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Abstract

Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, 

bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on 

numerous intricate interactions between parasites and hosts, and while we have learned much 

about these interactions, many details are still obscure. It is evident that the combined host-

parasite dynamics constitutes a complex system that involves components and processes at 

multiple scales of time, space, and biological organization. At one end of this hierarchy we know 

of individual molecules that play crucial roles for the survival of a parasite or for the response and 

survival of its host. At the other end, one realizes that the spread of infectious diseases by far 

exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, 

can quickly reach global proportions.

The community of mathematical modelers has been addressing specific aspects of infectious 

diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-

level disease and used quite different computational approaches. This restriction to a molecular, 

physiological, or epidemiological level was prudent, as it has produced solid pillars of a 

foundation from which it might eventually be possible to launch comprehensive, multi-scale 

modeling efforts that make full use of the recent advances in biology and, in particular, the various 

high-throughput methodologies accompanying the emerging –omics revolution. This special issue 

contains contributions from biologists and modelers, most of whom presented and discussed their 
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work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, 

which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. 

These contributions highlight some of the forays into a deeper understanding of the dynamics 

between parasites and their hosts, and the consequences of this dynamics for the spread and 

treatment of infectious diseases.
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Introduction

The need to cope with infectious diseases has always been a basic feature of the human 

condition, and in spite of the enormous advancements in modern medicine and hygiene, 

such diseases continue to be a scourge without equal. According to best estimates, malaria 

claimed about 600,000 deaths in 2013, among 200 million or more infected individuals in 

about 100 countries [1; 2]. Approximately 35 million individuals currently live with HIV/

AIDS [3], about 9 million with tuberculosis [4], and 3 to 5 million with severe cases of 

influenza [5]. Almost 20 million Americans acquire sexually transmitted diseases each year, 

and infectious diseases are the leading cause of death among adults under the age of 60 [6]. 

In addition to the enormous pain and suffering caused by these diseases, the time spent for 

patient care and the economic costs due to lost work are enormous. In the United States 

alone, the costs of infectious diseases are about $120 billion per year, and antibiotic 

resistance in pathogenic bacteria incurs estimated costs of about $5 billion each year [7]. A 

pandemic flu outbreak in the U.S. is projected to have an economic impact of hundreds of 

billion dollars, even without accounting for disruptions to society and commerce [8].

These are staggering numbers that beg the question of how science may help alleviate the 

causes, symptoms, and consequences of infectious diseases. Of course, this question is 

neither new to biology and medicine, nor is it to mathematical modeling. However, it 

deserves to be given new attention, as the –omics revolution and the emerging field of 

systems biology are beginning to complement the traditional repertoire of biomedical 

methods and technologies with genuinely new tools and techniques that carry the potential 

of great progress. As with all innovations, these new tools have been applied at first to low-

hanging fruit, but both fields, experimental –omics and computational systems biology, have 

matured to a point where one might legitimately ask whether their capabilities might be 

ready for a new, concerted attack on infectious diseases. This special issue, like the 

workshop where many of the materials described here were discussed [9], attempts to 

highlight some of the promising advances that are presently emerging toward this goal with 

respect to mathematical and computational methods. A particular case, which is in many 

ways representative and is addressed in several of the articles, as well as in this introduction, 

is malaria. Nevertheless, the same or similar scientific problems arise in many of the other 

infectious diseases, mutatis mutandis.
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As recently as a few decades ago, mathematical modelers were frequently told that biology 

and medicine were too complicated for modeling. After all, diseases are complex, involving 

thousands of molecules and complicated interactions between pathogens, hosts, and, indeed, 

societies and their environments, whereas models at the time usually consisted of a handful 

of variables. Also, it was claimed that there was no way that a computer could ever mimic, 

let alone surpass, the mind of an experienced physician. At the time, the critique was 

justified to some degree, although it ignored, for instance, the great progress in our 

understanding of the spread of epidemics and of the drivers that allow a disease either to 

flourish or to perish. These models, often abstracted to the bare bones of disease processes 

and devoid of all possibly distracting details, established the fundamental structure of 

infectious diseases, their progression, timing, and ultimate outcome (for recent reviews, see, 

e.g., [10; 11]). Times have changed dramatically since the earlier epidemiological models, as 

computers now beat Grand Masters in chess, and biomedical information is increasing so 

rapidly that no physician can keep up even with a specialty subfield of medicine. As a case 

in point, a PubMed search for “immunology” reveals that about 100,000 papers related to 

the subject were published in 2013 and 2014, a number that corresponds to one new paper 

about every 10 minutes, day in, day out, without ceasing.

Research in recent years has brought forth plentiful new information that was obtained with 

methods of the traditional branches of biology and medicine, entirely novel experimental 

options afforded by the field of –omics, and incomparably greater computer and modeling 

power than just a few years ago. As a consequence, new types of questions and strategies 

pertaining to infectious diseases have come within the reach of computational modeling. 

Some of these strategies attempt to improve our generic understanding of diseases, while 

others address specific approaches toward specific diseases, as well as crisply targeted 

means of intervention at the molecular, physiological, societal, and global disease levels.

As specific case studies must involve the key particularities of the investigated disease, as 

well as crucial details regarding their pathogens and hosts, some of the new models have a 

drastically different appearance than the abstracted base models that preceded them in 

infectious disease research. New disease models may consist of hundreds of variables and 

parameters, which mandates a shift of their analytical focus from rigorous algebra and 

calculus to large-scale simulations of possibly important scenarios, exploratory Monte-Carlo 

simulations and, as some traditional biologists derogatorily used to say, “fishing 

expeditions” that have the goal of “seeing what's out there” and generating novel hypotheses 

based on it.

Thus, the field of computational disease research is in the midst of an exciting transition that 

permits, and indeed requires, both, pure mathematical modeling that targets the fundamental 

structures governing disease processes, as well as larger-scale computational approaches that 

pinpoint weaknesses in a pathogen's mode of attack, which might be exploited for 

manipulation, treatment, and possibly eradication of the disease. Adding to the excitement of 

the new opportunities is not only the fact that drastically new and much refined biological 

experiments are becoming possible, which were unthinkable just a decade ago, but also that 

biologists are increasingly eager to work with modelers toward a common goal. This 

eagerness is a tremendous asset to the field of computational systems biology, and its 
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importance for the modeler arguably exceeds that of some of the new biological 

technologies, because the close interaction with subject area biologists is invaluable for the 

computational scientist when designing effective models. However, with the willingness to 

collaborate comes the challenge of truly effective communication between separate fields 

with different terminologies and expectations. This challenge will be revisited toward the 

end of this article.

As a paradigm for the challenges facing infectious disease modelers, the next section 

summarizes key aspects of malaria. Although much simplified, this summary will indicate 

how truly complex, multi-scaled, and multifaceted infectious diseases are.

Malaria as the Paradigm Infectious Disease

Malaria is a persistent and recurring infectious disease that is prevalent in close to 100 

countries in Africa, Southeast Asia, and the Americas. The disease directly threatens about 

half of the world's population. All estimates regarding malaria naturally come with a large 

margin of error, and the 2014 World Malaria Report gives a range of 124 to 283 million 

infected individuals in 2013, most of whom were young children, and about 600,000 deaths. 

People of all ages lacking any or sufficient immunity are at high risk, and pregnant women 

comprise an especially vulnerable group that suffers severe consequences (reviewed in [2; 

12]).

The disease is caused by five species of the apicomplexan parasitic protists in the genus 

Plasmodium: P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi. The two 

dominant parasite species affecting humans are P. falciparum, which is present worldwide, 

although most prevalent in Sub-Saharan Africa, and P. vivax, which is encountered 

primarily in Asia and South America, although it is a severe problem in at least 50 countries 

[13; 14]. In addition, Plasmodium knowlesi has gained increasing attention over the last ten 

years as a zoonotic parasite that naturally infects macaques in the forests of South East Asia 

but is making its way into human habitats, with thousands of cases of clinical illness on 

record and at least 16 deaths reported to date [15; 16; 17]. Modelling the transmission of 

each of these species, and accounting for frequently occurring ecological and 

epidemiological changes, is a major task that has been aided in recent years by novel 

strategies and tools using geographic information systems (GIS) and sophisticated spatial 

decision support systems (SDSS) [18].

The challenges in understanding the disease begin with the parasite's life cycle, which 

involves two hosts, namely female mosquitoes of the genus Anopheles and humans or non-

human primates (NHPs) [19; 20], and a multitude of evolutionarily honed host-parasite 

interactions. Not all, but several other mammals, birds and reptiles can also be infected with 

Plasmodium parasites, but these species of Plasmodium are not infectious to humans [21; 

22; 23].

Various intervention strategies, including the elimination of mosquito breeding sites, 

insecticide spraying, promotion of the use of protective insecticide-treated bed-nets, and 

improved treatments, have led to substantial reductions in the number of clinical malaria 

cases over the past 5 to 10 years [1; 2; 12; 24]. However, effective coverage with such 
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interventions is still limited on a global scale, has many logistical challenges, and is not 

necessarily sustainable. Pharmaceutical treatments are confronted with the parasite's ability 

to become resistant to their modes of action; in essence, by evolving to survive in the 

presence of these drugs. As a result, drug resistance remains a looming global concern that 

prohibits the ensured effective treatment of parasitized individuals. Indeed, this issue must 

be continually addressed in the context of today's global malaria elimination and eradication 

goals and strategies, with new drug options and combination therapies being brought to the 

forefront [25; 26; 27]. Moreover, for malaria elimination strategies to succeed, both 

symptomatic individuals and asymptomatic carriers must be considered, which imposes 

diagnostic and treatment challenges [28; 29; 30]. Mass drug administration modelling and 

interdisciplinary debates have become necessary to address the utility and ethical benefits 

and constraints of drug treatment policies and protocols [31; 32; 33].

Malaria is a systemic illness that disturbs the normal functioning of the blood in its main 

roles of delivering oxygen (red blood cells) and fighting infectious agents (white blood 

cells), and subsequently other tissues and organs including the brain, lungs, kidneys, spleen 

and bone marrow [34]. Clinical symptoms attributed to malaria include fevers, chills, 

nausea, headache, vomiting, and muscle pain. Anemia and respiratory distress are common 

results, and, in the most severe cases, neurological involvement can lead to coma, and multi-

organ failure can result in death [34; 35; 36; 37].

The enormous complexity of the disease is due to numerous factors, from differing disease 

transmission characteristics in different geographical environments, to the 60 or so existing 

species of Anopheles mosquitoes with different susceptibilities and efficiencies as vectors, to 

the manner in which the immune system responds to each species and the many diverse 

strains of the invading pathogen. Individual and population genetics and gene expression 

patterns come into play [38; 39; 40; 41; 42; 43; 44; 45; 46; 47]. The parasite undergoes 

continuous growth and development, throughout the different stages of its life cycle. With 

the chance of mutations, these may be associated with the parasite becoming resistant to 

drugs [48; 49; 50; 51]. The transfer and propagation of offspring within and between its 

hosts is requisite for its survival, and modeling efforts are of paramount importance to 

project and understand individual and population-based parasite loads, transmission and 

disease characteristics, and treatment regimens, as well as to devise new means for 

intervention [52; 53].

When an infected female Anopheles mosquito bites an individual, the asexual sporozoite 

forms of the parasite enter the human skin, blood stream and lymphatics. Innate immune 

responses are activated, which at present are largely unexplored [54]. Surviving sporozoites 

migrate to the liver, where they take temporary refuge in hepatocytes [55]. There, one 

sporozoite can multiply within a week to 10 days to form tens of thousands of distinctly 

different asexual parasite forms, called merozoites. The incubation and expansion period in 

the liver is asymptomatic, until the matured merozoites leave the liver in bulk and enter the 

bloodstream, where they invade red blood cells (RBCs) [56; 57; 58]; it is also not unusual 

for as many as 2 or 3 merozoites to invade, co-exist and develop in the same host RBC. The 

invasion of RBCs is an intricate process that can be dependent or restricted by the age or 

phenotype of the RBCs [47; 59] and involves a cascade of host-parasite interactions, which 
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are different for each species [47; 59; 60; 61; 62] and many of which are ill characterized or 

unknown. Within the RBCs, the parasites take over the cells’ normal physiology [63; 64; 

65]. They asexually replicate for about 24 to 72 hours, depending on the species, which 

results in eight to 32 newly formed merozoites per each infected erythrocyte. Upon 

maturation, the parasites are released from the infected RBCs and immediately begin the 

process of infecting other available RBCs in circulation and possibly in some tissue 

compartments; again, many of the specific details are yet to be discovered [30; 66; 67; 68]. 

All clinical symptoms of malaria occur as the parasites are being released from the host 

RBCs along with the cell's contents at this mature stage of development, which include 

remnant membranous materials, proteins, lipids, nucleic acids, and various unknown 

metabolites. Some merozoites alternatively transform inside the RBCs to form male or 

female gametocytes, the sexual stages of the parasite, which can infect mosquitoes when 

these feed on their primate hosts [69; 70].

After repeated infections over time, the human host typically acquires anti-parasite and anti-

disease immunity. Even so, individuals may have recurring asymptomatic infections with 

parasitemia. Children gain immunological protection, but it is incomplete and not always 

long-lasting. Thus, adults remain susceptible to infection, and women can become especially 

vulnerable to malaria complications during pregnancy [71; 72; 73; 74]. These are all factors 

to be considered for the development, licensing and eventual use of vaccines [75]. 

Furthermore, for certain species (P. vivax and P. ovale), the parasite, in the form of 

hypnozoites, may remain dormant in the liver for weeks, months, or over a year, only to 

emerge at a later time and initiate a new disease cycle [60; 76; 77; 78; 79; 80].

The human or non-human primate host responds to the pathogen assault in numerous ways, 

and the scope and precise details of the immune response from the time the parasite enters 

its host remain largely unexplored and still pose many open questions (e.g., see [20; 36; 74; 

81; 82; 83; 84; 85; 86; 87; 88]). Because the parasite is threatened by the immune system, it 

has evolved escape strategies, including the intriguing use of antigenic variation 

mechanisms [89; 90; 91]. Most notably, P. falciparum and P. knowlesi have large multigene 

families, respectively, called the var and SICAvar gene families with about 60 (var) and 100 

(SICAvar) members, that encode related variant proteins with different antigenic phenotypes 

[92; 93; 94; 95]. This topic is discussed again further below in relation to modeling within 

and between host-infection dynamics.

In a simplistic view, the mechanism behind this immune evasion strategy is the following: 

As soon as the parasite has invaded an RBC, it begins to produce specific variant proteins 

that become expressed at the outer surface of the RBC. Once antibodies are produced 

against them, the parasite switches its variant antigen gene expression profile, such that 

different variant proteins are produced by the parasite and positioned at the surface of the 

infected host RBC membrane. By expressing different parasite-encoded antigens on the 

outer surface of its host cell, which the immune system does not yet recognize, the parasite 

gains extra time to replicate without being destroyed by the antibody mediated host immune 

response. In P. falciparum, the variant proteins are especially ‘sticky’ and cause the infected 

RBCs to become sequestered in postcapillary venules [96; 97]. These proteins have multiple 

domains that interact with various endothelial receptors in the vasculature, causing the 
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infected RBCs to adhere to the walls of the venules and obstruct the normal blood flow in 

these vessels. This adhesion can lead to secondary effects including hypoxia, local 

inflammation and, possibly cerebral malaria, when the parasite becomes sequestered in the 

venules of the brain. High parasitemias and associated immunological or other factors 

arguably may also lead to the observed pathological consequences [36; 98]. It is furthermore 

intriguing to note that specific signals may work in concert to trigger gametocytogenesis, in 

essence telling the parasite to ‘jump ship’ [70; 99; 100]. Additionally, extracellular vesicles 

may play a role in cell-cell communication, immunity, pathogenesis, and 

gametocytogenesis. This field is just beginning to be investigated in malaria research [101; 

102; 103].

The human or primate host responds to an infection not only through the immune system, 

but also with changes in the blood-forming system, which responds to the moderate to 

severe anemia that tends to accompany malaria [84; 104; 105]. One might intuitively expect 

that the loss of RBCs is due to the invasion by parasites and the subsequent bursting of these 

host cells. While loss of infected RBCs is certainly a factor, ten to forty times as many 

RBCs, infected or not, are actually cleared by macrophages in a complicated cascade of 

events that involve a number of molecular factors and anti-erythrocytic antibodies [106]. As 

a consequence, the RBC count decreases precipitously, thereby causing anemia. Under more 

typical circumstances of anemia, the spleen senses that the oxygen level in the blood 

becomes abnormally low, and the body produces the hormone erythropoietin, which 

stimulates the formation of new blood cells in the bone marrow. This blood cell 

differentiation process in the bone marrow is a complex and highly regulated system, which 

becomes dysregulated during malaria, thereby greatly aggravating the disease. Modelling of 

erythropoiesis during malaria is discussed elsewhere in this special issue [107].

This short description will have rendered it evident that malaria, just like other infectious 

diseases, is a multi-scale, systemic disease. Survival of both the host and the parasite 

requires the development of complex molecular relationships, with numerous interactions 

and intimate host-pathogen interdependence. The disease course affects the physiological 

systems of both hosts and the parasite. The normal physiology of the hosts is continuously 

perturbed as the parasite grows, multiplies and advances from one tissue to another, but in 

humans and non-human primates (NHPs) it is collectively robust enough to tolerate most 

instances of the disease. Severe disease and death occur in a comparatively small number of 

cases, and there is much to be learned about what prevents those individuals from 

overcoming the onslaught of the invading parasite. In addition to physiological aspects, 

geographical, environmental, socioeconomic, political and cultural factors affecting human 

health and mobility come into play, as well as transmission cycles and spatial distribution 

patterns of the Anopheles mosquitoes.

Modeling From Within-Host to Between-Host Dynamics

In contrast to vector-transmitted diseases like malaria, the circulation of many pathogens is 

often the result of “contagious hosts” shedding infectious agents into the environment. The 

subsequent pathogen uptake and colonization of suitable new hosts is the fundamental driver 

of epidemics. Due to a host's immune response, exposure to low levels of a pathogen may 
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not result in infection. Furthermore, pathogens may be unable to find a suitable host before 

degradation. Therefore, the onset of an infection requires the direct or indirect (vector-

driven) uptake of a minimum dose of infectious agents, such as viruses, bacteria, protozoa, 

or helminths. The minimum infectious dose that colonizes a host with 50% probability of 

success is known as ID50. It has a very large range of variation, from a minimum of a single 

infectious agent for, e.g., Coxiella burnetii, to more than 2x1010 for Gardnerella vaginalis 

[108]. Once the host has been colonized above the minimum infectious dose, the pathogen's 

virulence and the host-pathogen interactions determine disease course and environmental 

shedding, which in turn determine the dynamics of epidemics. The virulence of a pathogen 

responds to evolutionary forces shaped by host type and availability, environmental factors 

that influence between-host survival, route of intake, within-host refuges and substrates, and 

the host's immune response.

Under a microscope, pathogens of the same species and stage of development often look 

very similar. However, modern methods of genomics demonstrate very clearly that 

microdiversity is extensive among strains of the vast majority of pathogens. This diversity is 

revealed through two mechanisms: (1) Simultaneous Infection: An infection can 

simultaneously include several distinct pathogen genomes even of the same species and, of 

course, from multiple species. As a consequence, the rates of transition between hosts are 

not constant, but functions of the ecological competition between multiple strains and the 

immune system response. (2) Antigenic diversity and variation: Antigenic diversity, defined 

as antigenic differences between pathogens in a population, and antigenic variation, defined 

as the ability of a pathogen to change antigens presented to the immune system during an 

infection, are central to a pathogen's ability to infect previously exposed hosts and to 

maintain a long-term infection in the face of the host's immune response. Immune evasion 

facilitated by this variability is a critical factor in the dynamics of pathogen growth, and 

therefore, transmission. Antigenic variation has been successfully modeled in some cases 

[109; 110; 111; 112; 113; 114; 115].

Thus, pathogens in circulation are not uniform. Instead, they constitute a complex 

multivariate distribution defined by the expression of different genetic, pathogenic and 

population dynamic traits. Similarly, the circulation of pathogens with different genotypes is 

multifactorial and can depend heavily on human movement dynamics, and, in some 

situations, vector availability and competence. Together, these anthropological, ecological, 

molecular, and immunological factors are fundamental drivers in the transmission of 

infectious disease, and their correct characterization, requires a comprehensive 

interdisciplinary multi-scale modeling approach. Figure 1 shows the full scale involved in 

many epidemiological processes, from molecules to continents.

At the largest scale of infectious diseases, uncounted modeling studies have addressed the 

transmission of infections throughout populations (e.g., see [10; 11]). The traditional 

epidemiological approach for this purpose consists of compartmentalizing hosts into 

susceptible, exposed, infected, recovered (SEIR), and/or vectors into susceptible, exposed, 

and infected (SEI); many variations of this paradigm have been proposed over the past 

century. This family of models can be traced back to Sir Ronald Ross' 1916-1917 

phenomenological models to study malaria. In the late 1890s, Ross had demonstrated the 
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life-cycle of the malaria parasite in the mosquito, and in the early 1900s he published a 

series of papers using mathematical models to study the transmission of malaria [116; 117; 

118]. In particular, Ross developed a model that explains the relationship between the 

number of mosquitoes and incidence of malaria in humans. This simple model was 

expanded by the classic work of Macdonald [119], who introduced an epidemiological 

compartment for exposed mosquitoes, and explicitly considered the time (~10 days) that 

Plasmodium spends growing and multiplying inside the mosquito before it harbors 

infectious sporozoite forms of the parasite in its salivary glands.

Anderson and May [120] added to Macdonald's model the ~21 days that pass before a 

person exposed to P. falciparum becomes infectious with gametocytes in the blood. Many 

models have been developed that expand Ross' model by considering factors, such as age-

related differential susceptibility to malaria in human populations [120; 121], acquired 

immunity [122], and spatial and genetic heterogeneity of the host and parasite [123; 124].

Compartmentalized models, initiated with the study of malaria, have been successfully used 

to study many other disease transmission dynamics, thanks to the seminal work of Kermack 

and McKendrick [125]. For relatively large populations and under the assumption of free 

movement of all individuals, these models permit the investigation of the speed of infection 

and recovery, persistence of the disease, and a global assessment of which parameters in this 

system drive the dynamics and ultimate outcome of the disease. Indeed, these models have 

been the dominating paradigm in epidemiology for the past 90 years, and proved to be 

effective in characterizing important aspects of epidemics [126].

The distinction between susceptible and infected hosts is the foundation of these 

compartment models. However, in the real world this distinction might not be clear due to 

imperfect diagnosis methods, asymptomaticity, and variable rates of infectivity and 

transmission. In the particular case of malaria, instances have been reported where more 

than 90% of the exposed individuals were likely infected with chronic asymptomatic malaria 

[127], thus providing a well-distributed reservoir for the parasite. Similar situations of 

asymptomatic malaria still occur worldwide [128]. It has been reported that asymptomaticity 

is produced in some cases by specific strains [129], and it is conjectured that it plays a major 

role in transmission [130]. Under-reporting of asymptomatically infected individuals in 

public health information systems is prevalent, and since these sources are later used to 

calibrate epidemiological models, a situation emerges in which data are frequently 

insufficient to parameterize compartment models, which in turn might not be well defined 

when most individuals are infected.

Some previous work based on compartment models has considered the interplay between 

within-host and between-host dynamics. For example, Schweitzer and Anderson [131] 

proposed that a low level of pathogens might result in immunity, whereas a larger exposure 

might overwhelm the immune system, leading to transmission; in the case of malaria, this 

could mean a switch to the production and circulation of more gametocyte-infected RBCs. 

Gupta et al. [132] introduced a model in which the host population is divided into 

susceptible and infected, and the pathogen population is comprised of a number of strains; in 

this framework the rate of infection depends on the total pathogen population for each strain. 
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Dushoff [133] proposed a model in which the rate of disease is proportional to the force of 

infection, that is, the rate at which uninfected individuals acquire an infectious disease. In 

this model, the probability of reaching different infected states depends not only on the state 

of the individual but also on the level of the disease in the population. Anderson [134] 

explicitly mentioned the possibility of quantifying changes in parasite abundance by means 

of within- and between-host models that had been calibrated with molecular data. 

Particularly striking is his observation that “the area of melding within-host and between-

host parasite models is one of much interest and requires further development,” which still 

holds true today. Reluga et al. [135] showed that within-host dynamics of immunity may 

have important consequences for population-level dynamics, when coupled to non-

monotone effects in the immune response to infection. More recently, Johnston et al. [69] 

were able to calculate the basic reproductive number (R0) linking within-host dynamics and 

transmission.

Obviously, the assumptions behind the original model of Kermack and McKendrick [125] 

were quite simplistic, but an incredible flourishing of this type of approach over the past 

ninety years has explored uncounted variations and twists, many of which make these 

models much more realistic. One particular focus has been the heterogeneity of the physical 

space within which the disease spreads and which leads to different, yet mutually dependent 

infection scenarios within different “patches” that are, however, functionally connected 

through the movements of hosts, pathogens, or both. Examples of this type of modeling 

analysis are presented in some of the papers in this special issue.

At the physiological scale, numerous mathematical models have focused on organ systems. 

With respect to the heart, considerable progress has been made, and modern models 

effectively mimic the electrical and physiological features of healthy and diseased hearts 

(e.g., [136; 137]). Some of these models are detailed enough to connect heart failure to 

genomic features, through a continuous chain of causes and effects. Similarly, strong efforts 

have been devoted to the physiology and pathology of the liver [138] [139]. For the context 

of infectious diseases, these models of organ systems are good indicators of what is 

achievable in terms of comprehensiveness and realism, but they may not be as important as 

models of the immune system, which are intimately associated with infections, but so far are 

vastly underdeveloped.

Molecular events are probably supported most comprehensively by experimental data, and a 

plethora of models has been focusing on gene regulatory, metabolic, and signaling systems. 

With respect to infectious diseases, the challenge at this level is that minute details may 

become very important, thereby requiring new models at many a juncture. For instance, the 

clinical and biological characteristics of a first malaria infection differ substantially from 

those of a second infection even with the same parasite strain. Infections strongly depend on 

particular parasite species, even within the same family, and, while exhibiting many 

similarities, often cause considerable differences in outcome among individuals and between 

human and non-human primate hosts. They are also greatly affected by the host's health 

history. Thus, while models for the spread of an infection can possibly afford to ignore these 

differences, a host's response systems are multifold, distributed, and adaptive to different 

parasites, parasite strains, and even antigenic variations within the same strain over time.
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At all levels of disease modeling, the field has made enormous progress. At the same time, it 

is quite evident that most models so far have been focusing on a single level of organization, 

thereby creating distinct silos with their own questions and methods. At the highest levels, 

models have helped explain the modes with which infectious diseases spread, what the 

dominant transmission pathways are, how non-homogeneous environments affect the 

persistence or intrinsic disappearance of a disease, and how intervention can affect the 

course of a disease. At the physiological and molecular levels, models have focused on 

specific aspects of specific diseases, trying to understand their drivers and hoping to identify 

most likely points of successful intervention. Also at these levels, a few models have 

attempted to capture the dynamics of interactions between hosts and parasites, and co-

infections with different pathogens. Other models have provided support for investigations 

of the evolution of diseases and of issues of co-evolution and fitness of pathogens and hosts, 

while yet other models have focused on generic questions of personalized health and disease 

[140].

Spatial Aspects of Infectious Disease: Modeling the Macro-World

Challenges abound in modeling spatial aspects of disease agent, disease vector, and disease 

host dynamics, particularly in the context of malaria and other vector-borne diseases (e.g., 

see [141; 142]). Especially important for disease transmission are spatial distributions and 

movement patterns for the agents, vectors and hosts. These patterns have long been 

recognized as important in understanding species interactions and ecological communities in 

spatial ecology (e.g., see [143; 144] and references therein). Consequently, it is frequently 

useful to regard disease agents, vectors and hosts as mobile, interacting, structured 

ecological species. In so doing, complications arise due to various disparities between 

vectors and hosts such as: (i) Life spans of vectors and agents are typically much shorter 

than those of hosts; (ii) Vectors may have a much more restrictive natural spatial range of 

dispersal than do hosts; (iii) Locally, agents and vectors may be far more numerous than 

hosts; (iv) There may be vast differences in body sizes between hosts and vectors; and (v) 

Vectors and hosts may utilize very different movement modes and primary sensory cues; 

e.g., hosts such as humans principally rely on visual cues to navigate the environment, 

whereas vectors such as mosquitoes move primarily in response to chemical concentrations. 

These disparities are further exacerbated by two kinds of heterogeneity: (i) spatio-temporal 

heterogeneity in the landscape that hosts and vectors inhabit, including such features as 

topography and terrain, elevation, hydrology, and climate; and (ii) heterogeneity in the range 

of behaviors of hosts and vectors.

Consequently, the long-standing paradigm in epidemiology [125] of using spatially 

homogeneous systems of ODE's such as SEIR models, which are often useful in 

understanding disease systems at a local level, is limited in its utility when modeling larger 

scale spatial effects of disease transmission. Indeed, it is the case that these disparities in 

components of agent-vector-host systems frequently necessitate the use of hybrid models 

vis- à-vis time, space and an appropriate organizational framework. Here, the term 

organizational framework is meant to refer to systems where one could, for example, think 

of hosts as individuals and think of vectors as population densities.
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Spatial mathematical models in ecology, roughly speaking, fall into two classes. The first is 

spatially explicit, wherein spatial location is explicitly tracked. Analytic models of this type 

include reaction-diffusion-advection [143], integro-difference [145; 146], and integro-

differential equation systems. Such models allow the tracking of population densities over 

spatio-temporally heterogeneous landscapes of various sizes and geographical 

configurations and admit a broad range of local and non-local species movement. The other 

class is spatially implicit. Here, locations are treated as homogeneous patches and idealized 

as points with some notion of connectivity among them, but without explicit reference to 

relative position. Spatially implicit models include metapopulation models which are widely 

used in the context of large potentially fragmented landscapes (e.g., see [147] and references 

therein) and oftentimes patch island models based on discrete diffusion. Such models may 

incorporate parameters that reflect the distance between patches. In some cases involving 

disease dynamics, discrete diffusion models can be spatially explicit (for instance, when 

disease transmission involves city-to-city movement). All these model types [143] can 

incorporate a notion of persistence of a population or ecological system over a spatial 

landscape in terms of a numerical threshold value akin to the notion of the basic 

reproduction number. A comparison of the information that can be gleaned from different 

spatial modeling formats when transitioning from small to large-scale environments can be 

found in [148].

Frequently, it is of interest to understand disease dynamics on small, intermediate and large 

spatial scales, and simultaneously to consider nonlinear feedback loops in the transmission 

process. Regarding scale transitions, it is important to consider various issues. First, natural 

movement scales of vectors frequently will be local. However, it is often the case that 

disease agents and vectors can be transported vast distances either by natural forces such as 

wind or by host movement (such as migrating birds in the case of West Nile virus) or via 

man-made devices, such as planes, trains, automobiles and boats. As a consequence, one 

needs not only to track populations or population densities of vectors and/or hosts at diverse 

particular localities, but also the network of spatio-temporal pathways linking them. Here 

multi-patch spatially implicit models play an important role (see, e.g., [149; 150] and 

references therein). Going forward, we will also need to combine “micro-scale” models with 

an explicit spatial representation of vector densities with spatially implicit or explicit 

“macro-scale” rules for connecting the local models such that each level informs the other. 

Second, the scale of observation affects when it is appropriate to track individuals, 

population densities, or some other continuous variable. Another somewhat subtle but 

significant consideration regards the identity of individuals [151] as they move from locale 

to locale. When vectors or hosts move from one locale to another, they may, on the one 

hand, blend into a comparable cohort in the new location; that is, they may be thought of as 

immigrants. On the other hand, they might retain their identities as merely visitors in the 

new location if they move back and forth between different locales on a regular basis.

Additionally, complicated feedback loops are created by various factors at play in the 

system. For example, agents (such as pathogens) may exhibit genetic diversity and may 

experience evolutionary changes or mutations on time scales that are very short relative to 

life spans of host organisms. An important category of such mutations is that of agents 
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acquiring resistance to therapeutic drugs or vectors acquiring resistance to chemical 

controls. Secondly, there may be spatially heterogeneous distributions of patterns of 

resistance which then interact with movements of host populations. Moreover, host activity 

patterns (particularly in the case of humans) and disease transmission can influence each 

other and, again, there may be spatial patterns to such activities; for example, life styles in 

urban areas may be very different from rural areas. This idea has been captured in the 

epidemiological literature through the notion of activity spaces (e.g., [152]). Finally, all 

ecological processes are subject to aspects of global change.

Model Design in the –Omics World

During the decades preceding the recent revolution in high-throughput biology, a 

mathematical model was typically designed based on a diagram of a biological phenomenon 

or system. This diagram had been constructed by biologists or by the modeler from available 

biological information. Given the computational and informational limitations of the times, 

the resulting model structure typically contained between a few and maybe a dozen 

variables, as well as a corresponding number of interactions among them. Once the model 

structure was established, an attempt was made to convert kinetic, molecular, ecological and 

other pertinent information into specific parameter values and other settings of the model. In 

most cases, the available information was incomplete, requiring complementary assumptions 

based on biological or mathematical rationale. With all parameter values and assumed 

settings specified, the model was diagnosed with respect to stability, sensitivities, dynamic 

repertoires, and reasonableness. Subsequently, refinements and amendments were 

introduced to reconcile inconsistencies between data and model results. Due to the paucity 

of data, validation of the model was often not truly possible.

The –omics revolution has changed the overall situation from data-poor to data-rich [153] 

and ignited the field of systems biology. Instead of scrambling for the value of a needed 

kinetic parameter, many a modeler now faces the opposite situation of data overload. In fact, 

many experiments now generate so many raw data that it is difficult to extract information 

from them, especially if the noise level is high. It is obvious that the tried and true strategies 

of model design are critically affected by this situation. New modeling tools need to be 

developed and applied to the raw data in order to reduce their complexity and denoise them, 

before dynamic models in the traditional style can be designed from –omics data. These new 

models are of a different nature and fall within the overlap area of statistics, artificial 

intelligence, and bioinformatics. While discussed in some detail below, one paper in this 

special issue expands upon these topics [154].

Generically, the modeling process for –omics data could have the following structure. In the 

first phase, the large-scale data (“BigData”) are preprocessed. In the case of infectious 

diseases, these data do not necessarily come from molecular and experimental systems 

biology, but could also be individualized health data, epidemiological information, or public 

health records. In the majority of cases, though, they are expected to derive from 

experimental datasets, such as genomics, proteomics, metabolomics, lipidomics, glycomics, 

immune profiling, or signaling data.
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If feasible, statistical tests are employed to determine summary metrics, trends, and risk 

factors, as well as general diagnostics of the computed results. These steps may be 

executable with standard methods of statistics, but given the enormity of some modern 

datasets, they are more likely to require advanced machine learning techniques. These newer 

techniques discern information from noise, establish complex, often nonlinear correlations 

or patterns among some of the measured variables, and infer associative or causal network 

structures. In particular, they can identify clusters of variables that behave similarly with 

respect to certain features or aspects. For instance, a cluster analysis might sort genes by 

their expression patterns in response to some stimulus or in a direct comparison between 

healthy and diseased cells. Correlations or clusters that can be determined with such 

methods yield two important streams of information. On the one hand, they allow a 

grouping of variables and possibly a reduction in complexity, due to the fact that it might be 

justified to substitute all members of the same groupings with one representative per group. 

On the other hand, the results from a machine learning analysis may reveal patterns within 

the data that had never been seen before and that can be converted into hypotheses, which 

might be testable in the biological laboratory or with more refined dynamic models. Such 

patterns could consist of yet unknown relationships between the components of a system or 

even of fully connected networks that suggest hierarchies among the variables. In less 

favorable cases it may also be possible that the machine learning analysis reveals that the 

degree of noise and uncertainty is so high that a mechanistic modeling analysis, or even a 

valid interpretation of the data, is likely not feasible.

Ideally, the computational preprocessing “cleans” the raw data, via denoising and the 

statistically valid elimination of outliers, and suggests different types of hypotheses. For 

instance, a metabolomics analysis might indicate systematic changes in the profiles of 

certain metabolites. The superposition of these metabolites on pathways in a database like 

KEGG [155] or MetaCyc [156] might furthermore suggest which metabolic systems are 

affected. Again under ideal conditions, corresponding data regarding the genome and 

proteome would reflect these changes. In most realistic cases, the supporting data will not be 

as comprehensive or they will not fit together quite so neatly, but they can nevertheless be 

explored with a dynamic model, once a hypothesis has been formed. Furthermore, such a 

model is able to incorporate external information that might be relevant. For example, the 

database BRENDA [157] might contain values or ranges of critical kinetic parameters and 

identify inhibitors and other modulators that could be used to design and instantiate a model 

of the pathway suggested by the machine learning analysis. In most practical cases, the 

transition from statistical and machine learning analyses to the design of mechanistic models 

is not automatic, and much curation and intensive investigator efforts are needed to support 

the data pipeline between an –omics experiment and a valid dynamic model. It is to be 

expected that this pipeline will be the target of much investigation in the future.

The models suggested by –omics data, combined with more traditional information, may be 

of many different varieties. Most obvious and prevalent are models of gene regulatory 

systems and metabolic pathways, but new methods like mass cytometry [158] also make it 

possible to analyze signaling systems in a single-cell granularity that was considered 

impossible just a few years ago. Similarly, appropriate data can form the basis for 

specialized model designs, for instance, supporting investigations of the roles and dynamics 
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of different types of immune cells, cytokines and chemokines in the host response to 

infectious agents [159], or of alterations in the hematopoietic system of the host that are 

effected by a disease like malaria.

No matter how straightforward or complicated is the translation of raw data into a dynamic 

model, the result, if it can be validated, can be very valuable. Namely, instead of looking at 

noisy snapshots in the form of raw data, one has achieved an integration of often 

heterogeneous data into a computational construct that permits numerous simple, fast, and 

cheap explorations. In contrast to new laboratory experiments, these computational model 

analyses can easily screen thousands of scenarios that represent slightly changed conditions, 

combinations of perturbations, and responses to interventions, and facilitate the 

personalization of health and disease models [160]. Valid models may also be scanned for 

particularly sensitive chokepoints that could become the targets of pharmaceutical 

treatments or for the optimization of combination treatments.

Scale-Bridging Modeling Approaches

The historical emergence of silos with different classes of models is understandable but also 

raises the question of whether models for different aspects should intercalate and how “silo-

bridging” model integration could possibly be accomplished. Clearly, infectious diseases are 

driven by processes that occur at distinct spatial and temporal levels ranging from molecular 

events and host-pathogen interactions to global epidemiology and public health. Yet, the 

multitudinous processes at all these scales depend on each other, and one should ask whether 

it might be feasible, or even desirable, to create all-comprehensive “supermodels” that 

encompass the different levels of biological organization. Has the time come to declare such 

models a hallmark goal for the foreseeable future of the systems biology of infectious 

diseases? Otherwise, if we do not concatenate models functionally by integrating them into 

superstructures, how can a model at one scale effectively inform a model at another scale? 

Will it ultimately be sufficient to restrict each model to one or two levels and to develop off-

line bridging mechanisms with which one model might inform another? Time will tell.

At present, these questions are almost moot as the development of such scale-bridging, all-

comprehensive models is not feasible and realistic models integrating over all scales are out 

of reach for numerous technical reasons. For instance, it is clear that not every molecular 

process can (or should) be retained in a physiological organ model, let alone a whole-host or 

epidemiological model. A traditional strategy for addressing the multi-scale challenge is the 

separation of time scales, which assumes that very slow processes are essentially constant at 

a fast scale and that very fast processes are essentially always in steady state at a slow time 

scale. The consequence of these assumptions is that some of the differential equations in a 

dynamical model are reduced to algebraic equations or even to singular parameter values. It 

is unclear whether or to what degree this strategy is feasible and optimal in the case of 

infectious diseases.

A related question is whether the mathematical structures of a multi-scale model are 

necessarily specific for a single level or scale or whether it might be possible to reuse 

models from other levels. For instance, would it be possible to represent the interactions 
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between neutrophils and bacteria as a predator-prey model? Is it useful to employ 

“canonical” models whose structures are independent of scale [161; 162; 163; 164; 165; 

166]?

Finally, the recent literature has documented intense discussions about biological design and 

operating principles [167]. Is it reasonable and feasible to search for general biological or 

mathematical principles that drive infectious diseases? These questions cannot be answered 

satisfactorily at present, but they might be a foundation for launching or redirecting 

strategies of computational modeling in infectious disease research.

So far, little has been done regarding multi-scale integration, but some articles in this special 

issue discuss some of the challenges and potential strategies forward. They provide 

examples of how modeling in the era of systems biology and –omics research may help 

close the gaps between organizational scales in biology.

The within-host link between the molecular and cellular realms is bridged by data analysis 

of –omics technologies, which inform molecular quantities at specific points in time. Yin et 

al. [154] present a novel analysis pipeline that addresses thousands of measurements 

originating from a few observations, dimensionality reduction, and Bayesian inference. The 

result is a reduced set of meaningful molecular variables that can inform mathematical 

models involving molecular and cellular processes.

In some cases, the within-host dynamics of infection can be a beneficial process for the host. 

Jacobsen and Pilyugin [168] demonstrate this fact with the analysis of tumor therapy based 

on fusogenic oncolytic viruses. The infection targets in their study are cancer cells. Long-

term tumor radius is shown to decrease with increasing values of viral burst size, while the 

effect of the rate of fusion on tumor growth is demonstrated to be non-monotonic.

A within-host viral infection with virus-to-cell and cell-to-cell transmission can be used to 

characterize HBV, HIV, or HTLV-1 infections. Yang et al. [169] study this problem with a 

model that accounts for three distributed delays. The first describes the intracellular latency 

for the virus-to-cell infection, while the second delay represents the intracellular latency for 

the cell-to-cell infection, and the third delay describes the time period for viruses to 

penetrate into cells and infected cells to release new virions. This model determines a 

globally asymptotically stable equilibrium that is consistent with chronic infection.

In the case of vector-borne diseases, the epidemiological dynamics is significantly affected 

by the movement of the host, which, in the case of humans, has become increasingly 

complex in the age of globalization. Cosner [170] presents several alternatives to studying 

host movement. Space can be considered either explicitly (Eulerian models) in the form of 

variation of population density over time, or implicitly (Lagrangian models) by 

characterizing time budgets and movement patterns. Both approaches pose open questions 

and offer different types of insight.

SIR models (and their variations) have been extensively studied for almost one hundred 

years. However, many questions persist. Schwartz et al. [171] study the average number of 

secondary influenza virus infections, which does not match observations, when it is 
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estimated via maximum likelihood estimation (MLE). By contrast, when the fitting is done 

with least-squares estimation (LSE), the calculation of secondary infections performs better. 

The reason is that MLE and LSE coincide when the variables form a multi-variate normal 

distribution; however, if the distribution is not normal, the Gauss-Markov theorem 

establishes that LSE is the most efficient unbiased estimator.

Pathogen virulence is subject to evolutionary pressure, as studied by Feng et al. [172]. This 

study of the evolution of virulence at the population level indicates that disease prevalence 

at the positive stable equilibrium is increasing as a function of the within-host or between-

host reproduction numbers. Thus, the computation of threshold conditions for disease 

control should incorporate explicitly the links between within-host and between-host 

dynamics. This presents a problem, though. The canonical approach to link slow and fast 

processes—that is molecular and epidemiological time scales—is to use a globally stable 

equilibrium of the fast variables as a constant for the slow variables. However, because there 

could be multiple attractors, it is necessary to account for the dynamical behaviors of the fast 

system in detail.

Host-pathogen systems can be heterogeneous in multiple ways. An example of this is the 

study of a two-pathogen vector borne disease. White et al. [173] present an analysis of the 

dynamics of the lone star tick (Amblyomma americanum), and the pathogens it can carry 

(Rickettsia parkeri and Rickettsia amblyommii), which cause rickettsiosis and possibly 

typhus, both endemic and epidemic, Rocky Mountain spotted fever, and Rickettsialpox. A 

numerical exploration shows the importance of transmission of the pathogen from a vector 

to another when they feed in close proximity. This co-feeding mechanism, in conjunction 

with slow host recovery rates, can suffice to sustain an endemic status of the disease.

Eukaryotic parasites have life cycles that are orders of magnitude more complex than those 

of viruses and bacteria, and their mathematical characterization is correspondingly more 

challenging. Yan et al. [174] present a coupled system of transport PDEs and ODEs to 

capture the disease dynamics of malaria. The PDEs are formulated to take into 

considerations the variation in the age of RBCs and the parasites, along with interactions 

with the innate and adaptive immune system. This combined system is capable of 

characterizing the evolution of a first infection (which is possibly fatal), re-infections 

(coexistence of the host and the pathogen), and the end of chronic infection (clearance of the 

parasite by the immune system).

Diseases like malaria directly affect the blood system and cause severe anemia. A detailed 

understanding of the host process of erythropoiesis (i.e., the creation of new RBCs) is a 

necessary preliminary step before attempting to characterize hemodynamics of disease. 

Fonseca and Voit [107] compare ordinary differential equations (ODE), delay differential 

equations (DDE), and discrete recursive equations (DRE) as base frameworks for modeling 

the process of erythropoiesis. The technique found to be most suitable for this purpose uses 

DREs with age classes.

The within-host dynamics of viral infection can be studied in animal models. Allen and 

Schwartz [175] present the dynamics of equine infectious anemia, which is caused by a 
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retrovirus that infects horses and ponies. This virus comes in two strains: susceptible to 

clearance by the immune system, and resistant to the immune system. The system shows an 

array of behaviors including coexistence of the two strains, a resistant strain equilibrium, 

and a virus clearance equilibrium. The transitions depend on the proportion of cell-to-cell 

transmission versus free virus transmission.

Epidemiological dynamics is driven by the uptake of pathogens by suitable hosts, as 

described earlier in this article. Hence, the study of environmental pathogen shedding is 

central to the link between within-host dynamics and between-host transmission. Barfield et 

al. [176] study how the rate of shedding is likely to evolve, and what factors permit 

coexistence of alternative shedding rates in a pathogen population. A trade-off develops 

according to which within-host competition favors clones with low shedding rates while 

between-host competition benefits clones with higher shedding rates.

The study of dispersal of species over landscapes requires the proper consideration of space 

heterogeneities. Gutierrez et al. [177] explore the use of bivariate splines to produce a 

unique solution of nonlinear PDEs over irregular domains. The within-host dynamics can be 

taken into account to determine environmental pathogen shedding, which in turn determines 

the dynamics of interaction between pathogens, vectors and hosts. Such formulation requires 

very complicated segmentations of the spatial domain for each species considered. The 

characterization of the dynamics in this setting can only be undertaken with numerical 

methods. It is in this context that bivariate splines offer a reliable alternative to quantify 

dispersal.

Communication and Education

As recently as one or two decades ago, true collaborations between biologists and physicians 

on the one hand and mathematicians and computer scientists on the other were rare and 

mostly limited to questions of data analysis. This situation has changed incredibly for the 

better, in part triggered by the absolute necessity of computational support for analyses of 

the wealth of modern large-scale, high-throughput datasets, where experience and common 

sense are quickly overwhelmed by the sheer size and complexity of the data. Now, forward-

looking biomedical scientists readily ask for computational support, and modelers find 

themselves in a new world of enormous opportunity, unprecedented data largess, and 

daunting technical challenges.

While it might initially be acceptable if a modeler disappears with a biologist's data for a 

while and then returns with an appropriate analysis and interpretation, as it used to be 

commonplace, the truly successful collaboration of the future will require that both sides 

learn from each other much more than what was typically expected in the past. The primary 

reason is that the enormous complexity of scientific problems that can be addressed with 

today's tools requires substantive brainstorming early on, before experiments are designed, 

and even with respect to asking the right scientific questions (for a detailed example, see 

Chapter 11 of [178]). This type of brainstorming is only beneficial if each side has a good 

impression of what the other side is capable of accomplishing, and gaining such an 

impression, in turn, requires a common language that permits effective communication. The 
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vernacular is oftentimes not suited for this purpose, as most common words are only loosely 

defined and technical terminology and jargon are often unknown. Thus, few biologists 

would be able to explain what a bifurcation analysis is or does, and many mathematicians’ 

eyes would glaze over during a technical discussion about the details of optimal 

experimental conditions for an investigation in molecular biology.

Anthropologists and ethnographers are very familiar with this issue, because they have 

studied it intensely in other contexts [179]. As a paradigmatic situation, imagine traders 

from Xi'an and from Tehran meeting along the Silk Road in Tashkent. Both are intrigued by 

the other's wares and both are motivated and interested in trading or bartering. However, 

their different languages are a natural hindrance that somehow must be overcome. A 

translator could be a solution, but both sides would probably feel that they could incur the 

risk of the translator's favoritism for the other side.

Biology, mathematics, and computer science face the same dilemma. As an anthropologist 

may say, the three parties enter a trading zone or “agora,” where practitioners from different 

disciplines enter via their particular on-ramps to study a “boundary object” [180; 181]. In the 

present context, this boundary object could be an infectious disease, about which the 

different parties know rather different details. The practitioners on all sides have genuine 

strengths, knowledge, different experiences and backgrounds, and a disposition toward 

complex problem solving, but they are bound to face language barriers in the agora. Such 

barriers are initially addressed with an impromptu and highly unstable “Pidgin” language 

that is provisional, dynamic, and full of neologisms, vaguely defined terminologies, initial 

code switching, and new categorization schemes, that are summarily termed 

“basilectalization.” Driven by the desire for scientific trade and potentially beneficial 

collaboration, the initially immature gibberish steadily morphs into a fully defined and 

refined “Creole” language, which subsequently becomes the means of communication in the 

agora. Thus, the practitioners retain their “native” language, but over time become 

bidialectical or bilingual [182]. One can see this unfolding process very clearly in initial 

scientific meetings between a biologist and a mathematician or computer scientist. After all, 

what is a biologist to do with a statement such as “all eigenvalues have negative real parts,” 

which a mathematician immediately interprets as a confirmation of system stability at a 

fixed point.

In addition to new terminologies in the emerging, common Creole, the two sides need to 

develop a basic understanding of what is important to the other side, what are their metrics 

of success, and what drives their progress (N. Nersessian, pers. comm.). Without this 

awareness, a biologist might not understand why an impact factor or an h-index is of no 

particular concern to a mathematician, and a mathematician might not appreciate the slew of 

control experiments that may be needed to affirm a new finding.

It is quite evident that the new type of collaborative systems biology critically depends on 

suitable language skills, possibly in a new “Systems Biology Creole,” which are to be 

acquired through new ways of education and learning and require substantial cognitive 

flexibility of all involved [183; 184]. Such a bidialectical education of integrative thinkers 

does not strive to “homogenize” them but to achieve transdisciplinarity through carefully 
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nurtured communication channels, a process which demands interdisciplinary knowledge as 

well as substantial cognitive flexibility. In the case of infectious diseases, communication is 

even more complicated than presented here, as not only biologists, mathematicians, and 

computer scientists are involved in comprehensive investigations, but also physicians, 

epidemiologists, public health officials, sociologists, and practitioners of many other 

disciplines. It is not to be expected that the practitioners from all these areas will fluidly 

converse about all aspects of infectious disease models. Nonetheless, it would be desirable if 

all sides developed a “feel” for the systemic nature of infectious diseases and their complex 

and highly cyclical and adaptive systems of causes and effects [185]. Some of these 

transdisciplinary challenges have been taken on in recent years by centers of excellence and 

large systems biology consortia including, specifically in the context of infectious diseases, 

the Malaria Host-Pathogen Interaction Center [186].

Discussion and Conclusions

Whether an infectious disease or some other biological phenomenon is the target of a 

computational analysis, good modeling starts with a trio of ingredients: a set of focused 

questions, sufficient data, and a suitable modeling framework [178]. These ingredients are of 

course not independent of each other but, in fact, determine each other's specifications. In 

the context of infectious diseases, it is immediately evident that very different data and very 

different modeling frameworks are needed, because the questions surrounding infectious 

diseases are just so different. If one sorts them by scale, diseases like malaria, SARS, or 

MERS leave little doubt that some important questions concern a global scale, which 

naturally is accompanied by a corresponding temporal scale of months or years. If a disease 

remains more regional, the spatial and temporal scales are somewhat reduced, and the key 

questions may shift to individuals, actual disease transmission mechanisms and the 

heterogeneity or “patchiness” of the particular environment. At the level of individual 

suffering, the physiological scale is at the center of modeling, with processes at the rate of 

minutes to days. Direct host-parasite interactions occur at the cellular level, within and 

between cells, and if one studies the responses of the host to an invading species, the models 

focus increasingly on molecular events, and the associated scales become even smaller and 

faster.

The wide span of scales implies directly that models of infectious diseases can have rather 

different goals. For academicians, the overriding goal will always be to understand the inner 

workings of the systems that drive the disease. These systems are different for the various 

levels of biological organization, and truly comprehending one or all of them would be a 

significant achievement. Given the amount of available information, models at the molecular 

level may currently have the best chance of revealing detailed mechanisms, and 

understanding the molecular disease processes could provide the means to identifying 

bottlenecks or chokepoints within the system. Such points are very sensitive to alterations 

and could therefore be valuable drug targets or sites of other potential interventions that 

could facilitate the disruption of the chain of events leading from an infection event to 

disease. At the other end of the spectrum, the goal of infectious disease models may be a 

better grasp of the epidemiology of the disease and its drivers. Here, the unit for modeling is 

typically a subpopulation or maybe the individual. To be of practical interest to 
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epidemiologists and public health professionals, the abovementioned models focusing on the 

molecular level would have to be expanded to questions of how the molecular events within 

hosts translate into disease outbreaks, transmission, spread, and possible eradication. Yet a 

different goal of an infectious disease model could be a disease simulator that would 

combine molecular and physiological levels [187]. Like a flight simulator, which trains 

pilots to practice routine tasks as well as the avoidance of catastrophes, a disease simulator 

would mimic all aspects of a disease within a person so well that it could be used to train 

medical students in the art of diagnosis and treatment. Certainly, an effective disease 

simulator would be very welcome.

No matter what the ultimate goal of the modeling analysis, once the specific focus has been 

selected, it is necessary to assess the types of data that are available or could become 

available within the foreseeable future. Simultaneously considering research questions and 

data typically provides clues regarding the most appropriate modeling framework. The 

history of disease modeling provides many illustrations of such choices.

The quantitative analysis of the range of dynamics spanning aspects from within-host 

dynamics to the epidemiology of infectious disease demands the integration of phenomena 

that usually is studied in isolation. The mathematical modeling of within and between living 

system interactions faces obstacles of increasing complexity as the level of detail of 

molecular data increases. Until very recently, the amount of information that could be 

collected regarding a single organism for the purpose of producing predictive models was 

manageable by a single investigator or a single lab. While small, focused efforts are and will 

remain in place, it is increasingly common to have access to comprehensive and 

heterogeneous data sets produced by interdisciplinary cooperative teams. However, the 

integration of multiple data sources to characterize a living system remains an unsolved 

problem given the heterogeneity of information (transcriptomic, metabolomic, genomic, 

lipidomic, proteomic, clinical, geographic, epidemiological, sociological data), the 

difference in scale with respect to observations (molecular, cellular, physiological, 

epidemiological), and the different inherent quality and certainty of observations. The tools, 

skills and approaches needed to probe these systems require a transdisciplinary framework 

and the development of novel modeling tools. Arguably for the first time, we are positioned 

to study the full range of interactions involved in infectious diseases. The integration of all 

scales has not yet occurred, but it is a clear goal for the field.
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Figure 1. 
Infectious disease processes span many scales. They start with the molecular mechanisms of 

disease and depend on complex dispersal dynamics over scales ranging from local to 

intercontinental.
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