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Abstract
Pancreatic cancer is a highly lethal cancer type, for 
which there are few viable therapeutic options. But, 
with the advance of sequencing technologies for global 
genomic analysis, the landscape of genomic alterations 
in pancreatic cancer is becoming increasingly well 
understood. In this review, we summarize current 
knowledge of genomic alterations in 12 core signaling 
pathways or cellular processes in pancreatic ductal 
adenocarcinoma, which is the most common type of 
malignancy in the pancreas, including four commonly 
mutated genes and many other genes that are 
mutated at low frequencies. We also describe the 
potential implications of these genomic alterations for 
development of novel therapeutic approaches in the 
context of personalized medicine. 
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Core tip: With the advance of sequencing technologies 
for global genomic analysis, the landscape of genomic 
alterations in pancreatic cancer is becoming increasingly 
well understood. In this review, we summarize the 
latest knowledge of genomic alterations in pancreatic 
ductal adenocarcinoma including commonly mutated 
genes and many other genes that are mutated at low 
frequencies. We also describe the potential implications 
of these genomic alterations for development of novel 
therapeutic approaches in the context of personalized 
medicine.
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INTRODUCTION
Pancreatic cancer was the seventh leading cause of 
death in the world in 2012, and is responsible for 
about 331000 deaths per year[1]. The 5-year survival 
of pancreatic cancer patients is approximately 5%, and 
this figure has remained constant in recent decades. 
Because of the absence of effective methods for early 
detection and the aggressive nature of this disease, 
the majority of patients present with locally advanced 
or metastatic cancer which is not eligible for surgical 
resection. Chemotherapeutic options for treatment 
of advanced pancreatic cancer are still limited, and 
gemcitabine has been the standard chemotherapeutic 
drug for patients with advanced disease for many 
years, even though this drug alone provides only a 
modest survival advantage[2-4]. Since the approval of 
gemcitabine in United States, many randomized clinical 
trials have been performed to evaluate combinations 
of gemcitabine with other drugs, such as 5-fluorouracil 
(5-FU), cisplatin, oxaliplatin and irinotecan[5], but few of 
them show a significant survival advantage compared 
with gemcitabine alone. The combination of gemcitabine 
with the epidermal growth factor receptor (EGFR) 
inhibitor, erlotinib, does confer a survival advantage 
over gemcitabine monotherapy, but the overall survival 
of patients with advanced disease was extended by only 
10 d on average[6]. The combination of gemcitabine with 
nab-paclitaxel (albumin-bound paclitaxel) was recently 
shown to be superior to gemcitabine alone, probably 
because of depletion of tumor stroma, which leads to 
improved delivery of gemcitabine to tumor cells[7]. Other 
than gemcitabine-based chemotherapies, 5-FU-based 
chemotherapeutic regimens have also been evaluated. 
FOLFIRINOX (folinic acid, fluorouracil, irinotecan and 
oxaliplatin) improved the median overall survival from 
6.8 to 11.1 mo compared with gemcitabine, although 
significant toxicities associated with this regimen limit 
its utility in a wide range of patients[8]. It seems that 
a deeper understanding of the molecular biology of 
pancreatic cancer is needed to develop novel thera
peutic approaches.

In recent years, advances in sequencing technologies 
have enabled us to perform genome-wide analysis to 
establish the genetic alterations underlying pancreatic 
carcinogenesis and progression. In this review, we 
summarize current knowledge of genomic alterations in 
pancreatic ductal adenocarcinoma (PDAC), which is the 
most common type of malignancy in the pancreas, and 
we discuss their implications for development of novel 

therapeutic strategies.

GENOMIC ALTERATIONS OF 
PANCREATIC CANCER
Jones et al[9] have shown that PDAC harbors an average 
of 63 genome alterations, of which the majority are 
point mutations. Four key genes are frequently altered 
in PDAC: KRAS, CDKN2A, TP53 and SMAD4. The most 
common gene alteration is in KRAS (v-ki-ras2 Kirsten 
rat sarcoma viral oncogene homolog), where mutations 
occur in codons 12, 13 and 61[9,10]. More than 90% of 
PDAC contains KRAS mutation, and such mutations 
are also present in about 45% of low-grade pancreatic 
intraepithelial neoplasia (PanIN) lesions[11,12]. KRAS 
encodes a GTPase that activates various downstream 
signaling pathways, including the mitogen-activated 
protein kinase (MAPK) cascades[13]. Mutations in 
KRAS result in constitutive activation. Ras proteins 
are involved in a variety of cellular functions, including 
proliferation, differentiation and survival[14,15]. P16, 
cyclin-dependent kinase inhibitor 2A gene (CDKN2A) is 
also inactivated in up to 90% of PDAC, due to intragenic 
mutation in association with allelic loss, homozygous 
deletion, or hypermethylation of the gene promoter[16-18]. 
CDKN2A encodes a cyclin-dependent kinase inhibitor 
that controls G1-S transition in the cell cycle. Mutations 
in CDKN2A are thought to be subsequent to those 
of KRAS, because of the higher prevalence of KRAS 
mutations in early-stage precursor lesions and the fact 
that most PanIN lesions containing CDKN2A inactivation 
also harbor KRAS mutation[19]. TP53 is one of the most 
frequently mutated genes in many types of cancer[20-22], 
and is inactivated in about 75% of PDAC, mainly due 
to point mutations or small deletions[21,22]. p53 is a 
transcription factor that determines cell fate by inducing 
expression of a variety of genes related to cell cycle 
arrest and apoptosis, and plays an important role as a 
master regulator of cellular stress responses. SMAD4 
(DPC4, SMAD family member 4 gene) is inactivated 
in up to 55% of PDAC by homozygous deletion or 
intragenic mutation in association with allelic loss[23]. 
SMAD4 encodes a transcription factor that mediates 
signaling of the transforming growth factor-β (TGF-β) 
superfamily. TP53 and SMAD4 genes are mutated in 
late-stage precursor lesions, typically in high-grade 
PanIN[24,25].

In addition to these four frequently altered genes, 
various other genes are mutated at relatively low 
frequencies in pancreatic cancer. Jones et al[9] reported 
alterations in genes related to chromatin remodeling 
(ARID1A, MLL3). Furthermore, they proposed that core 
signaling pathways exist in pancreatic cancer (Figure 
1), and noted that the pathway components altered 
in individual tumors may vary widely[9]. Whole-exome 
sequencing analysis of 99 pancreatic cancers found 
many significantly mutated genes, including genes 

Takai E et al . Genomic alterations in pancreatic cancer

WJGO|www.wjgnet.com October 15, 2015|Volume 7|Issue 10|251



related to chromatin remodeling (EPC1, ARID2) and 
DNA damage repair (ATM)[26]. In addition to the core 
signaling pathways mentioned above[9], they identified 
significant alterations in genes related to the axon 
guidance pathway, including ROBO1/2 and SLIT2[26]. 
More recently, whole-genome analysis of 100 PDACs 
provided a comprehensive picture of the genomic 
alterations in this disease[27]. In addition to genes known 
to be important in PDAC (TP53, SMAD4, CDKN2A, 
ARID1A and ROBO2), chromosomal rearrangements 
affecting KDM6A and PREX2 were identified. KDM6A 
is related to chromatin remodeling, and is mutated in 
renal cell carcinoma and medulloblastoma[28,29]. The 
RAC1 guanine nucleotide exchange factor, PREX2, is 
mutated in melanoma[30]. Copy number analysis also 
uncovered a number of amplifications in genomic 
regions including KRAS and GATA6[27], in accordance 
with a previous report[31]. Most importantly, they demon
strated that a small fraction of patients (1%-2%) 
harbor focal amplifications in druggable genes, including 
ERBB2, MET, FGFR1, CDK6, PIK3CA and PIK3R3[27].

Some germline mutations are known to be associ
ated with familial clusters of pancreatic cancer. For 
example, inactivation of BRCA2, which encodes a 
protein involved in DNA damage repair, is related to 
familial pancreatic cancer. Indeed, BRCA2 mutation 
is associated with a 3.5- to 10-fold increased risk of 
pancreatic cancer, as well as increased risk of breast 
cancer and ovarian cancer[32,33]. Germline mutations 
in the Fanconi anemia genes, such as FANCC, FANCG 
and PALB2 (also known as FANCN), are also implicated 
in familial pancreatic cancer[34-37]. In addition, germline 
mutation of ATM has recently been identified in subsets 

of familial pancreatic cancer[38].

IMPLICATIONS OF GENOMIC 
ALTERATIONS FOR TREATMENT OF 
PANCREATIC CANCER
The development of powerful sequencing technologies 
has led to a detailed knowledge of the human cancer 
genome, and it has become evident that some types of 
cancer can be effectively treated by targeted therapies 
based on their specific gene alterations. Here we 
discuss potential approaches for gene alteration-based 
treatment of pancreatic cancer.

The most prevalent oncogenic alteration, in KRAS, 
seems an obvious target for cancer therapy, because 
mutant KRAS protein has been experimentally de
monstrated to play a pivotal role in maintenance of 
PDAC[39,40]. Activating mutations at KRAS codons 12, 
13 and occasionally 61 are currently the most common 
gene alterations in pancreatic cancer. A therapeutic effect 
of blocking G12D mutant KRAS has been demonstrated 
by using siRNA and a novel siRNA delivery system, 
both in vitro and in vivo[41]. Although great efforts 
have been made to develop small-molecular inhibitors 
of mutant KRAS, no clinically effective antagonist 
has yet been identified[42]. Instead, some indirect 
approaches, such as targeting post-transcriptional 
processes, have been tried. Farnesylation of KRAS 
allows the protein to associate with the membrane 
and interact with Ras activating proteins, including 
Ras-GEFs. Farnesyltransferase is the key enzyme 
involved in addition of a 15-carbon isoprenoid chain to 
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Figure 1  Core signaling pathways of pancreatic cancer. 
Twelve signaling pathways and cellular processes that are 
important in pancreatic cancer have been identified based on 
whole-exome sequencing analysis[9]. Various component genes 
associated with each pathway are mutated in most pancreatic 
cancers. Targeting one or more of these pathways, rather than 
specific gene alterations that occur within a pathway, would be 
a new strategy for treatment of pancreatic cancer. KRAS: V-ki-
ras2 Kirsten rat sarcoma viral oncogene homolog; JNK: C-jun 
N-terminal kinase; TGF-β: Transforming growth factor-β.
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have been examined for various types of cancer, none 
has yet been implemented for treatment of pancreatic 
cancer.

Focusing on signaling pathways in pancreatic cancer 
may be a better strategy than targeting particular gene 
alterations for treatment of pancreatic cancer. The 
core signaling pathways of pancreatic cancer[9] include 
several druggable pathways. For example, the Wnt/
Notch pathway is important, and inhibition of the Notch 
pathway by inhibiting γ-secretase has been suggested 
as a potential treatment strategy[65]. The combination 
of γ-secretase inhibitor MRK003 with gemcitabine has 
been shown to provide a survival benefit in vivo[66]. It 
has also been reported that pancreatic cancer cells that 
harbor inactivating mutations of RNF43 are sensitive to 
LGK974, a Wnt pathway inhibitor currently in a phase 1 
clinical trial[67]. Inhibition of the Hedgehog pathway with 
a natural hedgehog antagonist, cyclopamine, decreases 
growth of various types of tumor, including PDAC[68,69]. 
Clinical use of cyclopamine, however, is problematic 
because of its side effects and suboptimal pharma
cokinetics. A novel, orally bioavailable, small-molecular 
Hedgehog inhibitor, IPI-269609, has been shown to 
inhibit tumor initiation and metastasis of pancreatic 
cancer[70]. Interestingly, blockade of the Hedgehog 
pathway has also been proposed as a means to target 
the tumor stroma and improve delivery of gemcitabine 
in vivo[71]. Small-molecular inhibitor Saridegib (IPI-926) 
was tested in combination with gemcitabine in patients 
with pancreatic cancer. However, the Phase I/IIb trial 
was stopped because patients receiving the combination 
had higher rates of progressive disease and lower 
overall survival in 2012[72].

Although the frequencies are low, mutations of 
several familial pancreatic cancer-related genes are 
associated with drug sensitivity. Inactivation of BRCA2 
is found in about 7% of western PDAC patients[32,73]. 
BRCA2 plays a crucial role in homologous recom
bination-based DNA damage repair processes[74]. Poly 
ADP-ribose polymerase (PARP) is an important enzyme 
in the DNA repair mechanism mediated by BRCA2, and 
PARP inhibitors induce extreme genome instability and 
death of BRCA-mutated cancer cells[75]. As well as PARP 
inhibitors, DNA-crosslinking agents such as mitomycin C, 
cisplatin and carboplatin are also effective for treatment 
of BRCA-inactivated pancreatic cancer[76]. As PALB2 
encodes a protein that interacts with BRCA2, PALB2 
mutations are expected to disrupt BRCA2-mediated 
repair of DNA double strand breaks. PALB2 mutations 
in PDAC patients confer sensitivity to DNA-damaging 
agents[77]. Tumors with mutations in ATM, another fami
lial pancreatic cancer-related gene, might also be sensi
tive to PARP inhibitors[78].

Overall, pancreatic cancer is characterized by 
substantial genomic heterogeneity with numerous 
infrequently mutated genes[9,26,27]. Although the common 
mutations in pancreatic cancer, KRAS, TP53, CDKN2A 
and SMAD4, are currently not druggable, stratified 
therapeutic strategies based on genomic alterations 

KRAS protein. However, despite in vitro and xenograft 
studies[43], farnesyltransferase inhibitors, such as 
tipifarnib, have proven unsuccessful in combination 
with gemcitabine[44,45]. This can be attributed to 
the existence of an alternative post-transcriptional 
mechanism, geranyl-geranylation, that compensates 
for inhibition of farnesyltransferase[46]. A dual inhibitor 
of farnesyltransferase and geranylgeranyltransferase 
(L-778,123) was tested in a Phase I clinical trial in 
combination with radiotherapy for locally advanced 
PDAC, and showed acceptable toxicity[47]. Some 
groups have recently investigated strategies targeting 
localization of KRAS to the membrane. Deltarasin is a 
small molecule that binds to the farnesyl-binding pocket 
of the delta subunit of phosphodiesterase (PDEδ) and 
inhibits translocation of KRAS to the membrane by 
blocking the interaction between PDEδ and farnesylated 
KRAS[48,49]. On the other hand, Salirasib blocks KRAS 
activation by dislodging the farnesylated protein from 
the membrane[50]. The results of preclinical and clinical 
trials suggest that salirasib may be effective[51].

Targeting downstream effectors of KRAS may be 
an alternative approach to block the KRAS signaling 
pathway. The MEK/MAPK and PI3K/Akt/mTOR pathways 
are the principal downstream pathways of KRAS. But, 
although several MEK inhibitors, such as CI-1040 and 
PD0325901, have been investigated in clinical trials, 
they failed to deliver meaningful therapeutic benefit[52,53]. 
In addition, trametinib, another MEK1/2 inhibitor, was 
recently tested in combination with gemcitabine for 
patients with metastatic pancreatic cancer, but failed 
to improve the clinical outcome[54]. Activation of the 
PI3K/Akt/mTOR pathway also plays an important role 
in maintenance of pancreatic cancer[55-57]. An inhibitor 
of PI3K, LY294002, was reported to induce apoptosis in 
vitro and to inhibit tumor growth in vivo[58]. In addition, 
everolimus, a mammalian target of rapamycin (mTOR) 
inhibitor, has been reported to inhibit tumor growth in 
vivo[59]. However, everolimus had minimal activity in 
patients with gemcitabine-resistant PDAC in a phase 
II study[60,61]. It was recently found that tumors with 
activated KRAS and mutant TP53 did not respond to 
mTOR inhibition, whereas tumors with KRAS activation 
and PTEN loss are responsive to mTOR inhibition[62]. 

Since the MEK/MAPK and PI3K/Akt/mTOR pathways 
are both downstream of KRAS, it is possible that 
inhibition of one pathway induces compensatory acti
vation of the other pathway. Therefore, inhibition of 
both pathways may have a synergistic effect in treat
ment of pancreatic cancer[63,64]; thus, simultaneous 
blockade of MEK/MAPK and PI3K/Akt/mTOR seems to 
warrant further investigation as a candidate therapy for 
pancreatic cancer.

In addition to KRAS, CDKN2A, TP53 and SMAD4 are 
also commonly altered in pancreatic cancer. However, 
therapeutic approaches targeting these proteins are 
considered to be difficult for various reasons, including 
cellular location and multifunctionality. Although a 
number of therapeutic strategies targeting these genes 
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that occur at low frequency might be beneficial for 
treatment of pancreatic cancer. Recently, Jones et al[79] 
identified somatic alteration in potentially druggable 
genes in approximately 20% of PDAC patients. In 
Australia, the Individualized Molecular Pancreatic Cancer 
Therapy (IMPaCT) trial screens patients for actionable 
molecular phenotypes, with the aim of developing 
personalized therapies for pancreatic cancer[80]. IMPaCT 
is a randomized phase II clinical trial designed to assess 
standard therapy (gemcitabine) vs genotype-guided 
target therapies in patients with recurrent or metastatic 
pancreatic cancer. Initially, three subgroups with pre-
defined actionable mutations, i.e., HER2-amplified 
(gemcitabine + trastuzumab), DNA damage response-
defective (gemcitabine + PARP inhibitor) and anti-
EGFR-responsive (gemcitabine + erlotinib), are being 
tested. This clinical trial was designed so that other 
arms could be added as novel subgroups or agents are 
identified. This approach could facilitate development of 
personalized therapies for pancreatic cancer.

CONCLUSION
Comprehensive genomic studies have provided exten
sive information on the pancreatic cancer genome, 
including its heterogeneity and core signaling pathways. 
These findings should be useful for the development 
of novel therapeutic strategies. For example, it might 
be helpful for early detection of pancreatic cancer to 
identify individuals with a genetic predisposition for the 
disease, including familial pancreatic cancer-related 
genes, so that periodic follow-up screening can be 
performed. Analysis of clonal evolution of pancreatic 
cancer indicates that it takes more than 10 years 
from occurrence of the initiating genomic alteration to 
formation of the parental clone[81]. Thus, there appears 
to be a substantial time window for early detection. 
Current sensitive sequencing technologies allow us to 
detect tumor DNA of various types of cancer in plasma 
(circulating tumor DNA, ctDNA)[82], and indeed, ctDNA 
has been detected in plasma from patients with early-
stage breast and lung cancers[83,84]. Such an approach 
could also be applicable to patients with pancreatic 
cancer. More comprehensive genomic analysis may 
also be useful for identifying actionable mutations. 
Furthermore, ctDNA is thought to reflect the genetic 
heterogeneity of cancer, since it may contain tumor DNA 
derived from various regions, including metastases. 
Novel strategies based on genomic information seem 
likely to revolutionize pancreatic cancer therapy over 
the next few years, and may ultimately lead to fully 
personalized medicine.
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