Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Mar 15;90(6):2242–2245. doi: 10.1073/pnas.90.6.2242

Comparative reproductive success of communally breeding burying beetles as assessed by PCR with randomly amplified polymorphic DNA.

M P Scott 1, S M Williams 1
PMCID: PMC46062  PMID: 8460129

Abstract

To understand the evolution of alternative reproductive strategies such as communal breeding, it is important to recognize the options open to individuals and to evaluate their consequences. The relative reproductive success of individuals taking each option is one of the most important of these consequences. Burying beetles, Nicrophorus, are an excellent model system for the investigation of reproductive cooperation because they can breed in pairs or communally and provide extensive parental care. In this study, we examine the relationship of the duration of care and the reproductive success of each potentially communally breeding adult. Ten experimental broods reared on mouse carcasses were buried by two males and two females. Using PCR with single short primers that randomly amplify polymorphic DNA, we determined the maternity and paternity of 98.2% and 99.5% of the offspring (n = 217), respectively. In 70% of the broods, both females produced larvae, and in 70%, both males inseminated one or both females. The male and female providing longer care, usually the larger of each sex, were the mother and father of most larvae (50-100%).

Full text

PDF
2242

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold M. L., Buckner C. M., Robinson J. J. Pollen-mediated introgression and hybrid speciation in Louisiana irises. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1398–1402. doi: 10.1073/pnas.88.4.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke T., Bruford M. W. DNA fingerprinting in birds. Nature. 1987 May 14;327(6118):149–152. doi: 10.1038/327149a0. [DOI] [PubMed] [Google Scholar]
  3. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  4. Hadrys H., Balick M., Schierwater B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol. 1992 May;1(1):55–63. doi: 10.1111/j.1365-294x.1992.tb00155.x. [DOI] [PubMed] [Google Scholar]
  5. Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
  6. Lewin R. Limits to DNA fingerprinting. Science. 1989 Mar 24;243(4898):1549–1551. doi: 10.1126/science.2928790. [DOI] [PubMed] [Google Scholar]
  7. Lynch M. Estimation of relatedness by DNA fingerprinting. Mol Biol Evol. 1988 Sep;5(5):584–599. doi: 10.1093/oxfordjournals.molbev.a040518. [DOI] [PubMed] [Google Scholar]
  8. Reeve H. K., Westneat D. F., Noon W. A., Sherman P. W., Aquadro C. F. DNA "fingerprinting" reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2496–2500. doi: 10.1073/pnas.87.7.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Riedy M. F., Hamilton W. J., 3rd, Aquadro C. F. Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR. Nucleic Acids Res. 1992 Feb 25;20(4):918–918. doi: 10.1093/nar/20.4.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scott M. P., Haymes K. M., Williams S. M. Parentage analysis using RAPD PCR. Nucleic Acids Res. 1992 Oct 25;20(20):5493–5493. doi: 10.1093/nar/20.20.5493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Welsh J., Petersen C., McClelland M. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 1991 Jan 25;19(2):303–306. doi: 10.1093/nar/19.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wetton J. H., Carter R. E., Parkin D. T., Walters D. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature. 1987 May 14;327(6118):147–149. doi: 10.1038/327147a0. [DOI] [PubMed] [Google Scholar]
  14. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES