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Abstract

Spontaneously arising (de novo) genetic variants are important in human disease, yet every 

individual carries many such variants, with a median of 1 de novo variant affecting the protein-

coding portion of the genome. A recently described mutational model (Samocha et al., 2014) 

provides a powerful framework for the robust statistical evaluation of such coding variants, 

enabling the interpretation of de novo variation in human disease. Here we describe a new open-

source software package, denovolyzeR, that implements this model and provides tools for the 

analysis of de novo coding sequence variants.

Keywords

de novo variant; exome sequencing

Correspondence to: James S. Ware.

INTERNET RESOURCES
http://www.r-project.org/
The home page of the R project. The R software environment can be downloaded from this site.
http://cran.r-project.org/web/packages/denovolyzeR/
The Comprehensive R Archive Network (CRAN) is a network of ftp and web servers around the world that store identical, up-to-date, 
versions of code and documentation for R. The latest stable version of denovolyzeR should always be available on CRAN, and 
archived there in perpetuity.
http://denovolyzer.org/
The home page for the denovolyzeR project, with further supporting material
http://github.com/jamesware/denovolyzeR
GitHub is a web-based Git repository hosting service. The latest development version of denovolyzeR is hosted here prior to release 
on CRAN.
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INTRODUCTION

Spontaneously arising (de novo) genetic variants are important in human disease. Every 

individual carries approximately 100 such variants that are not present in their parents’ 

DNA, but rather have arisen via mutational events in the parental germ cell (egg or sperm) 

or early embryo, with a median of 1 de novo variant affecting the protein-coding portion of 

genome, referred to as the exome (Conrad et al., 2011; Lynch, 2010).

Exome sequencing and analysis of de novo variants has successfully identified genes 

underlying rare and genetically homogeneous Mendelian diseases. In Kabuki syndrome, for 

example, non-synonymous de novo variants were identified in KMT2D (MLL2) in 9 out of 

10 unrelated individuals (Ng et al., 2010). An accumulation of this magnitude would be 

extremely improbable in the absence of a causal role in the disease given both the rarity and 

independence of de novo variants.

By contrast, it is more challenging to dissect the role of de novo variants in conditions with 

high levels of locus heterogeneity, including heritable complex traits and some Mendelian 

conditions, where de novo variants may be spread across many genes, and may make a 

smaller overall contribution to pathogenesis. Here it may be possible to assess the global 

contribution of de novo coding variants to disease by comparing their frequency in cases and 

controls, given sufficiently large sample sizes. However, at the level of individual genes, the 

interpretation of de novo variants is complicated by the background mutation rate, which 

varies greatly between genes. Additionally, as more individuals are sequenced, it is 

inevitable that multiple de novo variants will be observed in some genes by chance.

A statistical framework has recently been developed to address these challenges, with 

respect to de novo single nucleotide variants (SNVs) in coding sequence (Samocha et al., 

2014). Briefly, the mutability of each gene is individually determined based on local 

sequence context, and the probability that a de novo event will arise in a single copy of the 

gene in one generation is calculated. The consequence of each possible de novo SNV is 

computed, and de novo probabilities are tabulated for each variant class (e.g. synonymous, 

missense, etc). In order to more fully assess loss-of-function (lof) variation, the probability 

of a frameshifting insertion or deletion is also estimated for all genes (proportional to the 

length of the gene and the ratio of nonsense to frameshifting indels genome-wide under the 

assumption that the two classes have similar selective pressure against them). For a given 

study population, de novo variants can be evaluated by comparing the observed numbers of 

variants with the number expected based on this model and the population size, using a 

Poisson framework. This permits robust significance estimates for the pileup of de novo 

variation in individual genes and gene sets, and increases the power of genome-wide 

analyses.

In this unit, we describe the application of this statistical framework to analyze de novo 

variants using denovolyzeR, an open-source software package written for the R statistical 

software environment (R Core Team, 2015). We present protocols for four analyses: to 

assess (i) whether there is a genome-wide excess of de novo variation for different 

functional classes of variant, (ii) whether there is a genome-wide excess of genes with 
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multiple de novo variants, (iii) whether individual genes carry an excess of de novo variants, 

and (iv) whether a pre-specified set of genes collectively shows an enrichment of de novo 

variants.

BASIC PROTOCOL 1: ASSESSING THE GENOME-WIDE BURDEN OF DE 

NOVO VARIANTS

This protocol will assess whether there is a genome-wide excess of de novo variation for 

different functional classes of variant.

Materials

• A computer running the R software environment, available for UNIX platforms, 

Windows and MacOS from http://www.r-project.org.

• The denovolyzeR package. The latest stable release can be installed directly from 

the Comprehensive R Archive Network (CRAN) from within R

install.packages(“denovolyzeR”)

• Other download and installation options, including for the latest development 

version, are described at http://denovolyzer.org

• dplyr and reshape packages. These dependencies may be installed automatically 

when denovolyzeR is installed (depending on your installation route). Otherwise 

they can be installed by running:

install.packages(“dplyr”,”reshape”)

• A table of de novo variants. The minimum input comprises two columns of data: 

gene names, and variant classes (functional consequence of each variant). Example 

data is included in the denovolyzeR package, and will be used in this protocol. The 

dataset comprises a data.frame of de novo variants identified in 1078 individuals 

with autism (Samocha et al., 2014), named autismDeNovos. It is assumed that 

readers are able to import their own data into the R environment, using the 

read.table function or equivalent (in R, ?read.table will provide help).

1) In R, load the denovolyzeR package.

library(denovolyzeR)

2) Prepare input data. View demonstration data provided with the denovolyzeR 
package. Alternatively, users may import their own data in an equivalent format.

dim(autismDeNovos); head(autismDeNovos)

##  [1]   1040    2
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##        gene  class

##  1  BCORL1  mis

##  2  SPANXD  mis

##  3    GLRA2  mis

##  4  RPS6KA3  non

##  5      TSR2  mis

##  6    GNL3L  syn

Variant classes must be labeled using the following terms:

“syn” (synonymous), “mis” (missense), “non” (nonsense), “splice” (canonical splice site) or 

“frameshift”. Alternatively, “lof” may be used collectively for loss-of-function classes (“non 

+ splice + frameshift”). Whichever input format is chosen, summary statistics can be 

produced for “lof”, “prot” (protein-altering = mis + lof), and “all”. “prot” and “all” are not 

valid input classes. In-frame insertions/deletions are currently not evaluated within the 

statistical framework.

A variety of gene identifiers may be used. Valid identifiers recognized by the software 

include: hgncID, hgncSymbol, enstID, ensgID, geneName. The default option 

(“geneName”) specifies gene symbols by default, more specifically, these correspond to the 

“external_gene_name” provided by the Ensembl genome browser (Cunningham et al.). 

ensgID and enstID refer to Ensembl gene and transcript identifiers. hgncID and hgncSymbol 

refer to HUGO Gene Nomenclature Committee ID numbers and symbols. Within the R 

environment, the BiomaRt package (Durinck et al., 2009) from Bioconductor provides tools 

to convert gene identifiers.

3) Compare the observed burden of de novo variation to expectation.

The denovolyzeByClass function will perform the required analysis. The function has three 

required arguments:

• genes: a vector of gene identifiers, for genes that contain de novo variants

• classes: a vector of variant consequences (corresponding to the gene list)

• nsamples: the total number of samples analyzed (including samples without de 

novo variants). For the example data, 1078 individuals were sequenced.

denovolyzeByClass(genes=autismDeNovos$gene,

                 classes=autismDeNovos$class,

                 nsamples=1078)

##   class  observed expected enrichment   pValue

##  1  syn      254    302.3      0.840  0.998000

##  2  mis      655    679.0      0.965  0.826000

##  3  lof      131     94.3      1.390  0.000199

##  4 prot      786    773.2      1.020  0.328000

##  5   all     1040   1075.5      0.967  0.864000
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For each variant class, this function returns the observed number of variants, the expected 

number of variants, enrichment (= observed/expected), and the p value (obtained from a 

Poisson test).

The output can be customized using the “includeClasses” argument, either to display only a 

subset of variant classes of interest

denovolyzeByClass(genes=autismDeNovos$gene,

                 classes=autismDeNovos$class,

                 nsamples=1078,

                 includeClasses=c(“mis”,”lof”))

##   class  observed  expected  enrichment     pValue

## 1  mis      655    679.0      0.965   0.826000

## 2   lof      131     94.3      1.390   0.000199

or to display increased granularity. By default, nonsense, frameshift & splice variants are 

analyzed in combination as “lof”, but may be analyzed separately.

denovolyzeByClass(genes=autismDeNovos$gene,

                 classes=autismDeNovos$class,

                 nsamples=1078,

                 includeClasses=c(“frameshift”,”non”,”splice”,”lof”))

##        class  observed  expected  enrichment   pValue

## 1       non       52      34.8       1.500 0.003740

## 2      splice       15      16.1       0.934 0.638000

## 3  frameshift       64      43.4       1.470 0.002070

## 4        lof      131      94.3       1.390 0.000199

Further information on function options, and help generally, is available using the help 

function.

help(denovolyzeByClass)

BASIC PROTOCOL 2: ASSESSING THE NUMBER OF GENES WITH 

MULTIPLE DE NOVO VARIANTS

The occurrence of multiple de novo events in a single gene, in a cohort of individuals with a 

common phenotype, may implicate that gene in the pathogenesis of the condition under 

study. Before evaluating single genes, it is instructive to assess the total number of genes 

harboring multiple de novo variants. Here, the number of genes containing multiple de novo 

variants is compared with an empirical distribution derived by permutation.
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Materials

As for protocol 1

1) Ensure the denovolyzeR library and data for analysis are loaded.

library(denovolyzeR)

2) The denovolyzeMultiHits function will perform the required analysis. The same 

three arguments are required as for BASIC PROTOCOL 1: genes (vector of 

genes containing de novo variants), classes (a vector of variant consequences) 

and nsamples (number of samples). In addition, nperms determines the number 

of permutations run (defaults to 100).

The function addresses the questions “given nVars variants in a set of genes, how many 

genes are expected to contain more than one variant? Do we observe more than this?”

denovolyzeMultiHits(genes=autismDeNovos$gene,

                   classes=autismDeNovos$class,

                   nsamples=1078,

                   nperms=100)

##      obs  expMean  expMax  pValue  nVars

##  syn   3       3.6      11    0.62   254

##  mis  31      20.3      31    0.04   655

##  lof   5       1.2       5    0.01   131

## prot  43      29.0      43    0.01   786

##  all   66     47.4       64    0.00  1040

For each variant class, the function returns the observed number of genes containing 

multiple de novo variants in the user data provided (“obs”), the average number of genes 

containing multiple hits across nperms permutations (“expMean”), the maximum number of 

genes containing multiple hits in any permutation (“expMax”), and an empirical p value 

(“pValue”). In this case some of the p values are returned as 0, indicating < 1/nperms (in this 

case <0.01). We can obtain a better estimate by increasing the number of permutations:

denovolyzeMultiHits(genes=autismDeNovos$gene,

                   classes=autismDeNovos$class,

                   nsamples=1078,

                   nperms=5000,

                   includeClasses=“prot”)

##      obs  expMean  expMax  pValue nVars

##  prot  43      28.1      46  0.0026   786

Note that the exact numbers may change slightly between runs of denovolyzeMultiHits due 

to stochastic changes in the permutations. These stochastic fluctuations are likely to be small 
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for large numbers of permutations. Finally, the function reports the total number of de novo 

variants of each class, which is the number used as input to the permutation (“nVars”).

3) This function can be run in two modes. The expected number of genes 

containing >1 hit is obtained by permutation: given nVars de novo variants, how 

many genes contain >1 variant? There are two options for selecting nVars. By 

default, this number is derived from the input data - in other words, the total 

number of lof variants that are permuted across the defined gene list is the total 

number of lof variants in the input data. An alternative approach uses the 

expected number of lof variants in the gene list, as determined by the model.

In the example above autismDeNovos contains 131 lof variants, so by default 

this is the number used in the permutation:

sum(autismDeNovos$class %in% c(“frameshift”,”non”,”splice”))

##  [1] 131

denovolyzeMultiHits(genes=autismDeNovos$gene,

                   classes=autismDeNovos$class,

                   nsamples=1078,

                   includeClasses=“lof”)

##    obs  expMean  expMax  pValue  nVars

## lof   5       0.9       5     0.01   131

The expected number of de novo variants is controlled by the nVars argument, whose 

default value is “actual”. This is a conservative approach, addressing the question: “given 

the number of variants in our dataset, do we see more genes with >1 variant than expected?” 

An alternative approach simply asks whether there are more genes with >1 variant than our 

de novo model predicts. This is accessed by setting nVars=“expected”.

denovolyzeMultiHits(genes=autismDeNovos$gene,

                   classes=autismDeNovos$class,

                   nsamples=1078,

                   includeClasses=“lof”,

                   nVars=“expected”)

##     obs  expMean  expMax  pValue    nVars

##  lof   5       0.5        3       0 94.26139

BASIC PROTOCOL 3: ASSESSING THE FREQUENCY OF DE NOVO 

VARIANTS IN INDIVIDUAL GENES

In the previous protocol, we assessed whether there were more genes containing multiple de 

novo variants than expected by chance. In the example data, we noted five genes with 

multiple loss-of-function hits. In this next protocol, we will determine whether any 

individual genes carry an excess of de novo variants, using the denovolyzeByGene function.
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Materials

As for protocol 1

1. Ensure the denovolyzeR library and data for analysis are loaded.

library(denovolyzeR)

2. Call the denovolyzeByGene function. The same three arguments are required as for 

the previous protocols: genes (vector of names of genes containing de novo 

variants), classes (a vector of variant consequences) and nsamples (number of 

samples). This function will return one row per gene, ordered according the 

significance of any enrichment in de novo variants. Given the size of the data, we 

will only view the first few lines here, using the head function.

head(

  denovolyzeByGene(genes=autismDeNovos$gene,

                   classes=autismDeNovos$class,

                   nsamples=1078)

  )

##             lof.obs  lof.exp  lof.pValue  prot.obs  prot.exp  

prot.pValue

##  DYRK1A        3      0   2.69e-08       3      0.1    2.77e-05

##  SCN2A         3      0   1.83e-06       5      0.1    3.70e-07

##  CHD8           3      0   7.19e-07       4      0.2    2.44e-05

##  RFX8           0      0   1.00e+00       2      0.0    2.34e-05

##  SUV420H1       1      0   6.37e-03       3      0.1     3.17e-05

##  POGZ           2       0   1.23e-04       2      0.1     5.07e-03

denovolyzeR will output one line for every gene that contains at least one variant in the 

input data. In order to view only genes with multiple hits, we can use the subset function to 

select genes with more than one observed protein-altering variant:

library(dplyr)

denovolyzeByGene(genes=autismDeNovos$gene,

                 classes=autismDeNovos$class,

                 nsamples=1078) %>%

  subset(prot.obs>1)

##           lof.obs  lof.exp  lof.pValue  prot.obs  prot.exp prot.pValue

##  DYRK1A      3     0.0    2.69e-08       3      0.1    2.77e-05

##  SCN2A        3     0.0    1.83e-06       5      0.1    3.70e-07

##  CHD8         3     0.0    7.19e-07       4      0.2    2.44e-05

##  RFX8          0     0.0    1.00e+00       2      0.0    2.34e-05

##  SUV420H1     1     0.0    6.37e-03       3      0.1    3.17e-05
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##  POGZ         2     0.0    1.23e-04       2      0.1    5.07e-03

##  ARID1B       2     0.0    1.64e-04       2      0.2    1.13e-02

##  PLEKHA8      0     0.0    1.00e+00       2      0.0    4.47e-04

##  TUBA1A       0     0.0    1.00e+00       2      0.0    5.37e-04

##  SLCO1C1      0     0.0    1.00e+00       2      0.0    7.41e-04

##  NTNG1        0     0.0    1.00e+00       2     0.0     8.20e-04

##  TSNARE1      0     0.0    1.00e+00       2     0.0    1.20e-03

##  MEGF11       0     0.0    1.00e+00       2      0.1    1.88e-03

##  SRBD1         0     0.0    1.00e+00       2      0.1    1.92e-03

##  TBR1          1     0.0    5.25e-03       2     0.1     1.93e-03

##  KRBA1        0     0.0    1.00e+00       2     0.1     2.02e-03

##  KIRREL3       0     0.0    1.00e+00       2     0.1     2.15e-03

##  NR3C2         1     0.0    8.62e-03       2     0.1     2.18e-03

##  ABCA13       0     0.0    1.00e+00       3      0.3     2.71e-03

##  UBE3C         0     0.0    1.00e+00       2      0.1    3.28e-03

##  SETD5         0     0.0    1.00e+00       2      0.1    3.91e-03

##  AGAP2         0     0.0    1.00e+00       2      0.1    4.21e-03

##  ZNF423        0     0.0    1.00e+00       2      0.1     5.71e-03

##  GSE1          0     0.0    1.00e+00       2      0.1     5.74e-03

##  ZNF638        1     0.0    1.49e-02       2      0.1    6.61e-03

##  ADCY5         0     0.0    1.00e+00      2      0.1     6.71e-03

##  SCN1A         0     0.0    1.00e+00       2      0.1     9.09e-03

##  LAMB2        0     0.0    1.00e+00       2      0.2     1.15e-02

##  MYO7B        0     0.0    1.00e+00       2      0.2     1.16e-02

##  PLXNB1        1     0.0    1.37e-02       2      0.2     1.20e-02

##  ZFYVE26       1     0.0    2.01e-02       2      0.2     1.33e-02

##  SBF1           0     0.0    1.00e+00       2      0.2     1.34e-02

##  BRCA2         0     0.0    1.00e+00       2      0.2    1.48e-02

##  TRIO           0     0.0    1.00e+00       2      0.2     2.32e-02

##  ALMS1         0     0.0    1.00e+00       2      0.2     2.39e-02

##  RELN          1     0.0    3.91e-02       2      0.2     2.63e-02

##  ANK2          1     0.0    3.27e-02       2      0.3     2.85e-02

##  KMT2C         1     0.1    5.09e-02       2      0.3     4.33e-02

##  FAT1           0     0.0    1.00e+00       2      0.3    4.44e-02

##  GPR98          0     0.0    1.00e+00       2      0.4    5.21e-02

##  AHNAK2       0     0.0    1.00e+00       2      0.4    6.25e-02

##  MUC5B         0     0.0    1.00e+00       2      0.4    7.34e-02

##  SYNE1         0     0.1    1.00e+00       2      0.6    1.31e-01

In this example we have used the pipe notation “%>%” to pass the output of denovolyzeR 
to the subset function. The pipe is available as part of the dplyr package, which is required 

for denovoloyzeR installation.
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The p-values returned are not corrected for multiple testing. These default options apply two 

tests (“lof” and “prot”) across 19618 genes, so a Bonferroni corrected p-value threshold at α 

= 0.05 would be 1.3×10−06 (0.05/2 * 19618).

By default this function compares the number of lof variants against expectation for each 

gene, and then the total number of protein-altering variants (lof + missense). It can also be 

configured to return other classes if relevant, using the includeClasses argument.

head(

   denovolyzeByGene(genes=autismDeNovos$gene,

                    classes=autismDeNovos$class,

                    nsamples=1078,

                    includeClasses=“syn”)

   )

##           syn.obs  syn.exp  syn.pValue

## PBLD          2       0    3.04e-05

## ADNP2        2       0    4.96e-04

## SPRR2D       1       0    1.70e-03

## C1ORF146     1       0    2.78e-03

## PTMS         1       0    2.78e-03

## RBM20        1       0    3.49e-03

BASIC PROTOCOL 4: ASSESSING A PRE-SPECIFIED GENE SET

This protocol assesses whether a pre-specified set of genes collectively shows an enrichment 

of de novo variants. Note that any of the previous analyses can be restricted to a pre-

specified gene set in the same way, using the includeGenes argument. This may be 

appropriate if a smaller panel of genes have been sequenced (rather than whole exome 

sequencing), or to explore biologically relevant gene sets, e.g. defined by gene ontology, or 

expression profile.

Materials

As for protocol 1

1. Ensure the denovolyzeR library and data for analysis are loaded.

library(denovolyzeR)

2. Define a gene set. This should be a vector of genes, which may be entered by hand, 

or read from file using read.table or equivalent. In this example, we use an example 

gene set included with the denovolyzeR package, a list of 837 genes that interact 

with the fragile X mental retardation protein (FMRP), taken from (Darnell et al., 

2011).
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nrow(fmrpGenes);head(fmrpGenes)

##  [1] 837  

##              ensgID            enstID hgncID  hgncSymbol geneName

## 1  ENSG00000142599 ENST00000337907   9965       RERE     RERE

## 2  ENSG00000149527 ENST00000449969  29037      PLCH2    PLCH2

## 3  ENSG00000078369 ENST00000378609   4396       GNB1     GNB1

## 4  ENSG00000157933 ENST00000378536  10896         SKI       SKI

## 5  ENSG00000171735 ENST00000303635  18806    CAMTA1  CAMTA1

## 6  ENSG00000188157 ENST00000379370    329      AGRN     AGRN

3. Evaluate the frequency of de novo events in our pre-specified genelist, using the 

denovolyzeByClass function. Specify the genelist using the includeGenes 

argument, which defaults to “all”, but accepts a vector of genes.

denovolyzeByClass(genes=autismDeNovos$gene,

                    classes=autismDeNovos$class,

                    nsamples=1078,

                    includeGenes=fmrpGenes$geneName)

##   class observed expected enrichment  pValue

## 1  syn       28     33.6      0.835 8.53e-01

## 2  mis       83     74.4      1.110 1.74e-01

## 3   lof       32      9.1      3.500 3.18e-09

## 4  prot      115     83.6      1.380 6.47e-04

## 5   all      143    117.1      1.220 1.13e-02

In this example we see a highly significant enrichment of de novo lof variants in genes that 

interact with FMRP in our cohort of autism cases. Care should be taken to ensure that the 

same gene identifiers are used throughout the analysis. For example, if the list of genes 

containing de novo variants includes KMT2D (previously known as MLL2) but the gene set 

uses the old symbol MLL2, these will not be matched. The function will give a warning if 

gene identifiers are used that are not found in the internal mutation probability tables.

For many genes, the Ensembl gene name and HGNC symbol will be identical, but in some 

instances they differ (e.g. where there is no HGNC identifier, and Ensembl uses a symbol 

from another source). Note that we receive a warning if we pass a list of genes described 

using Ensembl gene symbols (the demonstration data), but tell the software to match to 

HGNC symbols.

denovolyzeByClass(genes=autismDeNovos$gene,

                    classes=autismDeNovos$class,

                    nsamples=1078,

                    geneId=”hgncSymbol”)

## Warning in parseInput(genes, classes, nsamples, groupBy,
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includeGenes,

## includeClasses, : 3 gene identifiers in input list do not match the

## probability table, and are excluded from analysis.

##   class observed expected enrichment   pValue

## 1  syn      254    302.3      0.840 0.998000

## 2  mis      652    679.0      0.960 0.854000

## 3   lof      131     94.3      1.390 0.000199

## 4  prot      783    773.2      1.010 0.368000

## 5   all    1037   1075.5      0.964 0.883000

Similarly, we will get a warning if “includeGenes” contains non-matching identifiers

denovolyzeByClass(genes=autismDeNovos$gene,

                    classes=autismDeNovos$class,

                    nsamples=1078,

                    includeGenes=fmrpGenes$enstID)

## Warning in parseInput(genes, classes, nsamples, groupBy,

includeGenes,

## includeClasses, : 837 gene identifiers in “includeGene” are not in

the

## probability table, and are excluded from analysis.

## [1] class observed expected enrichment pValue

## <0 rows> (or 0-length row.names)

SUPPORT PROTOCOL 1: GETTING HELP

Help on any of the functions described is available using the standard R help functions, e.g. 

help(denovolyze) or ?denovolyze. Additional details are also available in the package 

vignette, accessed using browseVignettes(“denovolyzeR”).

SUPPORT PROTOCOL 2: VIEWING THE MUTATIONAL PROBABILITY 

TABLES

Users may want to view or export the probability tables that underpin these analyses. These 

are best accessed using the viewProbabilityTable function.

probabilityTable <- viewProbabilityTable()

nrow(probabilityTable); head(probabilityTable)

## [1] 19618

##    hgncID hgncSymbol            enstID            ensgID    geneName

syn

## 1       5       A1BG  ENST00000263100  ENSG00000121410       A1BG

8.997970e-06

## 2      7        A2M  ENST00000318602  ENSG00000175899        A2M
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1.543159e-05

## 3     16   SERPINA3  ENST00000467132  ENSG00000196136    SERPINA3

5.694582e-06

## 4     17      AADAC  ENST00000232892  ENSG00000114771      AADAC

4.252483e-06

## 5     18       AAMP  ENST00000248450  ENSG00000127837       AAMP

6.496774e-06

## 6     19      AANAT  ENST00000250615  ENSG00000129673      AANAT

3.530488e-06

##           mis          non        splice     frameshift           lof

## 1  1.738961e-05  5.763794e-07  2.639868e-07  6.532817e-07  1.493648e-06

## 2  3.545894e-05  1.960148e-06  1.477263e-06  4.616751e-07  3.899086e-06

## 3  1.176919e-05  4.433874e-07  1.387157e-07  5.276555e-07  1.109759e-06

## 4  1.018458e-05  5.312742e-07  1.748982e-07  1.051152e-06  1.757324e-06

## 5  1.313861e-05  5.042914e-07  4.247556e-07  3.344019e-06  4.273066e-06

## 6  7.729807e-06  1.707018e-07  9.988864e-08  4.132204e-07  6.838108e-07

##           prot           all

## 1  1.888326e-05  2.788123e-05

## 2  3.935803e-05  5.478962e-05

## 3  1.287895e-05  1.857353e-05

## 4  1.194191e-05  1.619439e-05

## 5  1.741167e-05  2.390845e-05

## 6  8.413618e-06  1.194411e-05

This may be useful, for example, to verify that the input gene list contains the correct 

identifiers

#Count the number of input gene names

length(autismDeNovos$gene)

## [1] 1040

#Count how many are in the “geneName” column of the probability table:

sum(autismDeNovos$gene %in% probabilityTable$geneName)

## [1] 1040

#Count how many are in the “hgncSymbol” column of the probability

table:

sum(autismDeNovos$gene %in% probabilityTable$hgncSymbol)

## [1] 1037

#Count how many are in the “enstID” column of the probability table:

sum(autismDeNovos$gene %in% probabilityTable$enstID)

## [1] 0
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SUPPORT PROTOCOL 3: USING AN ALTERNATIVE MUTATIONAL 

PROBABILITY TABLE

denovolyzeR relies on a pre-computed tabulation of the probability of de novo variation 

arising in each gene, as described in the Introduction and Background Information. The 

default probability table was generated by calculating the probability of de novo events for 

every base of the canonical Gencode transcripts, as defined in Gencode v19. It is beyond the 

scope of this protocol to describe methods to compute these tables, but denovolyzeR does 

allow for the import of alternative tables, if required. For example, the original paper 

describing this analytical framework (Samocha et al., 2014) calculated mutational 

probabilities based on RefSeq transcript definitions, whereas denovolyzeR now uses 

Gencode definitions. Tables may also be computed to include other functional consequences 

(e.g. damaging missense variants, as determined by in silico SNV consequence prediction 

algorithms).

Materials

An alternative probability table. Examples are available to download from http://

denovolyzer.org/

1. Locate and load the chosen probability table. For this example, we will use 

“probTable_Samocha2014.rda” downloaded from the above link, which is now 

located in our Downloads folder:

#pathToProbabilityTable=”~/Downloads” #replace this with the path on

your local system

load(file.path(pathToProbabilityTable,”probTable_Samocha2014.rda”))

head(probTable_Samocha2014)

##         refseqID     geneID class         value

## 1    NM_017582   UBE2Q1   syn  5.428059e-06

## 2    NM_014372     RNF11   syn  2.306612e-06

## 3    NM_014455    RNF115   syn  3.153658e-06

## 4    NM_001357     DHX9   syn  1.205980e-05

## 5  NM_001101376 FAM183A   syn  1.572484e-06

## 6  NM_001042549     NSL1   syn  2.643121e-06

This table has two sets of gene identifiers: “refseqID””, and gene symbols 

(“geneID”).

2. Run chosen analysis, specifying the chosen probability table using the “probTable” 

argument, and the appropriate gene identifier.

denovolyzeByClass(genes=autismDeNovos$gene,

                    classes=autismDeNovos$class,

                    nsamples=1078,
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                    probTable=probTable_Samocha2014,

                    geneId=”geneID”)

## Warning in parseInput(genes, classes, nsamples, groupBy,

includeGenes,

## includeClasses, : 43 gene identifiers in input list do not match 

the

## probability table, and are excluded from analysis.

##   class  observed  expected  enrichment    pValue

## 1  syn      247    295.8      0.835  0.998000

## 2  mis      625    668.6      0.935  0.957000

## 3   lof      125     92.4      1.350  0.000721

## 4  prot      750    761.0      0.985  0.660000

## 5   all      997   1056.9      0.943  0.969000

In this instance there is a warning that not all of the input identifiers are recognized. 

This is because there is not a one-to-one mapping between the identifiers associated 

with RefSeq and Gencode transcripts.

COMMENTARY

Background Information

The mutational model is described in full detail in (Samocha et al., 2014). Briefly, it is based 

on a determination of the probability of each base in the coding sequence of the human 

genome mutating to each of the other possible bases. The predicted impact of these changes 

is aggregated across the gene to establish the probability of specific types of mutation 

(synonymous, missense, etc).

Previous work established that the mutability of a base is sufficiently modeled by accounting 

for the local sequence context of one nucleotide on either side of the base of interest 

(Krawczak et al., 1998; Kryukov et al., 2007). We analyzed human variation and 

trinucleotide context using intergenic single nucleotide polymorphisms (SNPs) from the 

1000 Genomes project to create a mutation rate table, which provides the relative 

probabilities of each possible trinucleotide (XY1Z) to trinucleotide (XY2Z) change.

We then consider each base in the coding sequence and use the mutation rate table to 

determine its probability of mutating to the other bases. We predict the impact of the 

mutation on the protein product and aggregate the probabilities by mutation type across each 

gene. These per-gene probabilities are then adjusted according to the completeness of 

sequencing coverage for each gene, and a regional divergence score, reflecting divergence 

between humans and macaques, that captures small regional differences in genome 

mutability that are not fully captured by local trinucleotide context.

Given that the number of de novo variants per trio follows a Poisson distribution (Neale et 

al., 2012), we use the Poisson distribution to evaluate the excesses of de novo events. As an 

example, to determine if a particular gene has more de novo loss-of-function variants than 

expected, we multiply that gene’s probability of a loss-of-function mutation by the number 
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of trios and by 2 (for the number of chromosomes) in the study. This gives the expected 

number of de novo loss-of-function variants (denoted as lambda, λ) with which the observed 

number is compared. Specifically, the ppois command in R is used. The three de novo loss-

of-function variants seen in DYRK1A are used in the example below. With denovolyze, we 

get the following result:

denovolyzeByGene(genes=autismDeNovos$gene,

                    classes=autismDeNovos$class,

                    nsamples=1078,

                    includeGenes=”DYRK1A”)

##       gene  class obs  exp   pValue

## 1  DYRK1A   lof   3  0.0 2.69e-08

## 2  DYRK1A  prot   3  0.1 2.77e-05

We can reproduce this with the ppois function. Note that by default, ppois(q,lambda) will 

return the probability of observing ≤ q events for a given λ. We are interested in computing 

p(obs ≥ q). ppois(q,lambda,lower.tail=FALSE) gives us p(obs > q), and therefore we must 

use ppois(q-1,lambda,lower.tail=FALSE) to obtain p(obs ≥ q).

n_lof_dyrk1a <- 3

probabilityTable[probabilityTable$geneName==”DYRK1A”,”lof”]

## [1] 2.528297e-06

prob_lof_dyrk1a <- 2.528297e-06

n_trios <- 1078

ppois(q=n_lof_dyrk1a-1, #observed - 1

      lambda=prob_lof_dyrk1a*n_trios*2, #expected

      lower.tail=FALSE)

## [1] 2.688463e-08

Control subjects—Since this analytic framework compares de novo events to a model-

derived expectation, there is no direct comparison of cases with controls. As described 

above, direct case-control comparison is not statistically powerful in this context. It is 

nonetheless recommended to include a control arm in analyses, for example by repeating the 

analyses described above on a cohort of controls which have been subjected to the same 

sequencing and de novo identification pipeline. While cases and controls are not directly 

compared, it is valuable to confirm that the burden of variants in the control population does 

not deviate substantially from model-derived expectations, in order to validate the model for 

the specific sequencing approaches used in each study.

Large variants—This analytical framework assesses single nucleotide variants and small 

(single basepair) insertions and deletions only. Larger insertions, deletions and other 

structural variants are not assessed.
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Critical Parameters

The number of samples (nsamples) should be the total number of samples in the study, not 

just those that carry de novo variants.

The analysis described in BASIC PROTOCOL 2 is highly sensitive to the choice of 

argument passed to nVars. Full details are provided in step 3 of that protocol.

Troubleshooting

This methodology is dependent on accurate upstream identification of de novo variants. 

Mendelian violations (putative variants in sequence data that do not follow normal 

Mendelian inheritance patterns) comprise technical artefacts and sequencing errors as well 

as true de novo variants. Indeed, a set of variants specifically selected as Mendelian 

violations will inevitably be enriched for such errors. A detailed description of strategies for 

accurate de novo variant detection is beyond the scope of this protocol, but stringent quality 

control should be applied. Variant confirmation with two independent technologies (e.g. 

next-generation sequencing and Sanger sequencing) remains the gold standard.

It is also recommended to apply the same variant detection and analysis pipeline to a cohort 

of control trios as outlined above.

Time Considerations

These analyses are not especially computationally intensive, and will run on a desktop or 

laptop computer in seconds. The denovolyzeMultiHits function uses permutation, and 

computation time increases linearly with the number of permutations. Elapsed times (in 

seconds) to run the three principal functions on de novo variants from 1078 samples, using 

default settings, on a MacBook Air (1.7GHz i7, 8Gb RAM) are as follows:

system.time(denovolyzeByClass(genes=autismDeNovos$gene,classes=autismDe

Novos$class,nsamples=1078))[“elapsed”]

## elapsed

##  0.136

system.time(denovolyzeMultiHits(genes=autismDeNovos$gene,classes=autism

DeNovos$class,nsamples=1078,nperms=1000))[“elapsed”]

## elapsed

##  5.397

system.time(denovolyzeByGene(genes=autismDeNovos$gene,classes=autismDeN

ovos$class,nsamples=1078))[“elapsed”]

## elapsed

##  0.159
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