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Abstract

A general approach to the first-order analysis of error in rigid point registration is presented that 

accommodates fiducial localization error (FLE) that may be inhomogeneous (varying from point 

to point) and anisotropic (varying with direction) and also accommodates arbitrary weighting that 

may also be inhomogeneous and anisotropic. Covariances are derived for target registration error 

(TRE) and for weighted fiducial registration error (FRE) in terms of covariances of FLE, 

culminating in a simple implementation that encompasses all combinations of weightings and 

anisotropy. Furthermore, it is shown that for ideal weighting, in which the weighting matrix for 

each fiducial equals the inverse of the square root of the cross covariance of its two-space FLE, 

fluctuations of FRE and TRE are mutually independent. These results are validated by comparison 

with previously published expressions and by simulation. Furthermore, simulations for randomly 

generated fiducial positions and FLEs are presented that show that correlation is negligible 

correlation coefficient < 0.1 in the exact case for both ideal and uniform weighting (i.e., no 

weighting), the latter of which is employed in commercial surgical guidance systems. From these 

results we conclude that for these weighting schemes, while valid expressions exist relating the 

covariance of FRE to the covariance of TRE, there are no measures of the goodness of fit of the 

fiducials for a given registration that give to first order any information about the fluctuation of 

TRE from its expected value and none that give useful information in the exact case. Therefore, as 

estimators of registration accuracy, such measures should be approached with extreme caution 

both by the purveyors of guidance systems and by the practitioners who use them.
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I. Introduction

In 2009, a new method of first-order analysis of the point-registration problem was 

introduced [2]. The method was developed to facilitate the statistical analysis of a 

phenomenon that had been observed years earlier, first by Steinmeier using phantoms [3] 

and more recently by Woerdeman in vivo [4]. These investigators attempted to establish for 

several fiducial-based, surgical navigation systems, a correlation between the displayed 

estimates of accuracy and the true accuracy. Steinmeier found no correlation, and 

Woerdeman observed a negligible correlation coefficient of only 0.08. Thus, lower than 

normal estimated accuracies were not accompanied by lower than normal true accuracies, 

nor were there correlations for higher than normal values. The navigational systems’ 

estimates of accuracy are based on the goodness of fit of the fiducial points after 

registration, and the surprising result that these estimates seem to be unrelated to truth, 

suggests that there is an underlying problem with this method of error prediction. The 2009 

work [2] investigated this problem for a special case in which expected error in fiducial 

localization is isotropic and identical for all fiducials, and it proved to first order that 

fluctuations in registration accuracy are statistically independent of the fluctuations of any 

estimate of that accuracy based on the goodness of fit. In the present work, we extend this 

analysis to the general case. We show that, when ideal weighting is used for each fiducial, 

this independence is maintained, and we show by simulations that, without weighting, the 

correlation between them is on the order of that low value observed by Woerdeman. In 

addition, we provide new expressions for error statistics that are more general than those 

previously provided. We begin in Section II by providing background on, and precise 

definitions of, error in these navigation systems. In Section III we present our new approach 

and derive independence and the new statistical expressions. In Sections IV and V we 

compare our results to previously published results and to results from computer 

simulations. In Sections VI and VII we discuss our theory and its results and present our 

conclusions.

II. Background

Fiducial-based navigation has become a ubiquitous adjunct to surgery when rigid anatomy—

bone or soft tissue constrained by bone—is involved. The major commercial guidance 

systems—the StealthStation Surgical Navigation System (Medtronic, Inc., Minneapolis, 

MN) and the VectorVision System (BrainLAB AG, Feldkirchen, Germany), each provide it 

as an option in addition to surface-based navigation, and both options incorporate rigid point 

registration in their algorithms to determine the position of the surgeon’s tracked probe or 

tracked instrument. The registration approach analyzed in the following sections is 

employed by both of these systems. Fiducials, often called “markers,” are provided that 

typically adhere to the skin, but the selection of anatomical “fiducials” are supported by 

these systems as well. Both fiducial and surface registration approaches are often called 

“frameless” stereotaxy, in reference to the cumbersome stereotactic frame that they are 

designed to replace. These frameless approaches are offered by virtually every surgical 

center as an adjunct to neurosurgery, spine surgery, and orthopedic surgery, and they are 

provided as well by radiation oncology centers as an adjunct to radiosurgery.
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Because fiducials by their nature are discrete objects, they provide positional information 

only at isolated regions of the anatomy. Information about the position or movement of 

anatomy outside these regions can be inferred only if all these regions move as a single rigid 

object. As a result, fiducial-based navigation systems employ only rigid transformations 

during the registration process. To the extent that the anatomy is non-rigid, rigid 

transformations are inappropriate, but for surgical resections involving bone, such as a 

vertebra or a femur, or tissue and bone that move as a single rigid object, such as the head, 

rigidity is a reasonable assumption. Failure of the anatomy to remain rigid will cause 

systems’ predictions of fiducial-registration accuracy, such as those studied by Steinmeier 

and Woerdeman, to fail, but nonrigidity is not the source of failure that we present here. 

Indeed Steinmeier’s experiments involved only rigid phantoms. Instead we confine our 

attention to those applications in which rigidity is a valid assumption.

For rigid anatomy, the image-guidance problem is reduced to the determination of the rigid 

transformation that the anatomy has undergone between image acquisition and intervention. 

That transformation can be estimated via fiducials that are attached to the anatomy before 

imaging and remain in place through the registration procedure. The position of each 

fiducial is localized in both image space and physical space, and then a transformation from 

image space to physical space is usually chosen such that it minimizes the fiducial 

registration error (FRE), where, in the simplest method, which is employed by commercial 

systems, FRE is the root-mean-square of distances between corresponding fiducials after the 

registration, i.e., the distance between the localized position of each fiducial as transformed 

from image space to physical space and the position of that corresponding fiducial localized 

in physical space. In the general case, the displacement between the transformed image point 

and the physical point is multiplied by a “weighting” matrix, which may be different for 

each fiducial, and FRE is the root-mean-square of the lengths of the resulting vectors. The 

weighting matrix is used in cases when some information about the nature of fiducials 

localization procedure is available. The simplest method described above is equivalent to 

uniform weighting, and it is employed by commercial systems in the absence of such 

information. Because of fiducial localization error (FLE), the registration is invariably 

flawed to some degree, and FRE is a readily available measure of registration error that 

serves as the most commonly used indicator of the goodness of fit of the of the 

corresponding points.

Sibson in 1979 investigated the statistical relation between FRE and FLE for the case of 

isotropic FLE and provided an expression that can be used to relate their expected root-

mean-square values as follows [5]:

(1)

where 〈·〉 means “expected value of.” Expressions for FRE for each individual fiducial have 

also been derived [10]. FRE is an easily measured quantity, but it is not as important as 

target registration error, TRE, which is the displacement from its true position of a 

registered point not used as a fiducial1. The target error TRE(r) at a point r of interest to the 

surgeon is the true measure of registration error. In 1998 and 2001, the statistical relation 
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between TRE and FLE was investigated for isotropic FLE and expressions were provided 

relating their expected root-mean-square values [6], [7]

(2)

where dk is the distance of x from principal axis k of the fiducial configuration,  is the 

mean of the squared distances of the fiducials from that axis. Equation (1) can be used to 

estimate the distribution of FLE from measurements of FRE for many cases. With this 

estimate available, (2) can then be exploited to predict TRE based on the fiducial 

configuration when fiducials are used (a) on a patient, (b) on a coordinate reference frame 

attached to a patient, and (c) on a surgical probe [8]. Equation (2) is not appropriate for FLE 

that is anisotropic, which means that it varies with direction, inhomogeneous, which means 

that it is different for different points. For anisotropic and inhomogeneous FLE, more 

complex expressions than that of (2) have recently been derived by Wiles [9], [23] and 

Moghari [11].

Since both 〈FRE2〉 and 〈|TRE(r)|2〉 are proportional to 〈FRE2〉, it might be expected that for 

a given registration, if FRE is small, then |TRE(r)| will be small and when one is large the 

other will be large. While it may seem intuitive to expect the size of TRE to be correlated 

with that of FRE, it is easy to construct counter-examples, as is shown by Fig. 1. That figure 

shows two examples. For one of them FRE is zero while |TRE(r)| is large, and for the other |

TRE(r)| is zero while FRE is large. The key difference is that in the first example the set of 

FLEs are equivalent to a rigid transformation, while in the second example, they are not. 

Fig. 1(a) shows image space, while (b) and (d) show physical space. The localizations are 

assumed to be perfect in image space. The “rigid” set of localization errors occur in (b), 

while the errors in (d) cannot be represented exactly or even approximately by any rigid 

transformation.

Fig. 1 shows schematically that, despite the fact that 〈FRE2〉 and 〈|TRE(r)|2〉 are related 

functionally through (1) and (2), TRE is not necessarily related to FRE for specific 

registration instances. Thus, the fact that their means are related does not imply that their 

variations around those means are related. It is easy to construct such examples, but no 

example or set of examples can answer the question, “Are the fluctuations2 of FRE and TRE 

about their means correlated?” In the next sections we will show that, for the case of small 

FLE, when either of the two most common weighting schemes is employed, the answer to 

this question is, “No.”

We begin by proving this answer mathematically to first order in localization error for the 

case of so-called “ideal weighting”. That proof requires a statistical analysis of a linear 

model of the problem of rigid point registration. Recently a new approach [2] for such an 

analysis was developed for the special case of isotropic, homogeneous FLE with uniform 

1For FLE, FRE, and TRE, we use boldface (only) when we are denoting a vector quantity
2Also called “deviations”
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weighting (i.e., un-weighted). In the next section, we extend that approach to the general 

case of anisotropic, inhomogeneous FLE with arbitrary weighting, and we use the approach 

both to investigate the dependence of FRE and TRE and to provide unified formulas for 

their respective covariances that are more general than any previous expressions.

III. Derivations

Our derivations are based on a linearization of the rigid, point registration problem. We 

begin with a statement of the registration problem, followed by the linearization of the 

problem for small FLE.

A. Registration Problem

The fundamental problem of rigid, fiducial registration is to find the rotation matrix R and 

translation vector t that minimize the expression

(3)

where FRE is the weighted fiducial registration error xi,yi, are 3×1 vectors representing 

corresponding points in two spaces, where at least three of the xi are not collinear, Δxi and 

Δyi represent localization errors in the two spaces, Wi is a 3×3 non-singular weighting 

matrix, which may be a function of R (see the discussion of “ideal weighting” at the 

beginning of Section III-G). Clearly the solution, R, t, obtained by minimizing FRE2 in (3) is 

unchanged if all the Wi are multiplied by the same factor w, while FRE2 itself is multiplied 

by w2. Thus, size of FRE as defined by (3) is somewhat arbitrary. For example, the general 

form for the uniform weighting scheme employed by commercial systems is Wi = wI, where 

I is the 3×3 identity matrix, and for this weighting FRE equals times the root-means square 

of the distance between fiducials after registration. We can remove this arbitrary factor of w 

from FRE by stipulating that the Wi be normalized such that 

. With this stipulation, uniform weighting requires that Wi 

= N−1/2I, and FRE recaptures its meaning as the unweighted root-mean square of the fiducial 

fitting errors and satisfies (1).

The rotation matrix is restricted to be orthogonal, which means that RtR = I. The points, yi, 

arise from the application of the true, but unknown, rigid transformation, R(0), t(0), to the x, 

as follows:

(4)

R(0), t(0) is the transformation that is sought by the minimization of FRE in (3), but because 

of fiducial localization error, the transformation that minimizes FRE, namely R, t, will differ 

from the true transformation R(0), t(0). We model the Δxi and Δyi as random, independent 

vectors of fiducial localization error, with each of their three components being normally 
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distributed with zero means and covariances  and , respectively. Thus, the 

localization errors in the two spaces may be anisotropic and inhomogeneous. While these 

statistics are known, it is assumed that no other information about the errors themselves is 

available. If any relationships among the specific errors for a given set of localizations or if 

any components of any of the errors were known, that information could be employed in the 

registration process, and the derivations and proofs below would need to be modified. It is 

helpful to rewrite (3) as

(5)

where Δξi = Δyi−RΔxi, is the “two-space” localization error vector for point-pair i, and its 

elements are normally distributed with zero means and covariances . We 

define  to be the “two-space” covariance of FLE. Once the rotation 

and translation that minimize FRE2 have been found, they can be used to determine the 

vector TRE of target registration error at any point r that is not used as a fiducial point

(6)

B. Linearization

Sibson showed how derivations of error statistics for this problem could be made tractable 

by (a) assuming that FLE is small, (b) approximating to first-order in FLE, (c) moving the 

origin of the coordinate system to the centroid of the xi, (d) reorienting the coordinate 

system along the principal axes of the xi, and (e) separating the rotational and translational 

problems [5]. He used this approach to investigate FRE; we and others have used it to 

investigate TRE [6], [7], [9], [11] and FRE [10], [19]. For our present investigation, we have 

developed a new approach. We employ (a) and (b), but we omit (c), (d), and (e). Thus, we 

solve to first order in FLE, but we retain the laboratory coordinate system, and we solve for 

both the rotation and the translation simultaneously. Solving the first-order problem allows 

us to cast the problem as a simple, unconstrained set of 3N linear algebraic equations in six 

unknowns of the form: Cq = e, where C is a 3N×6 matrix, e is a 3N×1 vector, and q is a 6×1 

vector whose elements are Δθ1, Δθ2, Δθ3, Δt1, Δt2, Δt3, where Δθk, is an angle of rotation (in 

radians) about axis k, and Δtk, is a translation along that axis.

We begin by defining , and Δt = t − t(0), which allows us to transform the vector 

whose squared length appears in the summation in (3) as follows:
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(7)

where we have used (4) and have defined

(8)

and

(9)

Using (7) in (3) gives us

(10)

From assumption (a), we know that the components of  and Δxi, will be small. If they 

were all zero, then (10) tells us that we could achieve a perfect minimum of zero for (3) by 

setting ΔR and Δt to zero. For finite but small  and Δxi, we see from this same equation 

that, when FRE is minimized, the elements of both ΔR and Δt will be of first order in 

and Δxi. We note that the elements of ΔRtΔR can be expected to be small relative to those of 

ΔR and that the elements of ΔRR(0)Δxi will be small relative to those of , because they 

are all of second degree in the elements of  and Δxi, which themselves can be expected 

to be small. Following Sibson, we now make the assumption that the  and Δxi are small 

enough to render the elements of ΔRtΔR negligible in comparison to the elements of ΔR and 

the elements of ΔRR(0)Δxi negligible in comparison to the elements of . We note that

(11)

where we have used the orthogonality of rotation matrices to go from the first line to the 

second. From (11), we see that, if the elements of ΔRtΔR are indeed negligible in 

comparison to the elements of ΔR, then ΔRt + ΔR ≈ 0, which means that ΔR is 

antisymmetric, i.e., ΔRt= −ΔR. Thus, the nonlinear restriction RtR = I is replaced by a linear 

one.

This relaxed constraint is essential to the original approach of Sibson on the statistics of FRE 

[5], the approaches of the subsequent work on the statistics of TRE [6], [7], [9], and our 
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current approach. However, we show in simulations below that our results hold to an 

excellent approximation even without linearization. The difference being that for the 

linearized equations we can prove that they hold for all configurations, all  and all 

, whereas for the nonlinear version, we can show agreement only for those cases that 

are simulated. Using our definitions of ΔR and Δt in (6) gives

(12)

where we have defined r(0) = R(0)r (similarly to our definition above of ). We note 

finally, that, to first order .

C. Some Useful Results From Linear Algebra

The minimization of (10), subject to ΔRt= −ΔR with ΔRR(0)Δxi ignored in comparison to 

 is equivalent to finding the least-squares solution to the following over-determined set 

of 3N linear equations in the six unknowns, Δθ1, Δθ2, Δθ3, Δt1, Δt2, Δt3

(13)

where

(14)

and the subscript j enumerates the components of the three-dimensional vectors.

The meaning of ΔR can be understood by adding I to both sides of its definition in (8) and 

multiplying on the right by R(0). The result, (I+ΔR)R(0) = R shows that the rotation matrix 

that we seek by minimizing (3) is the equivalent to the true rotation followed by a “rotation” 

I+ΔR. Thus, I+ΔR approximates the rotation away from the truth caused by fiducial 

localization error. If localization error were zero, then ΔR would also equal zero. Our 

assumption that localization error is merely small results in the approximation, ΔRt = −ΔR. 

The displacement Δr of a point r caused by that small rotation is Δr = (I+ΔR)r − r = ΔRr, 

which, because ΔRt is equal to −ΔR, can be written in the form of the familiar cross product 

for small rotations, Δr = ΔRr = Δθ × r, where Δθ = (Δθ1, Δθ2, Δθ3). This cross product 

produces the exact expression for Δr in the limit of small rotation angle 

. Equation (14) can also be derived by representing the exact 

rotation I+ΔR in terms of Euler angles, expanding each sine and each cosine in that 

representation via a Taylor’s series in the angles Δθ1, Δθ2, and Δθ3, and dropping all but 
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zeroth- and first-order terms from those expansions. The first-order terms all equal one and 

give rise to the identity I; the first-order terms produce the expression given for ΔR in (14).

We now define the 3N×6 matrix C

(15)

where

(16)

and . By defining the 3N×1 vector e as follows:

(17)

and using our definition of C, we can transform (13) into

(18)

With (18), we have transformed the problem into a generic linear-algebra problem, and we 

need to establish some properties of the least-squares solution to that problem. We begin by 

considering the singular-value decomposition [15] of C

(19)

where U is a 3N×3N orthogonal matrix, Λ is a 3N×6 diagonal matrix whose diagonal 

elements Λii are the singular values of C, and V is a 6×6 orthogonal matrix3. We will require 

that the six singular values Λii of C all be nonzero. This requirement is equivalent to the 

requirement that the columns of C be independent. We can prove that they are independent 

via proof by contradiction. Thus, we assume instead that the columns C of are linearly 

dependent, which means that for some set of six constants, a1, a2, …, a6, , 

where each Ci is a column of C. Because each column is of length 3N, this constraint is 

equivalent to 3N equations, which have the form

3For convenience, we have augmented both U and Λ to the decomposition described in [15] by adding 3N − 6 columns to U so as to 
make it orthogonal and adding Λ rows of zeros to U.
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(20)

These 3N equations are in turn equivalent to the N vector equations , 

where aα,β,γ is the 3×1 column vector whose elements are aα, aβ, aγ. In order for all N of 

these cross products to be equal to the same constant vector N, all points  must be 

collinear. We note from Section III-A above that at least three of the points xi must not be 

collinear and that rotating and translating these points to produce the points  does not 

change the linearity of the points. Thus, our assumption that the columns of C are dependent 

has led to a contradiction. Therefore, the columns of C are in fact independent, and therefore 

the singular values of C are all nonzero.

The least-squares solution of (18) is given as follows [15],

(21)

where

(22)

and Λ+ is a 6×3N diagonal matrix for which . We note that  are well defined 

because, as we have shown above, the  are nonzero. The elements of the 3N×1 vector

(23)

are the residual errors in the solution and can be rewritten as follows:

(24)

where is the 3N×3N identity matrix. Using (19) and (22) in (24), we have

(25)

For i, j = 1, …, 3N, we have , from which we find 

that the first six diagonal elements of ΛΛ+ are equal to 1 and the last 3N − 6 are equal to 0. 

Furthermore, we see that the first six diagonal elements of I − ΛΛ+ are equal to 0 and the last 

3N − 6 are equal to 1. Using these diagonal elements of I − ΛΛ+ in the last line of (25), and 

defining
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(26)

we find that

(27)

Thus we see that each element of fmin is a function of only the last 3N − 6 elements of ẽ.

D. FRE in Terms of ẽ

We now return to the registration problem. We note that the elements of fmin in (27) are the 

components of the individual fiducial registration error vectors, FREi, of those points. Thus, 

(fmin)3(i−1)+j = FREij for i = 1, …, N, j = 1, 2, 3. Therefore, each component of FREi for 

each fiducial point is a function of only the last 3N − 6 elements of ẽ.

E. TRE in Terms of ẽ

Our expression for TRE(r) in (12) can be transformed into a simple matrix-times-vector 

multiplication

(28)

by defining δj = TRE(r)j, j = 1, 2, 3 and defining the 3×6 matrix

(29)

where . In (28), we use the least-squares solution of (18), as 

given by (21), and the decomposition of as given by (22), to get

(30)

Thus,

(31)

where, in the second step, we have used the explicit form of Λ+ given just after (22). From 

(31) we see that each component of TRE(r) is a function of only the first 6 elements of ẽ.
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F. General Formulation for the Covariances of FRE and TRE

Equation (31) can be employed to derive a general expression for ΣFRE, the covariance of 

FRE, and ΣFRE, the covariance of TRE. First, we define two 3N×3N block-diagonal 

matrices: a covariance matrix Σ for the entire set of FLEs and a weighting matrix W for the 

entire set of fiducial points. Each matrix is nonzero only within 3×3 blocks on the diagonal. 

Specifically, Σ3(i−1)+j,3(i−1)+j′ = (Σi)jj′ and W3(i−1)+j,3(i−1)+j′ = (Wi)jj′, for i = 1 … N, j = 1, 2, 

3, j′ = 1, 2, 3, and all other elements of each matrix equal zero. With these definitions it can 

be seen from the definition e of given by (17) that

(32)

Our expression for ΣFRE can be gotten by noting that  and then 

using (27), followed by (26) and (32), to get

(33)

The summation over three diagonal elements corresponding to the same marker provides an 

expression for an individual weighted FRE of that marker

(34)

The trace of ΣFRE provides a general expression for 〈FRE2〉

(35)

The expressions in (33) through (35) give statistics for the weighted FRE. Statistics for 

unweighted FRE (but with weighting used in the registration step), which we designate by 

using lower case, fre, are given by replacing Ujk and Ukj′ by (W−1U)kj and (W−1U)kj′ in each 

of these equations, resulting in
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(36)

(37)

and

(38)

For isotropic weighting, i.e., Wi = wiI, it can with some manipulation be seen that 

.

Our expression for ΣTRE can be gotten by remembering that in TRE(r)j = δj (31). Therefore,

(39)

By applying (26) and (32) to 〈ẽjẽj′〉, we achieve the following result:

(40)

The trace of ΣTRE provides a general expression for 〈TRE2〉

(41)

It should be noted that (33) through (41) are completely general. Thus they are appropriate 

both for general fiducial localization error (i.e., possibly inhomogeneous and possibly 

anisotropic) and for general weighting (i.e., possibly not ideal). We have included in Fig. 4 

in the Appendix an implementation of (33), (35), (40), and (41) written in Matlab 

(MathWorks, Inc., Natick, MA). This function is likewise completely general. While these 

equations have all been derived specifically for three-dimensional space, they all hold for 

the 2-D case as well with only minor changes to accommodate the reduced dimensionality. 

The details are given in Appendix C of the Appendix.
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G. Statistical Independence of FRE and TRE for Ideal Weighting

In Fig. 1, we show examples for which FRE is zero and TRE is nonzero. It can easily be 

seen from (5) that the number of such examples is infinite. Indeed, whenever there exists a 

rigid transformation R, t for which Rxi + t = yi + Δξi for all i, then FRE is zero, but unless all 

the Δξi are zero, TRE will be nonzero. The simplest example is for the localization errors in 

a given space to be equivalent to a global translation, i.e., all the Δxi are equal to the same 

nonzero vector vx, and all the Δyi are equal to some other nonzero vector vy ≠ vx. As a result, 

each Δξi = vy − vx, the rigid transformation that minimizes FRE2 is, R = R(0), t = t(0) + vy − 

vx, and TRE(r) = vy − vx ≠ 0. Substituting these values into (5) reveals that each of the terms 

in the summation is zero. Thus, each FREi = 0. There is likewise an infinity of examples in 

which TRE is zero and FRE is nonzero. These examples occur when no rigid transformation 

can reduce the effect of the localization errors, and the transformation that minimizes (5) is 

the identity. One such example is also shown in Fig. 1. These examples suggest that FRE 

may not be a good predictor of TRE, but they provide little insight into their statistical 

relationship. In this section we examine the statistical relationship between FRE and TRE 

for our model of independent, normally distributed localization errors when an important 

weighting scheme—“ideal weighting”—is employed, and we show that for this weighting 

scheme FRE and TRE are statistically independent.

Ideal weighting is important in the rigid point registration problem because it maximizes the 

probability that the resulting transformation is the true one. We derive ideal weighting in 

Appendix I-A of the Appendix and show that it has the form 

, where w is a constant, which for 

normalized weighting is equal to . Ideal weighting is not 

new. It was introduced into point registration as early as 1998 by Ohta and Kanatani [16], 

and it was employed by West et al. in 2001 [17] and Moghari et al.. in 2009 [11], [19]. In 

both of these 2009 papers a first-order registration equation equivalent to (18) was derived 

for the special case in which ideal weighting is employed and 4. As mentioned at the 

end of Section III-B, to first order R can be replaced by R(0) in the expression for Σi. This 

approximation is adequate for our purposes, and with it we can see that the R dependence of 

ideal weighting does not affect the first-order character of (13). Using this weighting in (32) 

gives us

(42)

Since 〈eet〉 is diagonal, the elements ei are uncorrelated; since they are uncorrelated and also 

normally distributed, they are statistically independent [2], [18]. Because the diagonal 

elements equal w2, the variance of each ei is w2. As shown in Appendix I-B, since U is 

orthogonal, the elements of ẽ are also independent and normally distributed with variance 

4Equation (30) of [11] and (9) of [19].
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equal to w2. In Section III-D, we found that each component of FREi for each fiducial point, 

which is also an element of fmin, is a function of only the last 3N − 6 elements of ẽ, while in 

Section III-E we found that each component of TRE(r), which is also a component of δmin, 

is a function of only the first six elements of ẽ. Since the elements of ẽ are independent of 

each other, any functions of nonoverlapping subsets of them are independent each other as 

well. It is important to note that this conclusion depends crucially on the fact that all 3N of 

the elements of ẽ are mutually independent. That independence is a consequence of ideal 

weighting.

Therefore, for the case of ideal weighting, every component of FREi of every one of the N 

fiducial points is statistically independent of any component of the vector TRE(r) at any 

point r. Thus fluctuations in TRE(r) are, in our first-order approximation, independent of 

fluctuations of any and all functions of the goodness of fit! We note that the overall fiducial 

registration error, FRE, from (3), is given in the linearized problem by (10) and can be 

expressed in terms of fmin as  and that the length of the vector TRE(r) 

can be expressed in terms of δmin as . Since the elements of fmin are 

statistically independent of those of δmin, any function of only fmin is statistically 

independent of any function of only δmin. As primary examples, FRE is statistically 

independent of |TRE(r)|. Since they are independent, they are also uncorrelated. We let CC 

(FRE, TRE) be the correlation coefficient of FRE and |TRE(r)|

(43)

where we have abbreviated |TRE(r)| as TRE, and are letting μ and σ denote means and 

standard deviations. It easy to see that, to first order in FLE, CC (FRE, TRE) = 0, meaning 

that there is to first order no correlation between FRE and TRE.

H. Two-Dimensional Space

The results of this section hold not only for 3-D space, but for 2-D space as well. The details 

are provided in Appendix I-C of the Appendix along with the 2-D forms of (33) through 

(41), but these equations can be transliterated to two dimensions merely by making the 

following changes to the summation limits:3N → 2N, 7 → 4, 3i → 2i, 3i − 2 → 2i − 1, and 6 

→ 3.

I. Comparison With Previously Published Derivations

We compare our formulations with five previous derivations. These derivations, which are 

spread among many publications with differing notations, are, unlike our general derivation, 

limited in every case to uniform weighting (i.e., no weighting) or to ideal weighting. In our 

validation section below, we compare our formulas with these other authors’ formulations 

on specific cases and find agreement in every case.
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The first result is an expression for the probability density of FRE2 when ideal weighting is 

employed. We note that , which by (27) equals 

, and since U is orthogonal, we have . As 

noted in Section III-G, when ideal weighting is employed, the ẽj become statistically 

independent and normally distributed with equal variances (= w2). Therefore, FRE2 is chi-

square distributed with 3N − 6 degrees-of-freedom. The probability density of such a 

function is well known [22]

(44)

where Γ denotes the Gamma function5. This probability density is identical to that derived 

by Sibson for the case of isotropic, homogeneous FLE with no weighting [5]. Here we have 

not only re-derived a thirty-year-old result but also shown that it applies to a more general 

case, namely inhomogeneous, anisotropic FLE with ideal weighting. It differs from the 

distribution for ideal weighting published recently by Moghari [19] for fre (instead of FRE). 

Also, for ideal weighting, since the ẽj are independent and normally distributed with 

variances equal to w2, we have 〈FRE2〉 = (3N − 6)w2, and for normalized weighting

(45)

For the special case of homogeneous FLE (45) reduces to , where 

 is the variance of FLE along one of its principal axes, and for the case of homogenous, 

isotropic FLE, which is the case originally treated by Sibson, it reduces exactly to (1).

The second result is an expression for 〈FRE2〉 for ideal weighting, first derived for the case 

of isotropic, homogeneous FLE in 1998 [6] and given above by (2) and derived for general 

FLE in 2009 [11]. With ideal weighting we find from (32) and (42) that (UtWΣWtU)jj′ = δij′ 

(i.e., the Kronecker delta). Using this result in (41) yields

(46)

Despite the considerable detail in our derivations of this result, its calculation is quite 

simple, requiring evaluation only of (16), (15), (19), (29), and (46) in that order.

The third result is an expression for 〈TRE2〉 when FLE is inhomogeneous and anisotropic 

but no weighting is employed, first derived in 2009 by Wiles first for the homogeneous case 

5If the distribution for |FRE| is desired, we note that ρ(|FRE|) = 2|FRE|ρ (FRE2).
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[9] and then for the general case [23]. Our expression for this case is gotten simply by 

removing W from the expression in (41) and noting that, in the construction of the block-

diagonal covariance matrix Σ, the nonzero blocks Σ, are all equal.

The fourth result is the decomposition of TRE into three statistically independent orthogonal 

normally distributed components when FLE is homogeneous and isotropic and no weighting 

is employed, which was first accomplished in 2001 [7]. We begin by noting that, for this 

case, having no weighting is equivalent to employing ideal weighting with w = 1. We then 

have (U′WΣW′U)jj′ = δij′, as in the second result above. Using this result in (39), we find that 

. Performing an eigen decomposition yields 

. Since ΣTRE is symmetric, VTRE is orthogonal. If we define 

, then, since VTRE is orthogonal and the elements of ẽ are independent and 

normally distributed, the three components, ηk, are uncorrelated, normally distributed, 

orthogonal components of TRE with variances equal to ηk.

The fifth result is the set of expressions in (36) through (38) for the statistics of the 

unweighted individual fiducial registration error with ideal weighting used the registration 

step when FLE is homogeneous or isotropic. Analytical expressions for these two cases 

were first derived in 2009 [19]. They reduce in the homogeneous and isotropic case to 

expressions first derived in 2008 [10].

IV. Validation

Our theory has three major results, which can be summarized as follows: For arbitrary 

weighting and arbitrary FLE, (a) (33) gives the covariance of FRE, (b) (40) gives the 

covariance of TRE, (c) FRE and TRE are statistically independent. Our other results are 

derived from (a) and (b). We tested our results as follows (1) We compared (33), (37), (41) 

and (46) to previously published analytic expressions for special cases. (2) We compared 

(33) and (39) to true values obtained by means of simulations, and we measured their cross 

correlation and dependence. All calculations were performed using Matlab 2010b 

(Mathworks, Natick, MA) on a Dell Latitude D830 with an Intel Centrino Duocore 2.2 GHz 

CPU with 2 GB RAM.

A. Comparisons to True Values via Simulations

For each simulation experiment, the following was performed: Randomly select a set S(N) 

of N unperturbed fiducial positions xi inside a 200 mm cube and one random target position 

r inside a 400 mm cube (the cubes share a common corner). Then repeat the following 15 

times.

1.
For each xi, define a covariance FLE matrix , where the 

columns of  are the principal axes of FLE and the diagonal elements 

the variances of the independent components of FLE.
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2. Construct a random rotation R(0) and a random translation t(0) and apply them to the 

xi to produce N corresponding unperturbed positions yi [see (4)].

3.
Generate a covariance FLE matrix  for each yi in a similar manner to that used 

to define .

4. Generate a weighting matrix Wi for each point.

5. Repeat the following steps 10 000 times.

a. Perturb each fiducial position in each space to produce xi + Δx and yi + Δy 

according to  and , respectively, with random, normally 

distributed, zero-mean components.

b. Employ a registration algorithm to find R and t that minimize the exact 

registration formula of (3).

c. Calculate TRE(r) and FRE.

6. Calculate CC(FRE, TRE) for the 10 000 registrations of Step 5.

7. Perform the chi-square test described in Appendix I-D of the Appendix to detect 

dependence between FRE and TRE for the 10 000 registrations of Step 5.

8. Compute rms(TRE) and rms(FRE) for the 10 000 registrations of Step 5.

9. Calculate rms(TRE) = 〈TRE2〉1/2 and rms(FRE) = 〈FRE2〉1/2 our formulas.

10. Calculate CC between rms(TRE) from Steps 8 and 9; calculate CC between 

rms(FRE) from Steps 8 and 9.

The registration algorithm employed to accomplish Step 5b, depends on the weighting being 

used. For uniform weighting, the method of singular-value decomposition was employed 

(e.g., [20, Algorithm 8.1]). For ideal weighting, the algorithm of [21] was employed, except 

that in Step 1 of that algorithm, , as given in 

Section III-G. This amendment to the algorithm is necessary for ideal weighting when FLE 

is anisotropic and/or inhomogeneous.

We employed these simulation experiments to determine the accuracy of 1) our expressions 

for TRE and FRE and 2) our claims that TRE and FRE are statistically independent and 

hence uncorrelated. As pointed out in [2], a failure to detect dependence does not guarantee 

that correlation is zero. The more specific correlation test may succeed where the 

dependence test fails, so we apply separate tests for correlation and dependence—the t-test 

to detect correlation and the chi-square test based on contingency tables to detect 

dependence [22]. The latter test is described Appendix I-D of the Appendix. For all tests we 

chose p = 0.05 with Bonferroni correction applied where appropriate. These tests were also 

used in [2].
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V. Results

A. Comparison to Previously Published Expressions

We compared (33), (37), (41), and (46) with previously published and validated analytic 

expressions for the first three cases and the fifth case in Section III-A. Regarding (33), as 

pointed out in Section III-A, the simplification of that equation produced by the assumption 

of isotropy and homogeneity for FLE yields (45), which agrees exactly with the formula for 

FRE2 derived by Sibson that case. We compared the outputs of (41) to the formulas for Vi = 

〈TRE2〉 published by Moghari [11] and Wiles [9] for a large set of inputs. Similarly we 

compared (37) to the formula for  published by Moghari [19]. For each 

comparison, we repeated the following 1000 times: We generated sets S(N) of random 

fiducials and a random target and in the manner described above for the simulations, with N 

= 3, 4, 5,…, 10, 20, 30 and 40 fiducials. We generated a two-space covariance Σi in the 

same manner as that used in the simulations to generate , based on Vi and (σi)j. We 

chose random orientations for each set of principle axes and chose random values of (σi)j. 

We compared (46), with the formulation of Moghari, who provided an analytic formula for 

the case of isotropic, inhomogeneous FLE with ideal weighting [11], and we compared (41) 

with W set to the identity (i.e., no weighting) to the formula given by Wiles’s for the case of 

anisotropic, homogeneous FLE with no weighting [9]. We compared (37) to Moghari’s 

formula for the case of isotropic inhomogeneous FLE with ideal waiting [17]. In every case, 

our outputs agreed with those of these previously published formulas (maximum difference 

= 1.2 × 10−10). In summary, our new general formulas agree with existing formulas, each of 

which is limited to a special case.

B. Comparison With Simulations

The important new feature that our theory supports is arbitrary weighting for arbitrary FLE. 

The sets of possible weightings and FLEs are each infinite, but we focused on two types of 

weighting—ideal weighting and uniform weighting, which is equivalent to no weighting—

and on two sizes of FLE—small, which we defined as rms(FLE) < 1 mm, and large. For the 

latter case we used rms(FLE) = 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, and 70 mm. Our 

motivation for the small-versus-large-FLE dichotomy is to explore the limitations of our 

linear approximation, which is strictly correct only in the limit of small FLE. For small FLE, 

we tested with N = 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, and 40 fiducials. For the large FLE values, 

we limited our testing to four fiducials in order to control the requisite simulation time, 

which for each value of N requires 24 h for 15 values of rms(FLE). For the case of no 

weighting, we investigated only the case of small FLE, because we found correlation 

without moving above 1 mm.

Utilizing the simulation scheme above, in every case, we found the values calculated in 

Steps (8) and (9) to be statistically equivalent (no significant difference via paired t-test at p 

< 0.05). The maximum absolute percentage differences were less than 1.5% for FLE in the 

range from 1 to 10 mm (n = 555) and were less than 4.1% for FLE in the range from 1 to 50 

mm (n = 120). For Step 10, in which we calculated the CC between the values of rms(TRE) 

of Steps 8 and 9, and the CC between the values of rms(FRE) calculated in Steps 8 and 9, 
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we found in both cases that CC was well above 99.9%. The minimal lower bound of 95% 

confidence was 99.99%. Thus, our formulas for both FRE and TRE agree with simulation 

and show only a slight degradation in accuracy even when FLE is far larger than any value 

that would be tolerated in surgical guidance (50 mm is equal to one-fourth of the side of the 

200 mm cube within which the fiducials were randomly placed for this simulation).

Figs. 2 and 3 summarize the results of our investigation into the correlation and dependence 

of FRE and TRE. As predicted by our theory, neither correlation nor dependence is 

detectable when ideal weighting is employed, and FLE is less than 1 mm [Fig. 2(a)]. For 

FLE > 20 mm, correlation is statistically significant but remains negligible (CC < 0.1) even 

for FLE = 70 mm [Fig. 2(b)]. For uniform weighting (i.e., no weighting) a very small 

correlation is observed, CC ≤ 0.1 that decreases with increasing N [Fig. 3(a)]. This 

correlation is statistically significant for all values of N, showing that, while FRE has some 

predictive power when higher order terms are included, that power is negligible. The 

dependence that this tiny correlation implies was undetectable for all but a very few cases. 

Detection is achieved when the chi-square statistic q (Appendix I-D of the Appendix) rises 

above a critical value shown by the horizontal line in Fig. 3(b). Such values were observed 

very rarely, as can be seen by the sub-critical means and, for N ≥ 20, the sub-critical values 

of mean + standard deviation.

Finally, we repeated our experiments with targets positions chosen to be equal to fiducial 

positions in order to determine whether some dependence between TRE and FRE might 

appear in the special case in which a target is close to a fiducial. No such correlation is 

possible according to our theoretical development, but we explored this case to eliminate the 

possibility that appreciable second-order dependence might appear. The results were the 

same as for the randomly chosen target positions—no detectable dependence and no 

significant correlation.

VI. Discussion

We have generalized a method of first-order analysis of the point-registration problem 

introduced in 2009 [2] so that it accommodates inhomogeneous and anisotropic FLE with 

arbitrary weighting. With this generalization we are able to provide first-order expressions 

for the covariance matrices of FRE and TRE—(33) and (40)—an expression for individual 

FRE—(34)—and expressions for 〈FRE2〉 and 〈TRE2〉—(35) and (41). As a result, we have 

unified the theory of first-order FRE and TRE statistics, which has heretofore been solved 

piecemeal only for special cases, each of which involved a separate formulation [6], [7], [9], 

[11], [19]. We have included in Appendix I-E of the Appendix an implementation of (33), 

(35), (40), and (41) in Matlab. With this implementation, we have reduced to 25 lines of 

Matlab not only all the many special cases of weightings and FLE anisotropies heretofore 

spread over many pages of many papers with different notations but also all other possible 

combinations of weightings, inhomogeneities, and anisotropies.

In addition, by means of our new method we are able to generalize the major result of [2]: 

namely, that, to first order, FRE and TRE are independent when FLE is homogeneous and 

isotropic. Our generalization reveals that, in addition, if ideal weighting is employed, FRE 
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and TRE are independent to first order when FLE is inhomogeneous and/or anisotropic. 

Ideal weighting, which we define in Section III-G, is not a new concept. It was introduced to 

point registration by Ohta and Kanatani in 1998 [16] and used by West et al.. in 2001 [17] 

and by Moghari et al.. in 2009 [11], [19] as well, but the proof that it produces independence 

between FRE and TRE is new.

We note that this independence in no way detracts from the importance of (1) and (2), from 

the generalizations of these expressions provided in the excellent work by Wiles [9], [23], 

Balachandran [10], and Moghari [11], [19], and further generalizations given in (33) through 

(38), (40) and (41), each of which relates one expectation value to another. Equation (1) and 

Wiles’s generalization of that relationship [23] can be used to estimate the FLE covariance 

from measurements of FRE obtained from repeated registrations based on independent 

fiducial localizations. Based on this estimate, (2) or one of its generalizations can then be 

used to estimate an expectation value for TRE for a given fiducial configuration and target 

position. What we have shown is that the value of FRE observed for a given registration is 

unreliable as means to estimate the deviation of TRE from its expected value for that same 

registration.

We have compared our results to previously published formulas for FRE and TRE and to 

our own simulations to validate our new formulation. While there is an infinite variety of 

FLE patterns and weighting schemes available, we focused on inhomogeneous and 

anisotropic FLE with both ideal weighting and uniform weighting. We generated random 

fiducial and target positions and used both small FLE—rms(FLE) < 1 mm, and large FLE—

up to 70 mm. We found excellent agreement in all cases. We also used simulations to 

evaluate correlation and dependence between FRE and TRE when the first-order 

approximation is not made. We found, in agreement with our theoretical results, that 

correlation and dependence approach zero for both weighting schemes as FLE approaches 

zero, for every case tested. We found for very large FLE that, while there is clearly a 

statistically significant correlation at higher order, that correlation is so small as to have 

negligible value as a predictor of TRE.

Our experiments on uniform weighting explain why neither Steinmeier nor Woerdeman, 

both of whom experimented with systems that apply this weighting scheme, were able to 

detect appreciable correlation between FRE and TRE, and it provides further support for the 

argument advanced in [2] that estimates of fluctuations of registration accuracy, i.e., TRE, 

based on the goodness of fit of the fiducials, e.g., FRE, are unreliable.

VII. Conclusion

By means of a new unified approach to the first-order analysis of the point registration 

problem, we are able to provide general expressions for the covariances of fiducial 

registration error and of target registration error. These two expressions and all the other 

expressions that we derived from them are appropriate for any set of fiducial localization 

error patterns, whether inhomogeneous or not and whether anisotropic or not. Furthermore, 

they are appropriate for any arbitrary set of weightings in the point registration problem, 

including ideal weighting and uniform weighting. Furthermore, this approach allows us to 
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show that, for ideal weighting, FRE and TRE are to first order neither correlated nor 

dependent. We have verified these results by means of comparison to previous derivations 

and to simulations. Finally, by means of simulation we have shown that, for all cases 

examined, correlation between FRE and TRE is also negligible for uniform weighting even 

for the exact case. These results reinforce the message delivered in [2] that for ideal 

weighting and uniform weighting, the latter of which is used in commercial guidance 

systems, fluctuations of measures of the goodness of fit of the fiducials, e.g., fiducial 

registration error, have no statistical relationship, or at most a negligible relationship, to 

fluctuations of individual measures of registration accuracy, i.e., target registration error. 

Therefore, as estimators of registration accuracy, they are unreliable and should approach 

with extreme caution both by the purveyors of guidance systems and by the practitioners 

who use them.
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Appendix

Derivation of Ideal Weighting

The standard approach to finding the rigid transformation by minimizing (3) is based on 

maximum likelihood. Maximum likelihood was introduced into the point registration 

problem by Ohta and Kanatani in 1998 [16] and used by West et al. in 2001 [17] and by 

Moghari in 2009 [11], [19]. It has also been invoked for intensity-based registration methods 

[23]. The goal in point registration is to find the transformation that is most likely to be 

correct given the measured positions of the fiducial points in the two spaces. That goal can 

be reached only if the matrices Wi in that equation provide “ideal” weighting. In this section 

we derive the ideal weighting matrices and show that they provide the maximum-likelihood 

solution. We begin with the given sets { } and { }, i = 1, …, N of measured vector 

positions in two spaces, where  and , xi and yi are the true but 

unknown positions of corresponding points in the respective spaces, and Δxi and Δyi are 

their unknown localization errors. We wish to find the most likely rigid transformation, but, 

as we do, we will also find the most likely true positions. Specifically, we wish to find the 

rotation matrix and translation vector R,t and the {xi} and{yi} that together maximize the 

conditional probability density . The set of true points {xi} is missing 

from the variables in this density because they are completely determined by R,t, and the 

{yi}, since by definition xi = Rtyi − Rtt.
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Thus, we wish to maximize  with respect to R,t, and {yi} for fixed 

{ } and { }. From Bayes’ law, we have that

(47)

and, absent prior knowledge of , we neglect its dependence on R,t, and {yi}. 

Furthermore,  is fixed because both { } and { } are fixed. Therefore, we 

may achieve our goal by maximizing the conditional probability 

with respect to R,t, and {yi}.

We now assume that all localization errors are independent and that their components have 

zero mean and are normally distributed about their principal axes. With this assumption we 

have

(48)

where Σxi and Σyi are respectively the covariances of Δxi and Δyi. It can be seen from our 

definitions above and from minor manipulation that  equals 

, where , and that  equals 

, where . After these substitutions, we have 

, where

(49)

Thus, in order to maximize the likelihood, we need to minimize 

with respect to R,t, and {yi}. We minimize with respect to the {yi} by taking the derivative 

of G with respect to each of the components of each of the and setting all 3N derivatives to 

zero. The result is

(50)

We note that the expression for yi given in (50), which is a weighted mean of the ith 

transformed measured point in x space and its corresponding measured point in y space, 

provides the best available approximation for the true positions needed in all the expressions 

for TRE and FRE statistics derived in the body of this paper. In the case of isotropic, 
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homogeneous FLE, as, for example, in (2), this expression reduces to , 

i.e., a simple unweighted average.

Finally, we substitute our expression for yi into G to obtain (after considerable manipulation)

(51)

where Wi = (RΣxiRt + Σyi)−1/2. In order to reach our goal, the remaining task is to find the 

transformation R,t that minimizes G. In this minimization process, we can use Wi = 

w(RΣxiRt + Σyi)−1/2, where w is any constant. For this reason we refer to Wi = w(RΣxiRt + 

Σyi)−1/2 as “ideal” weighting. The right side of (51) has the same form as the right side of 

(3), but the weighting is unspecified in (3), whereas the derivation above shows that only 

ideal weighting can achieve maximum likelihood.

Statistical Independence of the Elements of ẽ

In this appendix we show that, if the M elements of the vector e are statistically independent, 

normally distributed variables with zero mean, then, if the M×M matrix V is orthogonal, the 

following vector has these same three characteristics:

(52)

1. If the mean of e is zero, then the mean of ẽ is zero.

That the mean is zero is easily seen by computing the expectation value, which we 

denote by 〈.〉, of both sides of (52)

(53)

2. If the elements of e are uncorrelated with equal variances and V is orthogonal, then 

the elements ẽ are uncorrelated.

Because of (53), the correlation of ẽi and ẽj is equal to 〈(ẽi − 〈ẽi〉) (ẽj − 〈ẽj〉)〉

(54)
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where we used the fact that the elements of e are uncorrelated and equal in going 

from the first line of (54) to the second, defined  to be the variance of an 

element of e, and used the orthogonality of V in the last step.

3. If the elements of e are independent and normally distributed with equal variances 

and V is orthogonal, then the elements of ẽ are independent and are normally 

distributed with the same variance.

We note that, since the elements ei are independent and normally distributed with 

variance σ2, their joint probability density has the form

(55)

where we have used the fact that the means of the ei are zero6. Because each ẽi is a 

linear combination of the ei, their joint density has the form (by generalizing the 

derivations in [18, p. 199–201 ] from two variables to M variables)

(56)

where J = det(Vt) and z = (Vt)−1ẽ. Since V is orthogonal, |J| = 1 and (Vt)−1 = V. 

Using these properties and (55) in (56) gives us that

(57)

where we have used the orthogonality of V in going from the second line of (57) to 

the third line. Equation (57) can be written as a product of functions of the 

individual ẽi as follows: , where 

, which is of normal form. Since the joint 

probability density of the ẽi is equal to the product of individual functions, the ẽi 

are mutually statistically independent. Since the individual functions are of normal 

form, they are normally distributed with variance σ2.

6Zero means are not necessary for this derivation. They simply reduce its complexity. Since the means are in fact zero, we take 
advantage of that fact to simplify the equations.
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Two-Dimensional Case

The formulas and the proof of independence are derived in Section III only for 3-D 

transformations, but they all carry over to the 2-D case as well. We highlight here the salient 

changes that result when the points and the transformations are 2-D. First, xi, yiΔxi, Δyi, Δξi, 

and  are 2×1. Second, Wi, R, R(0), , Σi, I, and ΔR, are now 2×2 matrices, t, 

Δt, and

(58)

Third, C is a now a 2N×3 matrix, and q is a three-element vector whose elements are Δθ, 

Δt1, Δt2. Fourth,

(59)

and

(60)

Fifth, Λ is 2N×3, V is 3×3, Λ+ is 3×2N, and the proof that all singular values (there are now 

only three of them) are nonzero involves only the third of the three equations in (20). It is 

now the first three (instead of first six) diagonal elements of ΛΛ+ that are equal to 1, and the 

last 2N −3 (instead of the last 2N − 6) are equal to 0. As a result, each component of FREi 

for each fiducial point is a function of only the last 2N − 3 elements of ẽi, and each 

component of TRE(r) is a function of only the first three elements of ẽ. The proof that the 

2N elements of ẽ are independent makes no reference to the dimension of the space (see 

Appendix I-B above). Therefore, FREi and TRE(r) are statistically independent for the 2-D 

case, just as they are for the 3-D case.

Sixth, the block-diagonal matrices have slightly different forms to accommodate the reduced 

spatial dimensionality: Σ2(i−1)+j,2(i−1)+j′ = (Σi)jj′ and W2(i−1)+j,2(i−1)+j′ = (Wi)jj′, for i = 1,…, 

N, j = 1, 2, j′ = 1,2 with all other elements equaling zero.

Seventh, (33) through (41) must be altered to accommodate the reduced dimensionality, as 

follows:

(61)
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(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Chi-Square Test for Dependence

To detect dependence, we employ the standard chi-square test based on the contingency 

tables [22]. Each element, C(i,j), i = 1,2, …, Nc, j = 1,2, …, Nc, of an Nc×Nc contingency 

table is a count of the number of registrations for which FREi ≤ FRE < FREi+1 and TREj ≤ 

TRE < TREj+1, where the thresholds, FREi and TREj can be chosen arbitrarily. The 

resulting table is then used to calculate the following test statistic: 
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, where C0(i, j) is the count that is to be expected 

when FRE and TRE are independent, namely, C0(i, j) = C1(i)C2(j)/M, where M is the total of 

all counts, , and . The variance in q over 

repeated experiments (i.e., with different random localization errors) can be reduced by 

choosing the thresholds FREi and TREj such that  and 

. If q is sufficiently large, then it can be concluded that 

FRE and TRE are dependent. A “sufficiently large” value is that of the chi-square 

distribution (i.e., cumulative distribution) 7, where 1 − p0 is the desired confidence 

in the truth of dependence. The number, v, of degrees of freedom for this problem equals 

(NC −1)2. Thus, a value of q that is larger than  indicates that dependence between 

FRE and TRE is detected at p ≤ p0. Failure to detect q exceeding  suggests that our 

theory of independence can be extended from the linear approximation to the exact problem 

encountered in surgical guidance.

Computer Code to Implement the Derived Formulas

We provide in Fig. 4 a Matlab function to implement our new formulas for FRE and TRE. 

The values that it returns correspond to our equations as follows: (RMS_TRE)2 = 〈TRE2〉 

from (41), (RMS_FRE)2 = 〈FRE2〉 from (35), Cov_TRE = ΣTRE from (40), and Cov_FRE = 

ΣFRE from (33). The inputs correspond to our definitions above as follows: 

, W(:,:,i) = Wi, , and r0 

= r(0) = R(0)r.

Like the formulas that it implements, this code is general. This relatively simple function 

handles the special cases of uniform weighting for homogeneous, isotropic FLE, first solved 

by Fitzpatrick et al. [6], uniform weighting for homogeneous, anisotropic FLE first solved 

by Wiles et al. [9], and ideal weighting for inhomogeneous, anisotropic FLE first solved by 

Moghari et al. [11], and it handles all other cases as well.

7Note that  denotes a variable, while  denotes a distribution.
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Fig. 1. 
FRE and TRE for two example registrations (a) Image space showing patient (dashed 

outline), three fiducials (dotted circles), and an anatomical target (dotted cross). For 

simplicity localization errors are zero (b) Physical space showing a set of fiducial 

localization errors. Arrows show the displacements from true positions (dotted outlines) to 

localized positions (solid outlines). The same anatomical target is shown (solid cross). This 

set of localization errors can be duplicated exactly by a rigid transformation that comprises a 

clockwise rotation R about the “bull’s eye” that is located just to the right of the nose (c) 

Point registration has been applied to the image to register the localized positions in (a) with 

those in (b) The transformation is incorrect by the same rotational error R (dashed arrow) 

about the bull’s eye, but it achieves an FRE of zero. TRE (arrow) is large, however, because 

R is large (d) Physical space showing a second set of fiducial localization errors. This set of 

localization errors can be duplicated by expansion from the target point but cannot be 

approximated by any rigid transformation (e) Point registration has been applied to the 

image in (a), and the resulting rigid transformation is perfect. Since the transformation is 

perfect, TRE is zero, but since no rigid transformation can approximate the localization 

errors, the fiducial fit is poor, as can be seen from the relatively large size of the individual 

FREs (distance between circles with dotted and solid outlines, so the root-mean square FRE 

is large.
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Fig. 2. 
FRE-TRE correlation coefficient CC for ideal weighting (a) FLE < 1 mm with varying 

number of fiducials (b) Varying FLE with four fiducials. In each case, the solid line is the 

mean of 15 sets of 10,000 registrations for randomly selected fiducial and target positions 

(see text). The dashed lines are mean ± one standard deviation. Correlation is insignificant at 

p < 0.05 for all of (a) and for FLE < 10 mm in (b). Statistically significant but negligible 

(<0.1) correlation occurs for FLE ≥ 20 mm, showing that, while FRE has some predictive 

power when higher order terms are included, the power is negligible.
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Fig. 3. 
FRE-TRE statistics for FRE < 1 mm when uniform weighting (i.e., no weighting) is 

employed (a) Correlation coefficient CC versus number of fiducials. A statistically 

significant but negligible (<0.1), correlation is apparent that decreases with increasing 

number of fiducials (b) The chi-square statistic q for dependence versus number of fiducials. 

The dashed lines are mean ± one standard deviation. The horizontal solid line in (b) is the 

critical level above which values of q indicate dependence. The slight dependence implied 

by the small correlation in (a) is not detected by q, whose mean remains below the critical 

level.
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Fig. 4. 
Computer code to implement the derived formulas. The code is a function written in Matlab 

(The Mathworks, Natick, MA). Its input and output parameters are described in comments 

(lines beginning with a percent sign) and in the text.
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