associated with apoptotic cancer cells 
along the invasive margin[56] and, using cell lines, CRC 
TAMs have been observed to be highly phagocytic[57]. 
In an in vitro model of macrophage differentiation, 
with either human peripheral blood mononuclear cells  
or murine bone marrow derived macrophages, IL-6 
promoted maintenance of the established macrophage 
phenotype, even when the original cytokine stimuli 
were removed[58]. Because macrophages themselves 
also produce IL-6, as well as respond to CAF-produced 
IL-6, they are especially sensitive to the conditioning 
signals in their immediate environment. For example, 
macrophages pre-exposed to IL-4/13, acquired a 
phenotype characterised by increased IL-10 production 
in response to IL-6. However, macrophages pre-
exposed to IFNγ, acquired a phenotype characterised 
by production of IL-1β and TNFα in the presence of 
IL-6. We propose that, in CRC, IL-6 both promotes and 
inhibits tumour growth via uniquely located macrophage 
populations (Figure 1).

T cells and the anti-tumour immune response
While considerable evidence on the role of T cells in 
preventing tumour growth in animal models has been 
acquired over decades, it was not until 2005 that a 
definitive role for T cells in CRC outcome was shown 
in patients[59]. Galon et al[60] demonstrated, in 2006, 
that a high infiltrate of CD3+ CD8+ CD45RO+ T cells at 
the invasive margin and the centre of the tumour was 
predictive of improved Overall Survival and Disease-
Free Survival in a large cohort of people with CRC. Since 
then, these data have been confirmed by other groups, 
and have led to the introduction of the Immunoscore to 
quantify infiltrating T cells in clinical practice[61].

The Immunoscore uses immunohistochemistry tech­
niques to quantify the CD3+ CD8+ T cell infiltrate cell 
analysis at the centre of the tumour and at the invasive 
margin in people with CRC[4]. To date, the Immunoscore 
has proven to provide an accurate staging diagnosis 
as well as to predict patient outcome[62]. Although the 
Immunoscore is an improvement on the current staging 
methods for CRC, its efficacy may be hindered by the 
interference of T cell subsets that are not associated 
with good prognosis.

Although it remains clear that the infiltrate of 
CD3+ CD8+ CD45RO+ T cells is associated with good 
patient prognosis in CRC, some T cell subsets have 
been associated with poor prognosis. Specifically, 
inflammatory CD4+ T cells (Th17 cells), usually 
measured via production of the cytokine IL-17; and 
regulatory CD4+ T cells (Tregs), often quantified by 
expression of the transcription factor, FoxP3; have 
been associated with both good and bad outcomes 
(reviewed in[63]). In addition, a low ratio of CD4+ to 
CD8+ T cells is associated with improved outcome[64]. 
Interestingly, Väyrynen et al[65] measured infiltrates of 
innate cells and adaptive cells in 117 CRC patients and 
found three parameters associated with Disease Free 
Survival at 24 mo: High infiltration of CD3+ cells at the 
invasive margin and high infiltration of FoxP3+ cells at 
the invasive margin and at the tumour stroma. Taken 
together, these findings indicate that that CD8+ T cells 
may be more effective than CD4+ T cells in an anti-
tumour immune response, or that beneficial CD4+ T cell 
subsets are masked by subsets associated with poor 
outcome[64]. The phenotype of T cells resident in the 
tumour is controlled by the local cytokine environment, 
particularly APCs such as macrophages. The efficacy 
of the T cell response against the tumour is therefore 
dependent on interactions with other cells (Figure 1). 

Effective anti-tumour T cell responses
T cells respond to specific antigens expressed by 
pathogens or tumours. These antigens are presented 
by a subset of immune cells, APCs, including dendritic 
cells and macrophages, but also non-immune cells such 
as epithelial cells or tumour cells. The T cell infiltrate in 
CRC is likely to be maximally effective if those cells are 
specific for tumour antigens.
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Nagorsen et al[66] used HLA tetramer analysis to 
show that tumour specific CD8+ T cells in the blood 
were not correlated with improved clinical outcome in 
people with CRC or breast cancer, highlighting the need 
to study the tumour microenvironment. In a separate 
study, tumour-associated-antigen specific T cells were 
detected in 30%-40% of patients with CRC[67]. This 
study also showed that only a small subpopulation of 
infiltrating T cells could respond to tumour-associated 
antigens, indicating that not all infiltrating T cells were 
tumour-specific. Recently, Reissfelder et al[68] proposed 
that a subpopulation of tumour antigen-specific T 
cells infiltrating the tumours of people with CRC was 
responsible for the prognostic impact of T cells shown 
by other studies. 

Multiple studies in animals have shown that cytotoxic 
T cells, via IFNγ, perforin and granzymes, can destroy 
established tumours. Gene cluster analysis of a large 
cohort of 602 patients with early stage CRC revealed 
that those patients with high CD8+ and CD45RO+ T cell 
infiltrates into the tumour also had increased expression 
of genes associated with anti-tumour responses com­
pared with those patients with low CD8+ and CD45RO+ 
T cell infiltrates into the tumour[69]. The up-regulated 
anti-tumour gene signature included genes encoding for 
granzymes and perforin, as well as effector molecules 
such as IFNγ and the related transcription factor T-bet. 
The expression of Granzyme B protein in tumours 
from CRC patients was also associated with improved 
survival[70]. These, and many other data, support a 
role for CD8+ T cells and T cells producing the effector 
molecules IFNγ and granzymes in eliminating CRC.

Effective T cells must become activated by intera­
ctions with APCs presenting antigen in the context of 
an appropriate cytokine milieu. TAMs were shown to 
express higher levels of the co-stimulatory molecule, 
CD80, than tumour stromal cells, indicating that 
these cells could activate T cells within the tumour[55]. 
In addition, using a multi-cellular tumour spheroid 
model, Ong et al[71] showed that TAMs up-regulated 
the expression of CD25 and IFNγ in T cells better than 
in vitro macrophages did. They also showed that the 
frequency of TAMs in human CRC tumours correlated 
with the frequency of infiltrating IFNγ-producing T cells 
in vivo. These data indicate that TAMs may be able to 
promote effector T cell responses within the tumour 
microenvironment (Figure 1). We propose that effective 
anti-tumour immunity is determined by TAM-T cell 
interactions occurring at the invasive margin in CRC.

Th17 cells, inflammation and cancer
Inflammatory T cells [defined here as IL-17-producing 
(or Th17) cells] are important in antimicrobial responses 
in the gut (reviewed in[72]). The acquisition of an IL-
17-producing phenotype occurs when naïve T cells are 
activated in the presence of IL-6, IL-1β, TGFβ and IL-23; 
the maintenance of the phenotype is regulated by these 
same cytokines. Inflammatory IL-17 responses involve 
production of cytokines (especially IL-17) that recruit 

monocytes and neutrophils to sites of inflammation[73]. 
These innate cells in turn produce the same cytokines 
to promote ongoing Th17 responses[74].

IL-17 production in CRC has been associated with 
low Disease-Free Survival and Overall Survival[75] but 
the exact role of Th17 cells in CRC is not understood. 
Liu et al[54] showed that Th17 induced production of 
VEGF in CRC cell lines in vitro, which decreased T cell 
production of IFNγ and Granzyme B. This study also 
showed that in human CRC tumours, high expression 
of IL-17 correlated with high VEGF expression. VEGF 
expression has been inversely correlated with CD8+ 
CD45RO+ T cell infiltrate in tumours of CRC patients[69].

Th17 cells indirectly affect tumour growth via CAFs
CAFs may be activated via microbial products that cross 
the compromised epithelial barrier and promote IL-23 
secretion[52], further supporting Th17 responses. Using 
a mouse model of CRC, Numasaki et al[76] showed 
that tumour cells engineered to express IL-17 led to 
increased production of angiogenic factors, including 
VEGF, not only by tumour cells, but also by CAFs. Th17 
responses may therefore directly aid in the inflam­
matory responses of innate cells in CRC. 

Th17 cells directly promote tumour growth
Liu et al[54] showed that IL-17 was increased in tumour 
tissue compared to healthy bowel tissue in a cohort of 
CRC patients, and that it was strongly correlated with 
overall survival. IL-17 added to human CRC cells ex vivo 
stimulated glucose metabolism by the tumour cells[77]. 
IL-17 promoted tumour growth through a STAT3-
mediated pathway in CRC patients[78]; this result has 
also been shown in other models of cancer[79]. Together, 
these data indicate that the presence of intra-tumoural 
IL-17 may support tumour angiogenesis via VEGF and 
IL-6, and directly promote tumour cell proliferation 
(Figure 1).

Tregs and IL-10 controlling immunity 
Regulatory T cells (Tregs) suppress inflammatory 
responses in the healthy gut and regulate normal 
immune responses by inhibiting proliferation and 
activity of effector T cells. Induced Tregs acquire a 
suppressive phenotype in the presence of cytokines 
such as TGFβ; the regulatory phenotype is characterised 
by up-regulation of the transcription factor FoxP3 
and the production of IL-10, amongst other cytokines 
(reviewed in[80]). Dysregulated immune responses of 
the gut, for example inflammatory bowel diseases, 
are often typified by a high infiltrate of Tregs. In the 
presence of excess inflammatory cytokines from innate 
and adaptive immune cells, particularly IL-6, Tregs can 
convert into IL-17 inflammatory cells, or maintain their 
regulatory function while co-producing IL-17 (reviewed 
in[81]). Conversely, Treg differentiation can also inhibit 
the generation of Th17 cells.

In many human cancers an accumulation of Tregs 
is associated with poor patient outcome, presumably 

226WJGO|www.wjgnet.com October 15, 2015|Volume 7|Issue 10|

Norton SE et al . Immune cells and colorectal cancer



by suppressing effector T cell responses against the 
tumour[63]. Controversially, in CRC, Tregs have been 
associated with both good and poor outcomes for 
patients[82]. It is possible that because Tregs suppress 
other T cells, they could impair the function of anti-
tumour effector cells as well as pro-tumour inflammatory 
Th17 cells. 

Using a complex library of tumour associated 
antigen-polypeptides, tumour-antigen specific Tregs 
were identified in the blood of CRC patients[83] providing 
evidence that these cells have the potential to inhibit 
specific anti-tumour immune responses. Therefore, the 
nature of the tumour immune microenvironment may 
influence the action of infiltrating Tregs.

Tregs suppress anti-tumour immune responses
Tumour-specific Tregs isolated from ovarian tumours 
suppressed effector CD8+ T cell production of IFNγ in 
vitro after stimulation with tumour antigen[84]. The 
infiltrate of Tregs correlated with poor patient prognosis. 
In CRC patients with recurrent disease, specific T cell 
responses to the tumour antigens CEA and 5T4 were 
also suppressed[85]. In the same study, tumour specific 
Tregs and effector T cells were required to have the 
same specificity in order for Tregs to suppress the T 
cell response. Indeed, in an independent study, while 
tumour-antigen specific Tregs were identified in the 
tumours of CRC patients, the specificity of the majority 
of these cells was distinct from that of the effector and 
memory T cells in the same patients[83]. By depleting 
Tregs ex vivo in culture, only the effector anti-tumour 
T cells with the same specificity as the Tregs were 
increased. 

The mechanism of Treg mediated suppression in 
tumour environments is not clear. In a mouse model of 
transplantable CRC using CMT93 cells, TAMs were able 
to recruit CCR6+ Tregs to the tumour via production 
of the chemokine CCL20[86]. The infiltrate of Treg cells 
was associated with tumour development. Similarly, 
in breast cancer patients, the infiltrate of CCR6+ Tregs 
into the tumour was inversely correlated with IFNg 
production from tumour infiltrating CD8+ T cells[87]. 
Using flow cytometry, the authors showed that CCR6+ 
Tregs, but not CCR6- Tregs were associated with poor 
survival in breast cancer patients. This leads us to 
hypothesise that, in CRC, tumour-antigen specific Treg 
populations are actively recruited to the tumour by 
TAMs and inhibit the anti-tumour immune response, 
leading to poor prognosis of patients.

Tregs suppress pro-tumour T cells
Tregs recovered from blood of CRC patients were shown 
to inhibit the proliferation of Th17 cells sorted from 
blood and to suppress IL-17 production[88]. It is possible, 
therefore, that an accumulation of Tregs in the tumour 
of some CRC patients suppresses the inflammatory 
Th17 cell response rather than the anti-tumour effector 
response, leading to improved patient outcome. 

role for IL-10 in regulating tumour immune responses
Tregs are characterised by production of IL-10, a 
multifunctional cytokine generally believed to support 
anti-inflammatory immune responses. CRC patients had 
elevated levels of serum IL-10, and IL-10 remained high 
in those patients who had recurrent disease following 
tumour resection[89]. However, it has become clear that 
treatment of cancer with IL-10 could lead to improved 
anti-tumour responses (reviewed in[90]). In human 
CRC, the amount of IL-17 was inversely correlated with 
the amount of IL-10 produced[91]. Interestingly, it has 
been shown that IL-10 mediated suppression of IL-17 
responses was dependent on type-I IFN signalling[92]. 
Further, Mumm et al[93] showed that IL-10 production 
induced the production of IFNg and granzymes from 
human effector CD8+ T cells in vitro. Together these 
data suggest that IL-10 production from Tregs may, in 
fact, inhibit pro-tumour inflammatory responses as well 
as promote anti-tumour immune responses. Phase 1 
clinical trials have now begun in advanced solid tumours 
using recombinant human IL-10 as a therapy (https://
clinicaltrials.gov/show/NCT02009449).

CLINICAL RELEVANCE
Experimental limitations
Studying the immune response to CRC is difficult 
because of the complexity of both the gut immune 
response and the tumour microenvironment. As with 
most human studies, much of what has been studied 
has been observational and compounded by individual 
patient variation and individual tumour variation. The 
vast majority of CRC cases in humans are sporadic 
and the mutations that lead to tumour initiation and 
progression, and therefore immune responses, differ 
from person to person. Further, while animal models 
of CRC have provided useful information, their ability 
to truly mimic human disease is limited (reviewed 
in[94]). The two most commonly used models represent 
colitis-associated CRC (1%-4% of human CRC) or 
APCmin mice representing familial CRC (about 20% of 
human CRC)[95]. We (and others[96,97]) have developed 
orthotopic surgical murine models of CRC that result 
in a tumour immune microenvironment more similar 
to that seen in sporadic human CRC than other mouse 
models. It is possible these models may be used to test 
new immune-based interventions.

Checkpoint blockade in CRC
Two new immune-based drugs have recently been 
introduced in the treatment of cancer - anti-CTLA-4 
(ipilimumab) and anti-PD-L1/anti-PD-1 (nivolumab or 
pembrolizumab). Both types of drugs act to prevent 
the tumour-mediated suppression of effector T cell 
responses, and have been successful in melanoma 
(reviewed in[98]). However, both checkpoint blockade 
drugs have shown much less success in CRC[99-102]. 
The reasons behind this are unclear but it has been 
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shown that many colorectal tumours do not express 
PD-L1, the ligand for PD-1. Therefore, if the suppressive 
effect of PD-L1 on anti-tumour T cells is absent, then 
therapy targeting the PD-1 pathway is unlikely to be 
successful[101]. However, it has recently been shown that 
microsatellite instability (MSI) high CRC tumours (15% 
of CRC tumours that have mutations in mismatch repair 
genes and are more immunogenic) expressed more 
PDL1 than MSI low tumours, indicating that checkpoint 
blockade may be more successful in the MSI high 
subset of CRC patients[103]. Clinical trials using anti-PD1 
therapy in such a subset of patients are now underway 
to exploit this possibility. 

Adoptive T cell therapy in CRC
Adoptive cell therapy (ACT) has been trialled in CRC 
to some success. Karlsson et al[104] used ex vivo T 
cells (recovered from tumour-draining lymph nodes) 
of CRC patients as a therapy. No side effects were 
observed and complete responses were seen in 4 out 
of 9 patients with metastatic disease. A Phase II trial 
is currently being undertaken to further test ACT in 
patients with metastatic CRC (https://clinicaltrials.
gov/ct2/show/NCT01174121). The use of genetically 
engineered tumour-antigen specific T cells has been 
less successful in CRC. T cells genetically engineered to 
target carcinogenic embryonic antigen (CEA) caused a 
measurable decrease in serum CEA levels in 4/4 CRC 
patients treated but also induced severe colitis in all 
patients[105], consistent with studies in other cancers. 
Targeting neo-antigens in tumours and individualising 
therapy may be the way forward in ACT of CRC. 

CONCLUSION
Recent technological breakthroughs have allowed the 
analysis of single cells, providing enormous amounts 
of data on the immune system (reviewed in[11]). These 
data provide novel insights into the function and 
complex connectivity of immune cells. This new network 
approach to studying immunology is likely to transform 
our understanding of the immune microenvironment 
of individuals with CRC. The immune response to 
CRC in humans is complex and involves a panoply 
of cells interacting with each other and the tumour. 
Patient outcome is unlikely to be accurately predicted 
by measuring one immune parameter independently. 
Moreover, any new immune-based therapies will need 
to take into account the pro- as well as anti-tumour 
activities of specific innate and adaptive immune cells. 
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