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Abstract

Divisive normalization of neuronal responses by a pooled signal of the activity of cells within its 

neighborhood is a common computation in visual cortex. From a geometrical point of view, 

normalization constraints the population response to high-contrast stimuli to lie on the surface of a 

high-dimensional sphere. Here we study the implications this constraint on the representation of a 

circular variable, such as the orientation of a visual stimulus. New results are derived for the 

infinite dimensional case of a homogeneous populations of neurons with identical tuning curves 

but different orientation preferences. An important finding is that the ability of the population to 

discriminate between any two orientations depends exclusively on the Fourier amplitude spectrum 

of the orientation tuning curve. We also study the problem of encoding by a finite set of neurons. 

A central result is that, under normalization, optimal encoding can be achieved by a finite number 

of neurons with heterogeneous tuning curves. In other words, increasing the number of neurons in 

the population does not always allow for an improved population code. These results are used to 

estimate the number of neurons involved in the coding of orientation at one position in the visual 

field. If the cortex were to code orientation optimally, we find that a small number (~5) of neurons 

should suffice.
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Introduction

The gain control model extended the classic linear-nonlinear model of simple cells 

(Movshon, Thompson & Tolhurst, 1978) to account for a number of response properties, 

including response saturation, phase advance of temporal responses with contrast, and the 

results of masking experiments using plaid stimuli (Bonds, 1989, Carandini, Heeger & 

Movshon, 1997, Heeger, 1992, Robson, 1988). The basic idea of the model is that an initial 

set of responses, provided by direct input from other brain regions, gets normalized 

(divided) by a pooled signal of activity in the neighborhood a cell (Fig 1).
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Progress over the last decade has shown that such normalization is a widespread 

computation in the brain; it can be found in the retina (Benardete, Kaplan & Knight, 1992, 

Shapley & Victor, 1979a, Shapley & Victor, 1979b, Shapley & Victor, 1981, Solomon, Lee 

& Sun, 2006), the lateral geniculate nucleus (Bonin, Mante & Carandini, 2005, Bonin, 

Mante & Carandini, 2006), primary visual cortex (Carandini et al., 1997, Heeger, 1992, 

Ringach & Malone, 2007, Rust, Schwartz, Movshon & Simoncelli, 2005), area MT 

(Simoncelli & Heeger, 1998), and area IT (Zoccolan, Cox & DiCarlo, 2005). Furthermore, 

normalization models appear to account well for the modulatory effects of attention 

(Reynolds, Chelazzi & Desimone, 1999, Reynolds & Heeger, 2009).

The prevalence of normalization in the nervous system must surely reflect the fact that it 

evolved to address a problem that arises at different stages of processing (Douglas & Martin, 

2004, Douglas & Martin, 2007). From a theoretical point of view, this observation prompts a 

number of interesting questions. What basic principles of signal processing would lead to 

normalization of responses to be a critical component of neural computation? How 

normalization impacts the way stimuli can be encoded and processed? What are the 

computational capabilities of networks of normalized populations?

Some recent studies have considered how normalization modifies the statistical 

dependencies of neural activity, and have put forward the idea that normalization may serve 

to optimize the representation of natural signals (Fairhall, Lewen, Bialek & de Ruyter Van 

Steveninck, 2001, Olshausen & Field, 1996a, Olshausen & Field, 1996b, Olshausen & Field, 

2004, Ruderman & Bialek, 1994, Schwartz & Simoncelli, 2001). Others have noted that 

normalization may also serve a role in decoding the activity of neuronal populations 

(Deneve, Latham & Pouget, 1999). Here we take complementary approach and ask not why, 

but how is that the representation of information constrained when carried by the signals of a 

normalized pool of neurons? Under what conditions are such representations optimal?

We study this problem in two scenarios that are simple enough that allow theoretical results 

to be obtained. First, we consider the encoding performed by a homogeneous set of neurons 

with identical tuning curves differing only in their preferred orientation. The main object of 

study is the information tuning curve (Kang, Shapley & Sompolinsky, 2004) which specifies 

the ability of the population to discriminate between any two orientations. When the number 

of neurons tends to infinity, closed form calculations can be performed that clarify the 

constraints imposed by normalization onto the information tuning curve. In particular, it is 

shown that the information tuning curve is determined by the Fourier amplitude spectrum of 

the tuning curve. Surprisingly, the result can be used show that the average discrimination 

performance of the population (measured as the average (d′)2 across all possible orientation 

pairs) depends exclusively on the mean of the tuning curve of neurons and not at all on its 

shape. This has important consequences for experiments in perceptual learning that attempt 

to gauge how neuronal populations change during the learning process. Namely, geometric 

properties of local shape of the tuning curve (such as its bandwidth at half-height or 

maximum slope) are not the best choice when evaluating how a population’s ability to 

discriminate between any two orientations. Instead, its Fourier amplitude spectrum is better 

suited as it encodes all the information in the information tuning curve.
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Second, we study the more complex situation of finite dimensional cases, where neurons are 

also allowed to have different tuning curves. We ask how can we best represent a circular 

variable in an optimal fashion in this case. The main finding is, at first, counterintuitive: 

normalization causes the optimal encoding to be attainable using a finite number of neurons. 

In other words, increasing the number of neurons in a normalized population does not 

always allow for an improved population code.

We then show these results can be used to estimate the number of neurons involved in the 

coding of orientation at any one position in the visual field from experimental data. The 

results show that, if the cortex were to code orientation optimally, a small number (~5) of 

normalized neurons would suffice.

These findings demonstrate that normalization imposes important constraints on the coding 

of information and, giving its incidence in cortical circuits, it should be incorporated as an 

integral component in formal models of population coding.

Results

A geometric view of normalization

The normalization model we adopt is one that has been used widely to model the responses 

of simple cells in primary visual cortex (Carandini et al., 1997, Heeger, 1992):

(1)

Here, ri represents the initial response of neuron i to a stimulus, r = (r0, r1, · · ·, rN−1) is a 

vector describing the response of the N cells in the population, ||r|| is the Euclidian norm of 

the vector, σ is the semi-saturation constant, and r̂ = (r0̂, r̂1, · · ·, r̂N−1) is the vector of 

normalized responses. Our first observation is simple: for strong stimuli, for which ||r|| ≫ σ, 

the normalized population response lies on a hyper-sphere, SN−1. This means that in general 

the problem of encoding under normalization becomes one of defining a map from a given 

stimulus space to a high-dimensional sphere, the dimension of which is determined by the 

number of neurons at hand. A few examples demonstrate how this fact leads to some 

interesting theoretical problems.

Consider first the coding of a circular variable, which we will discuss in detail below. This a 

problem confronted by the nervous system in several contexts, including the coding of the 

orientation or direction of motion of a visual stimulus, the color hue of a surface patch, wind 

direction, reaching direction, and heading direction with respect to magnetic north. In all 

these cases, the domain of the stimulus can be associated to unit circle. Any point on the 

circle defines can be associated with the value of the variable under consideration (Fig 2a). 

Thus, the problem of encoding a circular variable by a normalized population of N neurons 

amounts to defining a map that takes the unit circle into the a (N − 1) -sphere,

(2)
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Studying the property of these maps, and how one could obtain some that are optimal in 

some sense, is the central topic of our study.

Another interesting situation arises when we consider the joint coding of the orientation and 

the spatial phase of a sinusoidal grating (Fig 2b). This stimulus space represents a Klein 

bottle, a fact that may not be entirely evident at first (Carlsson, Ishkhanov, DaSilva & 

Zomordian, 2007, Singh, Memoli, Ishkhanov, Sapiro, Carlsson & Ringach, 2008, Swindale, 

1996, Tanaka, 1995). One way to show this is by plotting the individual gratings 

corresponding to the various combinations of the parameters (Fig 2b). One can then see that 

gratings on the top and bottom rows are identical to each other, as indicated by the matching 

directions of the two red arrows. If we wanted to match these two arrows one on top of the 

other all we need to do is roll the rectangle of gratings into a cylinder. On the other hand, the 

stimuli on the left and right columns are the same but reversed in order, as indicated by the 

directions of the blue arrows. To match the directions of the blue arrows once we have rolled 

the space into a cylinder we would need to puncture the cylinder in 3D space, but it turns out 

that it can be done in 4D without trouble (Fig 2b). The resulting object is a Klein bottle. 

Thus, the problem of mapping the orientation and spatial phase of a grating onto the 

normalized population of cells amounts to defining an embedding of the Klein bottle into the 

(N−l) -sphere.

A final example is the joint coding of orientation and color hue (Johnson, Hawken & 

Shapley, 2008) (Fig 2c). Here, as one can infer by the direction of the arrows, the resulting 

object is a torus, which is obtained by rolling the space into a cylinder and then gluing the 

ends together. Implementing a population code that maps orientation and color hue to a 

normalized population of neurons is thus equivalent to the embedding of a torus in a high-

dimensional sphere.

These examples illustrate that interesting geometrical and topological problems arise when 

we consider the representation of visual information via normalized population of neurons. 

In what follows, we take a first step to gain some insight into the constraints imposed by 

normalization we being by considering a very simple case of orientation tuning (Benyishai, 

Baror & Sompolinsky, 1995, Salinas & Abbott, 1994, Seung & Sompolinsky, 1993).

Representation of a circular variable by an infinite population of homogeneous neurons

Consider a set of N neurons whose orientation tuning curves are identical but differ only in 

their preferred orientations, which we assume to be evenly spaced around the circle (Fig 3a). 

The tuning curve of the i–th neuron is given by fi(θ) = CN f(θ − 2πi/N) with i = 0,1, · · ·, N − 

1. The population response to a given orientation will be denoted by f(θ) = (f0(θ), f1(θ), · · ·, 

fN−1(θ)). Without loss of generalization, we assume that normalization implies the length of 

this vector equals one, ||f (θ)|| = 1. For a given tuning curve shape, the value of CN can be 

picked to ensure this normalization constraint as the number of neurons in the population 

changes. We further assume that the output of each neuron is corrupted by i.i.d. Gaussian 

noise.

Under these simple conditions the ability of an ideal observer to discriminate two 

orientations α and β based on the population response is proportional to d′(α, β) = ||f(α) − f 
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(β)||. However, we will be working with a quantity that is more amenable to computation, 

the squared value of d′, which is proportional to other measures of information used in the 

past such as Fisher information (for small angles) and the Chernoff distance (Kang et al 

2004, Seung & Sompolinsky, 1993).

In the limit, when the number of neurons N → ∞ its value becomes (Kang et al., 2004, 

Seung & Sompolinsky, 1993),

(3)

where we used the fact that for large N the value of CN ~1/N for the normalization 

constrained, ||f(θ)|| = 1, to be maintained for all N. Thus, in the limit, the population response 

to a given orientation has a shape identical to the orientation tuning curve centered at the 

neuron with that preferred orientation. Thus, f(θ − α), which is the tuning curve for a neuron 

with preferred orientation α, also becomes the response of the population with preferred 

orientations θ to a stimulus of orientation α. The equation above expresses the squared 

Euclidean distance between two population responses evoked by angles α and β. For large 

number of neurons the normalization of the population response is equivalent to 

normalization of the tuning curve, ||f (θ)|| = 1.

We can now calculate (d′)2 by representing the orientation tuning function with its Fourier 

series, f(θ) = Σkckexp(ikθ). We obtain,

(4)

The calculation shows that (d′)2 depends only on the difference between the orientations, Δθ 

= α − β (Fig 3b). This result is a direct consequence of the symmetric arrangement of the 

tuning curves (Fig 3a) and their homogeneity. We refer to this property as translation 

invariance. The function d′ (Δθ)2 is called the information curve and provides the full 

information about the ability of the population code to discriminate between two 

orientations that differ by Δθ (Kang et al., 2004, Sompolinsky, Yoon, Kang & Shamir, 2001) 

(Fig 4a). The above expression for d′ (Δ θ)2 immediately leads to a few interesting results.
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The information curve is determined by the amplitude spectrum of the 
orientation tuning curve—Note that d′ (Δθ) depends only on the amplitudes of the 

Fourier coefficients of the orientation tuning curve, |ck|. In other words, the relative phases 

of the Fourier components, which have a strong impact on the shape of the tuning curve, do 

not affect the information curve at all. This means that tuning curves that that have the same 

amplitude spectrum, but different phases and shapes, will produce exactly the same 

information curve (see Fig 3c for an example).

This result is important because it implies that in order to evaluate changes in the ability of 

neuronal populations to discriminate between any two orientations measures of geometric 

properties of local shape of the tuning curve (such as its bandwidth at half-height or 

maximum slope), are not necessarily the best choice. Instead, the amplitude spectrum of the 

tuning curves is a more relevant quantity. This is relevant to many studies where we might 

need to evaluate the ability of neuronal populations to code orientation before and after 

perceptual learning.

Fourier series of the information curve—In addition, Eqn (4) can be seen to represent 

the Fourier series of d′ (Δθ)2. This provides a helpful tool to synthesize/design tuning curves 

to implement any desired information curve. This could be done as follows: (a) compute the 

amplitude spectrum of the desired information curve, (b) take the square root of the 

coefficients, (c) synthesize a tuning curve with the resulting coefficients as their Fourier 

amplitudes with arbitrary relative phases. An large population of such neurons will then 

have the desired information curve.

Constraint on average discrimination performance—By integrating Eqn (4) w.r.t. 

Δθ one obtains that the mean value of d′(Δθ)2 is determined exclusively by the mean of the 

orientation tuning curve, c0:

(5)

Surprisingly, this means that the actual shape of the tuning curve does not influence the 

mean discrimination of the population. Two populations based on tuning curves of different 

shape, but with the same mean, will have the same average discrimination performance. If 

we consider a class of tuning functions all with the same mean, the above constraint implies 

that we cannot improve sensitivity for some range of Δθ without sacrificing performance in 

another. For example, we cannot improve the discrimination of nearby angles without 

deteriorating the population’s ability to discriminate between large angles (see also Kang 

(2004)). To illustrate this point, the information curves in Fig 3b were generated by with two 

tuning curves with the same mean. While the blue tuning curve leads to better performance 

at small angles, it leads to worse performance at larger angles.

Quadratic behavior for small angles—For small angular differences Eqn (4) 

simplifies to:
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(6)

This can be obtained by substituting the small angle approximation cos(kΔθ) ≈ 1 − (kΔθ)2/2 

in Eqn (4) (see also (Seung & Sompolinsky, 1993)). This means that the information curve 

near the origin is quadratic and determined by the value of ||f′||.

The length of the population curve—The value of ||f′|| also determines the length of 

the curve onto which the unit circle is mapped, which equals:

(7)

Note that in the present model the value of ||f′|| is constant, meaning that the ability of the 

population to discriminate between two nearby angles θ and θ + Δθ is independent of θ. The 

length of the curve directly reflects how fast the population vector varies with small changes 

in the input. The more sharply tuned the tuning curve is the larger ||f′||. Therefore, the length 

of the curve represents a measure of tuning selectivity.

Intuitively, the wiring of receptive fields with high selectivity for orientation is more 

demanding than the wiring of broadly tuned receptive fields. Thus, in some sense the value 

of L also expresses the ‘complexity’ of the receptive fields in the population. As an example, 

consider the class of two-dimensional Gabor filters. Sharp tuning is achieved as the number 

of effective subregions increases or if their individual aspect ratio is increased (Jones & 

Palmer, 1987, Ringach, 2002). The wiring of receptive fields with increasingly elongated 

subregions or higher number of subregions becomes more complex as these numbers go up.

At the same time, recall that 〈 (d′)2 〉 provides a measure of the ability of the population to 

encode a circular variable. An optimal representation would be one that attains the 

maximum possible values of 〈 (d′)2 〉 while keeping the complexity of the receptive fields as 

low as possible. One way to do this is by posing the problem of maximizing the ratio 〈 (d

′)2〉/L.

Optimal representation for von-Mises tuning curves—This optimization problem 

can be solved analytically when we restrict the class of tuning functions to those having the 

same shape as that of a von-Mises distribution, so that f(θ) = Aexp(κ cos (θ)). The value of A 

is such that normalizes the population, ||f(θ)|| = 1. Then, the values of 〈 (d′)2 〉 and L can be 

calculated by making use of the identity, , where 

In (z) is the modified Bessel function of the first kind. The result is then,

(8)
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Both variables are monotonically increasing with κ, but their ratio has an maximum at 

intermediate value of κ ≈ 1.92 (Fig 4). This corresponds to a half-bandwidth at half-height 

of ~25 deg, which is similar to the empirical average (Ringach, Shapley & Hawken, 2002).

The reason behind this result is that the length of the curve can be made arbitrary large (Fig 

4a), while the ability of the population to code for orientation under normalization is limited 

due to the fact that the space is bounded and 〈 (d′)2 〉 ≤ 2 (Fig 4b). This is explained by 

noticing that as κ increases the tuning curves become narrower and narrower, approximating 

delta functions. This means that the dot product of any two population responses 

corresponding to two different orientation angles will approach zero and, in the limit, they 

will be orthogonal to each other. The squared Euclidean distance between any two such 

populations responses, each with a norm of one, is 2 (Pythagoras), which is an upper bound 

for 〈 (d′)2 〉. Under normalization, therefore, an optimal trade-off between population 

performance and the complexity of receptive fields is achieved for some intermediate 

bandwidths.

Replication of a circular variable by a finite population of neurons

Having gained some insight into the effects on normalization in the case of large number of 

neurons with identical tuning curves we now turn our attention to how coding might be 

affected when the number of neurons in the population is finite and their tuning curves 

heterogeneous. If the population has N neurons, we are looking for maps of the unit circle 

onto the sphere SN−1. The only parameter in the problem is the length of the curve on the 

sphere, L.

We study this problem numerically by parametrizing the maps with a finite set of points. 

Consider a set of M points, {xi} equally spaced around the unit circle (Fig 5a), representing a 

set of equally spaced orientations. Assume these points are mapped onto the set of points, yi 

∈SN−1 (Fig 5b).

We will also assume that the ability of the population to discriminate between nearby 

orientations is the equal around the circle by imposing the additional constraint

(9)

With this constraint in place, one can visualize the problem as that of wrapping a necklace 

with N beads, where adjacent beads are linked by rigid rods of length L/M, onto the sphere 

SN−1.

Next, we need a measure that will capture the ability of the population to discriminate 

between orientations. Intuitively, we want the points yi to be as far apart from each other as 

possible. One possible measure of their separation is the energy function,

(10)
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which has a simple physical interpretation. Namely, if we consider yi to be the coordinates 

of particles with the a positive unit charge, the above function measures the potential energy 

of the configuration. If we were to place such a necklace with charged particles on a sphere, 

its configuration would evolve to the one that achieves the minimum potential energy. We 

can then define the optimal representation as one that achieves the minimum energy 

configuration, arg min{yi} W. Other criteria are possible, such as maximizing the volume of 

the convex hull of the beads, but they do not admit simple physical interpretations and are 

not studied here.

To explore the properties of minimum energy solutions we begin by visualizing the results 

for S2. When the length of the necklace is less than 2pi;, the circumference of sphere, then 

the solutions are simply circles on the surface of the sphere (Fig 6, top panel). The 

interesting solutions arise when the length of the curve is larger than 2pi; (when α > 1). In 

that case, we see the curve starting to deform first into a saddle shape, then into a baseball 

seam, and finally develops a twist (Fig 6, bottom panels).

The solutions can be determined up to a rotation or reflection, as these transformations do 

not change the mutual distances between the charges and, therefore, neither the energy of 

the configuration. For any given solution, a set of tuning curves can be ‘read’ as the 

Cartesian coordinates of the curve described by the necklace. Sample tuning curves for the 

three-dimensional case are shown in the right column of Fig 6. When the length is less than 

2pi; all tuning curves are cosine shaped. As soon as the necklace length crosses the 2pi; 

threshold some of the curves can develop Mexican-hat shapes, which have a secondary peak 

orthogonal at an angle to its preferred orientation. Note that in the finite dimensional case 

the optimal solutions generally lead to a set of tuning curves with different shapes. As the 

length of the necklace increases further the curves become multi-peaked.

The distance between two charges dij = ||yi − yj|| is proportional to the discriminability of the 

orientations represented by these points and, for each reference orientation j we can compute 

an information tuning curve dij = ||yi − yj||. The information curves corresponding to the 

optimal configurations for a range of dimensions and curve lengths are shown in the panels 

of Fig 7. If only one curve is visible in a panel, it is because they are all identical and 

superimpose one on top of another. This means that, as in the case of a homogeneous 

population of neurons, the information tuning curve is only a function of the difference 

between the orientation angles -- that is, translation invariance holds.

Note that translation invariance of optimal solutions holds only for certain combinations of 

dimensions and curve lengths. In particular, for any given dimension (the number of neuros 

minus one), there is a upper bound beyond which optimal solutions are no longer translation 

invariant. The simulations also indicate that for any given curve length, there is a dimension 

after which the information tuning curves corresponding to the optimal configuration do not 

change any more. This means that adding more dimensions (i.e. neurons) to the population 

does not allow for a better (smaller energy) population performance.

This can be best seen by plotting the (normalized) minimum energy as a function of 

dimension with the length of the curve as a parameter (Fig 8). Each curve corresponds to a 

Ringach Page 9

Vision Res. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different curve length. For each curve, there is a finite dimension after which the energy 

remains constant. After this point, adding more dimensions leads to the same solution. As 

elaborated below, we conjecture that for even dimensions, d = 2k, the maximum curve 

length for which the minimum energy solutions in Sd are translation invariant is given by 

.

There is a simple intuitive explanation for this finding. Without normalization the addition 

of additional neurons with uncorrected noise would be expected to improve the 

discriminability. However, with normalization present, the addition of a neuron comes at the 

expense of increasing the denominator in Eqn (1), thereby reducing the responses of all 

neurons. This increased suppression of the responses prevents the population from 

increasing the performance of its population code.

A simpler representation of translation invariant solutions—We have 

parameterized the mapping from the unit circle to the sphere by the position of a finite set of 

charges, which has M × (d−2) parameters (due to normalization and nearest neighbor 

constraints). One may ask if there are simpler representations of these curves, in particular in 

the range of lengths and dimensions for which the solutions are translation invariant. It can 

be shown that for even dimensions, d = 2k, these solutions have the form:

(11)

a simpler representation with only d/2 = k parameters (a derivation can be found in (Fuster, 

Costa & Ballesteros, 1989, Vaishampayan & Costa, 2003)). Note also the norm of the 

population vector is then

(12)

with the last equality being the requirement for normalization. The length of the curve is L = 

2π||y′||, and using the above representation we get , so that 

.

The information curves for these cases can be readily computed, from Eqn (11), to be

(13)

which we immediately recognize as equivalent to Eqn (4), describing the translation 

invariant curves for the infinite dimensional case with ak = 2pi;|ck|.

To verify the equivalence of the solutions we searched for the minimum energy 

configurations for a parameterized set of charges (M × (d − 2) parameters), or when the 

same number of charges are sampled from the curves in Eqn (11), so that
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(14)

(which has d/2 = k parameters). The results, as expected, were identical (Fig 9).

Given this representation of translation invariant solutions we can now ask how is that the 

Fourier coefficients of the optimal solutions vary as a function of the length of the curve and 

the dimension of the sphere. Fig 10a shows the optimal Fourier coefficients as a function of 

curve length. The vertical lines denote the boundaries given by Lmax (k) for k = 2,3,4,5. One 

can see that up to Lmax(2) ≈ 1.58 only the optimal solutions can be attained by varying the 

first two harmonics, a1 and a2, while all the other ones are zero. That means that the optimal 

solution lives in S4 requiring a population of 5 neurons. Adding more neurons to the 

population to encode a curve with a length smaller that L max (2) would be a misuse of 

resources, as the energy cannot be reduced any further. A transition occurs as the length of 

the curve crosses the boundary imposed by Lmax (2), after which the optimal solution calls 

for a non-zero third harmonic coefficient, a3. Then, up until the curve length meets its next 

boundary at Lmax (3) ≈ 2.16, the optimal solutions live in S6 requiring a total of 7 neurons, 

and so on. Despite the discontinuities in the Fourier coefficients as we cross these 

boundaries, the minimum energy is smooth (Fig 10b). If one attempts to find the optimal 

solutions for lengths higher Lmax (2) constrained to having only the first two coefficients 

being non-zero, the minimum energy achieved diverges from the optimal right after Lmax (2) 

(Fig 10b, red curve). Similar curves are obtained if we restrict the solutions to the first three 

harmonics when the length crosses Lmax (3) (Fig 10b, green curve), or when we restrict the 

solutions to the first four harmonics when the curve length crosses Lmax (4) (Fig 10b, blue 

curve).

The expression for  (the maximum length for which 

solutions are invariant for a given dimension) is presently a conjecture. By sharing the 

intuition that led to its formulation it may help the reader develop a formal proof. One key 

question is what is the smallest energy configuration one could possible obtain for an 

embedding onto a given dimension S2k. The symmetry of the problem on the mutual 

distances, dij would suggest a minimum is attained when these distances are equal to each 

other. We can now rely on the fact that we know how to design orientation tuning curves to 

implement a desired information curve. Consider the family of information curves given by 

(d′)2(Δθ) = 0 if |θ| ≤ ε and 2 otherwise. For a given ε the best (in the mean squared sense) 

approximation of this tuning curve is by a truncated Fourier series of this function with the 

desired number of coefficients (dimension) and, as ε → 0, it is easy to verify that the Fourier 

coefficients will tend to have the same amplitude. Recalling that the length of the curve is 

given by  and that normalization implies , then if the 

minimum is achieved when all the Fourier coefficients are equal to each other, this means 

that they are all . Substituting this value in the length we obtain 

. The reason this argument cannot be considered a proof is 

that it is not obvious that the best approximation to the ideal information curve in the mean 

square sense is also the one that leads to the minimum energy configuration. Thus, for now, 
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we need to refer to the formula for Lmax (k) as a conjecture, although its validity seems to be 

supported by the numerical simulations.

Experimental results

The most direct application of these results is an attempt to estimate the length of the curves 

in experiment data. We used a set of data previously published, where multi-electrode array 

recordings were used to measure the responses of neuronal populations to oriented 

sinusoidal gratings in macaque primary visual cortex (Nauhaus & Ringach, 2007). In each 

array implant, a subset of electrodes yielded single unit activity (ranging from 25–60 across 

the different arrays). The response of the population to a set of equally spaced orientation 

angles can be represented by a population vector r = (r1, r2, · · ·, rN), where ri is the 

fluctuation of the firing rate of the i-th cell around its mean. The first result is that the 

population was indeed approximately normalized, as the norm of the population vector 

fluctuates about its mean by about 10% as the orientation changes round the clock. After 

normalizing each population response by the mean norm we can estimate the length of the 

curve as the sum of the Euclidean distances among neighboring orientations, yielding a 

value of L = 1.34 ± 0.07 (n = 5 array implants, mean ± s.d.) This is a relatively low number 

and it means that if the cortex were to represent a curve of such length optimally using a 

normalized population of cells, then no more than 5 neurons are required, as 1.34 is less than 

Lmax (2) ≈ 1.58.

Discussion

We have studied some of the implications of normalization for population coding from a 

geometric point of view. We noted that normalization constraints the population vector to lie 

on a sphere and that some stimulus spaces are represented by other topological classes, such 

as a Klein bottle or a torus. Population coding under normalization can then be though as 

finding embeddings of these objects into higher dimensional spheres, posing some 

interesting theoretical questions. We concentrated on the question of how to wrap a string of 

a given length on a hyper-sphere, which is the problem corresponding to the encoding of a 

circular variable with a normalized pool of neurons. A number of new results for the simple 

case of an infinite population of homogeneous neurons were described. Among them was a 

basic relationship between the information tuning curve and the Fourier coefficients of the 

orientation tuning curve. From here, a relationship between mean performance (the integral 

of the information tuning curve) and the mean of the orientation tuning curve was derived. 

One consequence of normalization is that it places a limit on performance of the code, due to 

the resulting limits on the diameter of the encoding space (Fig 4). Thus, it does not pay off 

to design increasingly complex receptive fields with sharper tuning curves, as an investment 

in receptive field complexity will not be returned as a worthwhile payoff in discrimination 

performance. The optimum encoding is attained for a moderate choice of orientation tuning 

bandwidth (Fig 4).

We also considered a scenario where a the encoding of a circular variable is done by a finite 

number of neurons with (possibly) heterogeneous orientation tuning curves. Here, we 

defined optimality as the minimum energy configuration of a necklace of beads, linked by 
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rigid segments, each having equal charge. This problem is a generalization of the classic 

Thompson problem of the distribution of charges on a sphere (Thomson, 1904) and other 

manifolds (Borodachov, Hardin & Saff, 2007, Borodachov, Hardin & Saff, 2008, Hardin & 

Saff, 2005). Interestingly, the problem of a charged necklace on S2 was recently considered 

in relation to some physical problems, such as the packing of DNA/RNA into viral shells 

(Alben, 2008). These simulations, such as ours (Fig 6), confirm the transition from circles, 

to a baseball seam, to a twist, but the dependence of the solutions on the dimension of the 

sphere, nor the property of translation invariance, were studied. The most important insight 

from the finite dimensional case is that, for any given curve length, there is specific number 

of cells that achieves the optimal encoding. After this point, adding more neurons to the pool 

does help in obtaining any better encoding. Given that the experimentally measured value of 

L was ~ 1.34, we conclude that it is likely only a handful of neurons might be effectively 

involved in the encoding of orientation at each retinal location.

A previous study, using a slightly different model, has shown that the amount of information 

in a population code (measured by Fisher information) scales with the tuning width and 

dimensionality of the population in a way that it is not always beneficial to sharpen the 

underlying tuning curves (Zhang & Sejnowski, 1999). Another important study has been 

shown that the covariance of the noise in the population is a critical variable to establishing 

the optimal bandwidth of neurons. Thus, one important direction in which these initial 

results should be extended is to consider the effects of normalization and correlated noise 

within the same model (Abbott & Dayan, 1999, Averbeck, Latham & Pouget, 2006, 

Sompolinsky et al., 2001).

It would also be of interest if some analytical results could be obtained for the finite 

dimensional problem, and to possibly verify if the conjecture for the expression of Lmax (k) 

is correct. One also suspects that the present geometrical approach can be related directly to 

the more common probabilistic view of encoding (Beck, Ma, Latham & Pouget, 2007, Beck, 

Ma, Kiani, Hanks, Churchland, Roitman, Shadlen, Latham & Pouget, 2008, Pouget, Dayan 

& Zemel, 2000, Pouget, Dayan & Zemel, 2003, Schwartz & Simoncelli, 2001, Simoncelli & 

Olshausen, 2001, Zemel, Dayan & Pouget, 1998), as positioning the point charges as far as 

possible from one another would, in a way, is expected to favor codes with maximum 

entropy. By making an adequate choice of the energy function to be minimized, it might be 

possible to link the geometric and probabilistic approaches together. Finally, in this work we 

have adopted the use of the L2 norm in our model, which makes the closed-form calculation 

of information curves possible, but it would also be interesting to generalize some of these 

the results to other norms as well, such as L1 or L∞ and to consider the case of spiking 

neurons (Jazayeri & Movshon, 2006, Ma, Beck, Latham & Pouget, 2006).

A central message from these findings is that given the prevalence of normalization in 

cortical networks, and the important constraints it imposes on the representation of 

information, it seems critical to incorporate normalization as in integral component of 

theoretical models of information encoding by populations of neurons.
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Fig 1. 
Normalization of population responses. Front end linear receptive fields are followed by a 

half-rectifier (Movshon et al., 1978), and the resulting responses are normalized by the term 

. (Figure modified from Carandini et al (1997)).
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Fig 2. 
Topology of stimulus spaces. Different stimulus spaces have different topologies. Under 

normalization all these different objects must be immersed in high dimensional spheres, (a) 

A circular variable is topologically equivalent to a circle. (b) Orientation and spatial phase of 

sinusoidal gratings is topologically equivalent to a Klein bottle. (c) Orientation and color 

direction is topologically equivalent to a torus.
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Fig 3. 
A simple model for the population coding of a circular variable. (a) A number of neurons 

with identical tuning curves but different orientation preferences are distributed around the 

circle. We study the limit when the number of neurons goes to infinity and the population 

curve has a norm of one. (b) The information tuning curve measures the ability of the 

population to discriminate between any two orientations. Due to symmetry, the value of d′ is 

only dependent on the difference between the two orientations, Δθ. The figure shows two 

sample curves obtained with a cosine tuning function (black line) and with a sharper bell-

shape tuning curve (blue line). (c) Two orientation tuning curves that have the same 

amplitude spectrum but different relative phases. Despite the fact that their shapes are 

different (for example the bandwidth at half-height differs substantially), these two tuning 

curves generate exactly the same population code (that is, the same information curve).
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Fig 4. 
Optimal coding for von-Mises orientation tuning curves. In the case of von-Mises tuning 

curves the (a) length of the curve (or receptive field complexity), (b) population code 

performance, and (c) their representation efficiency (the ratio between performance and 

complexity) can be calculated in closed form. The optimal representation is achieved at a 

value of κ ~ 1.92. Thus, efficiency peaks at some moderate bandwidth.
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Fig 5. 
The problem of mapping the unit circle onto a sphere in an optimal fashion, (b) Our 

formulation considers the intuitive problem of finding the minimum energy configuration of 

a “necklace” with beads of equal charge, (b) Example of an optimal solution for S2 and a 

length L = 1.6 × 2π.
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Fig 6. 
Optimal solutions in S2 and sample tuning curves implementing them. Left column. 

Minimum energy configurations for S2 and a range of curve lengths. The optimal curves 

evolve from simple circles to saddle shapes and finally develop a twist bifurcation. Right 

column. Example of tuning curves that implement the population code (curve) on the left. 

As the length of the curve increases the tuning curves develop additional peaks in addition to 

the one at its preferred orientation.
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Fig 7. 
Information tuning curves corresponding to the optimal (minimum energy) configuration for 

various combination of dimension (y-axis) and curve length (x-axis). Note that curve length 

is expressed as multiples of 2π.
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Fig 8. 
Normalized minimum energy for curves of various lengths as a function of dimension. The 

reason for the normalization is that the number of “beads” used in the simulations increase 

with the length of the curve, so as to maintain a good spatial resolution. We thus normalized 

the data to the energy for a dimension of 3. The longer the curve the more we gain (in terms 

of reducing the relative energy) by adding extra dimensions (neurons) in the encoding. Yet, 

for any given curve length there is a dimension after which no further gains are attainable 

(shaded regions).
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Fig 9. 
Verification of translation invariant solutions. Two examples showing the optimal 

information tuning curves obtained for two different combinations of lengths and 

dimensions for the optimization of the location of the charges or the Fourier coefficients of 

the curve. The similarity between the curves in the two cases makes it look as if there is only 

one curve in each case, verifying that both formulations lead to the same result.
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Fig 10. 
Dependence of optimal Fourier coefficients and minimum energy as a function of curve 

length. (a) Values of the optimal Fourier coefficients as the length of the curve increases, 

with clear transitions for the values corresponding to Lmax(k). (b) Dependence of minimum 

energy as a function of curve length.
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