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Abstract

Regulation of protein abundance is a critical aspect of cellular function, organism development, 

and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products 

where the abundance of each proteoform is independently regulated. Understanding how the 

abundances of these distinct gene products change is essential to understanding the underlying 

mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques 

may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that 

are later mapped to proteins based on sequence. However, quantifying the abundance of distinct 

gene products is routinely confounded by peptides that map to multiple possible proteoforms. In 

this work, we describe a technique that may be used to help mitigate the effects of confounding 

ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this 

technique to visualize the distribution of distinct gene products for the whole proteome across 11 

developmental stages of the model organism Caenorhabditis elegans. The result is a large 

multidimensional dataset for which web-based tools were developed for visualizing how translated 

gene products change during development and identifying possible proteoforms. The underlying 

instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely 

available on the web at http://www.yeastrc.org/wormpes/.
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Introduction

Bottom-up shotgun proteomics is a widely used technique for identifying peptides and, 

indirectly by inference, proteins present in biological samples. Broad adoption of this 

technique was facilitated by the advent of SEQUEST [1] (and the availability of new 

genome sequences), which greatly streamlined the interpretation of tandem mass spectra. By 

searching spectra against a list of candidate peptides taken from a database of possible 

protein sequences, SEQUEST provided an unprecedented ability to quickly and easily 

identify proteins present in a protein mixture.

However, matching spectra to sequences present in a database, by its very nature, has 

practical considerations that may complicate the interpretation of the data in a biological 

context. In samples from complex proteomes, identified peptides commonly match multiple 

gene products or proteoforms that may be present in the sequence database, and choosing 

which gene products or proteoforms are represented by an ambiguous peptide may not be 

possible (Figure 1, left panel). This is a particular issue when attempting to identify distinct 

proteoforms such as those resulting from alternative splicing or a post-translational 

modification because any peptide mapping to one variant is very likely to match others.

Increasingly, proteomics studies are focusing not only on the identification of proteins but 

also on the differences in the proteome between biological samples. Multiple techniques 

have been developed to quantify proteins in bottom-up shotgun proteomics experiments—
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largely encompassed by methods that require introduction of internal reference standards 

(such as SILAC [2], ITRAQ [3], and ICAT [4]), and so-called “label-free” methods that do 

not (such as spectral counting). Spectral counting, which uses a metric based simply on the 

number of observations for all peptides mapping to a given protein in an experiment, is a 

widely-used and computationally inexpensive technique for comparing differences between 

samples [5–9]. However, the problem of ambiguous peptides is compounded when 

attempting to quantify distinct gene products or proteoforms using spectral counting. Given 

peptides, not proteins, are being measured, and given no clear way to determine which 

proteoforms containing that peptide are contributing spectrum counts for that peptide, how 

can one reliably estimate the presence of each of those proteoforms using this method?

A technique that assigns these ambiguous peptides to distinct gene products or proteoforms 

using bottom-up proteomics was developed and applied as part of the modENCODE project 

[10], which aimed to fill in the gaps in the genome annotation for Caenorhabditis elegans. 

This technique uses Gelfree fractionation [11] to separate the endogenous proteins in a 

sample by mass before analysis by mass spectrometry so that identified peptides that map to 

multiple gene products with distinct masses may be attributed specifically to the gene 

product with the correct mass for the fraction (Figure 1, right panel). For the modENCODE 

study, this technique was applied separately to whole proteomes of 11 distinct 

developmental stages of Caenorhabditis elegans, resulting in a rich, multidimensional 

dataset that could conceivably be used to not only confirm the presence of distinct gene 

products or proteoforms but also to estimate and compare quantities of those gene products 

or proteoforms between developmental stages using spectral counting.

Given the complexity of the data, tools designed to help interpret the SEQUEST results in a 

biologically meaningful context are essential for efficient discovery and proteogenomic 

analysis. To this end, we constructed a database and web application that allow searching, 

visualizing, and downloading the data. Spectral counting-based analysis was performed, and 

the web application provides tools for identifying distinct proteoforms and interrogating how 

the quantities of those proteoforms may change with respect to developmental stage. The 

web site and all raw data are freely available at http://www.yeastrc.org/wormpes/.

Methods

Sample Preparation and Mass Spectrometry Analysis

Eleven developmental stages of C. elegans were analyzed—N2 embryo, N2 L1, N2 L2, N2 

L3, N2 L4, N2 YA, N2 dauer, spe-9L4, spe-9 YA, spe-9 adult, and him-8. Each 

developmental stage was grown on agar plates at 20°C seeded with the NA22 strain of E. 

coli. [12], sucrose floated, lysed in the presence of protease inhibitors (Roche Diagnostics, 

Indianapolis, IN, USA) and centrifuged to separate insoluble and soluble fractions. A 200 µg 

soluble lysate of each developmental stage was reduced with 5 mM DTT (Sigma, St. Louis, 

MO) in 30 uL Gelfree sample buffer (125 mM Tris, 4% SDS, 0.025% bromophenol blue, 

pH 7) and vortexed and heated to 50°C for 10min. The samples were then cooled to room 

temperature, alkylated with 15 mM IAA (Sigma) and incubated at room temperature in the 

dark for 10min. The samples were separated into 15 molecular weight fractions ranging 

from3.5 to 500 kDa using the Gelfree 8100 fractionation system (Protein Discovery/
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Expedeon). Twelve fractions were collected from the mid-range Gelfree cartridge (3.5–100 

kDa) and three fractions were collected from the high-range Gelfree cartridge (3.5–500 

kDa).

Approximate molecular weight range based on visualization of SDS-PAGE of fractions with 

molecular weight marker:

• fraction 1 (3.5–15 kD)

• fraction 2 (13–17 kD)

• fraction 3 (15–20 kD)

• fraction 4 (15–25 kD)

• fraction 5 (17–30 kD)

• fraction 6 (23–35 kD)

• fraction 7 (30–42 kD)

• fraction 8 (35–50 kD)

• fraction 9 (40–57 kD)

• fraction 10 (50–57 kD)

• fraction 11 (55–77 kD)

• fraction 12 (70–100 kD)

• fraction 15 (120–200 kD)

• fraction 16 (190–250 kD)

Each fraction was trypsin (Promega, Madison, WI) digested. SDS was removed with SDS 

removal columns (Pierce, Rockville, Il, USA) and salts were removed with MCX columns 

(Waters, Milford, MA, USA). The peptides from each fraction were analyzed using a 35 cm 

fused silica 75 µm column and a 4 cm fused silica Kasil1 (PQ Corporation, Malvern, PA, 

USA) frit trap loaded with Jupiter C12 reverse phase resin (Phenomenex, Torrance, CA, 

USA)with a 120-min LC-MS/MS run on a Thermo LTQ-Orbitrap Velos mass spectrometer 

coupled with an Eksigent nanoLC 2D. A biological and analytical replicate was performed 

for each sample.

Accurate masses were assigned using Bullseye [13] and peptides were identified using 

SEQUEST searched against a FASTA protein sequence database comprising Wormbase 

wormpep (WS229) [14], RNA-seq-based predictions [10, 15], and gene predictions and 

translated C. briggsae intergenic ORFs as described in Merrihew et al. [16]. P-values and q-

values were assigned to PSMs and peptides on a per-fraction basis using Percolator [17].

To guard against the effective increase in false discovery rate (FDR) associated with 

combining multiple datasets that are each filtered on q-value, we calculated a single q-value 

for each distinct peptide in the dataset that is meant to be the minimum false discovery rate 

at which we may confidently consider the peptide to be present in the whole dataset. We 
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ranked all the target and decoy PSMs by P-value from every run together as calculated by 

Percolator in their respective MS/MS runs, eliminated all but the top-scoring PSM for each 

distinct peptide, and used the decoys as an empirical null for the targets. Specifically, we 

computed a decoy-based P-value for each target peptide (i.e., the ratio of decoys that score 

better than the target score), and then converted the resulting P-values to q-values using 

qvality [18]. Only peptides with a q-value ≤0.01 using this method were considered for 

spectral counting.

Normalized Spectrum Count (NSC)

Calculating NSC—We used a normalized spectrum count (NSC) as a measure of the 

protein signal. To calculate the NSC, we first calculated the ratio of all PSMs attributable to 

a protein (NSCratio) by dividing the number of PSMs for that protein (Sp) by the total 

number of PSMs for all proteins in that condition (St). That is:

NSCratio will typically be a very small decimal. For example, in a condition with 20,000 

PSMs with 10 attributable to a protein of interest, NSCratio would be 5E-4. Comparing 

changes between very small decimals may not be intuitive to end users. To aid in 

interpreting the data, we converted the NSCratio into an integer that preserves the fold 

change between different NSCratio values between comparable conditions. This was done by 

dividing the NSCratio calculated for all proteins in each separate comparable condition by the 

minimum NSCratio found for all proteins across all comparable conditions (NSCmin ratio) and 

rounding to the nearest integer:

So, given an NSCratio for a protein in three conditions of 5E-9, 4E-6, and 2E-7 and a 

NSCmin ratio of 1E-9, the NSC would be calculated as 5, 4000, and 200, respectively.

NSC was calculated for all proteins separately for each developmental stage, such that the 

abundances may be compared between developmental stages. To calculate the NSCratio for a 

protein for a developmental stage, Sp is the sum total of PSMs for that protein across all 

fractions (including all replicates) and St is the sum total of all PSMs for all proteins across 

all fractions (including all replicates). Then, to calculate NSC, all NSCratio values are 

divided by NSCmin ratio, which is the minimum NSCratio calculated for all proteins across all 

developmental stages. (Only peptides with a whole-dataset q-value≤ 0.01 and PSMs with a 

q-value≤0.01 as calculated by the Percolator algorithm were considered).

The same method was used to compute NSC values for proteins for individual mass 

fractions. NSCratio was calculated where Sp is the sum total of PSMs for that protein in that 

mass fraction across all developmental stages, and St is the sum total of PSMs for all 
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proteins in that fraction across all developmental stages. NSC was then calculated using an 

NSCmin ratio that was the minimum NSCratio calculated for all proteins across all fractions.

To compare spectrum counts between combinations of developmental stage and mass 

fraction, NSCratio was calculated where Sp was the sum total of PSMs for a protein using all 

replicate runs of that specific developmental stage and mass fraction, and St was the sum 

total of PSMs for all proteins in those runs. NSC was then calculated using an NSCmin ratio 

that was the minimum NSCratio calculated for all proteins across all possible combinations 

of developmental stage and mass fraction.

Considerations for NSC—It is important to note that we are not performing any 

quantitative comparisons. We are only using NSC values to make qualitative comparisons of 

the same protein between samples. Properties of proteins, such as protein length or 

performance of tryptic peptides specific to a protein in the mass spectrometer, may have 

significant effects on spectrum counts for a given protein that are independent of the amount 

of protein. The NSAF score [5] was developed to account for protein length by dividing the 

spectrum count for each protein by the protein’s length to calculate a spectrum abundance 

factor (SAF), then dividing this SAF by the sum of the SAF calculated for all other proteins 

in the run to arrive at a normalized SAF (NSAF). However, NSAF ignores the variable 

peptide performance resulting from different possible tryptic peptides between separate 

proteins. Additionally, we were not wholly confident in the true sequence lengths of the 

detected proteins as we may be unknowingly detecting alternate splice variants and 

proteoforms that are posttranslationally modified. Given these two factors, we chose to 

exclude protein length from the calculation of NSC to avoid the implication that NSC values 

may be legitimately compared between separate proteins.

An inherent limitation in most (if not all) methods that use spectral counting is that deviation 

in conditions (or experimental design) between compared samples may introduce inherent 

biases for classes of proteins that are not a function of the biology as much as they are a 

function of the methods themselves (e.g., biases that enrich for size or hydrophobicity). 

These biases may invalidate comparison between samples by sufficiently altering the 

likelihood of sampling a particular protein (and thus its spectral counts) based solely on non-

meaningful attributes of that protein. In this dataset, we use NSC to compare gene products 

across developmental stages and across separate mass fractions. While comparing spectrum 

counts across developmental stages should not be subject to these artificial biases, 

comparing spectrum counts across separate mass fractions from the Gelfree separation may 

have biases in terms of the complement of expected proteins in the fraction, and so may 

impact the likelihood of sampling a given protein. When comparing directly between mass 

fractions, users should not consider the NSC a direct comparison of abundance between 

those fractions but rather a crude proxy of how enriched the individual fractions are for the 

protein of interest.

Web Site and Database Implementation

A relational database was designed (schema available upon request) and implemented using 

the MySQL (http://www.mysql.com/) relational database management system (RDBMS). 
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Code was written using Java (http://www.java.com/) to process the data files resulting from 

the mass spectrometry data analysis and populate the database. A web application was 

developed using Java, HTML, CSS, and Javascript on the Apache Tomcat (http://

tomcat.apache.org/) Java servlet container and the Struts application framework (http://

struts.apache.org/). The database and web application are run on Intel-based servers running 

Red Hat Enterprise Linux (RHEL) 6.4 (http://www.redhat.com/).

Blast [19] (blastp: 2.2.25+) was installed on multiple RHEL servers to support user-driven 

searching of the dataset by sequence. The FASTA file used to search the MS/MS data was 

used to build the Blast sequence database. A Jobcenter [20] client module for executing 

Blast was developed and installed on the Blast servers and linked to an in-house installation 

of Jobcenter to support distributed execution of user-driven Blast requests from the web 

application.

Results and Discussion

The dataset comprises 698 MS/MS runs from which 4,732,473 PSMs were identified 

(individual q-value≤0.01) for 39,563 distinct peptides (whole-dataset q-value≤0.01) 

mapping to 28,740 protein sequences from the FASTA file used to search the data. Of the 

39,563 peptides, 8725 map uniquely to a single protein sequence, and of the 39,563 

peptides, 2748 do not map to any protein found in Wormbase, but map to 1273 protein 

sequences that are the result of RNA-seq or computational prediction (see the “Methods” 

section). Given the large, multidimensional nature of the data (each run being a biological or 

technical replicate of a combination of developmental stage and mass fraction), a database 

and web-based interface were constructed to collate the data, help find proteins of interest, 

visualize how abundances of those proteins (and their possible proteoforms) may change as 

a function of developmental stage, and view the underlying, supporting mass spectrometry 

data.

Searching for Proteins

Users may search for proteins by using query strings (such as common name, accession 

string, or keyword) or by protein sequence using Blastp. Searching using query string 

effectively limits the possible results to those proteins found in Wormbase because those are 

the only annotated proteins in the dataset. However, many proteins in the dataset are the 

result of RNA-seq or computational prediction and have no commonly known names or 

annotations. To solve this, a system for searching by sequence with Blastp was set up (see 

the “Methods” section) and a novel interface for visualizing Blast results was constructed 

that colors hits based on confidence and clusters the search results based on where they 

physically map to the query sequence. This approach will tend to cluster matching 

proteoforms together as easily distinguishable groups and aid users in interpreting the results 

and selecting possible proteins of interest. From either search method, users may click on 

the names of proteins to visualize comparative protein abundance and proteomics data 

associated with that protein.
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Visualizing NSC Abundance

Three tools were developed to visualize the distribution of proteoforms across fraction and 

condition—NSC bar chart, which provides a one-dimensional view for comparing NSC 

protein values as a function of developmental stage or mass fraction (Figure 2); Protein Heat 

Map, which provides a two-dimensional view for comparing NSC protein values as a 

function of developmental stage and mass fraction (Figure 3); and Peptide Coverage Heat 

Map, which visualizes how the detection of particular peptides in a protein changes as a 

function of developmental stage or mass fraction (Figure 4).

NSC Bar Chart—The NSC bar chart makes use of a simple bar graph to compare NSC 

signal by showing how the total NSC of all peptides that map to a given protein change with 

respect to developmental stage. However, some peptides may map (by sequence) to multiple 

proteoforms and if other proteoforms are present, it is not simple to determine which (if any) 

of the peptides that map to the current protein were detected as a result of the presence of 

one or more of the other proteoforms. To help determine if (and to what degree) 

confounding proteins may be present, a bar graph comparing NSC between mass fractions is 

also presented that shows whether or not PSMs for peptides mapping to the current protein 

were detected in mass fractions other than the expected mass fraction for this protein’s 

calculated mass (expected fraction is shaded blue). Detection of peptides in other fractions 

may indicate the presence of proteoforms (previously known or unknown), protein 

degradation products, or that the accepted protein sequence is incorrect. In the case of signal 

present only in the expected mass fraction, caution should still be used as multiple 

proteoforms of a protein may have similar masses that cannot be distinguished by mass 

fraction.

Hovering the mouse pointer over any of the bars will show the raw and normalized spectrum 

counts being represented. The bars may be clicked on to view the peptides, PSMs, and 

spectra associated with those spectral counts. Each PSM is annotated with both the 

developmental stage and mass fraction in which it was observed in order to further 

interrogate the presence and effects of possible proteoforms.

Protein Heat Map—The protein heat map visualizes protein NSC with respect to both 

developmental stage and mass fraction simultaneously and is designed to further interrogate 

the presence and character of possible proteoforms—and help mitigate the effects of those 

proteoforms when interpreting NSC. With the heat map it is not only possible to see in 

which mass fractions peptides mapping to a given protein were detected but also how the 

NSC in each of those mass fractions is different with respect to developmental stage. In the 

heat map, brighter red represents a higher NSC and grey represents the lack of detected 

PSMs for that developmental stage/mass fraction combination. Red boxes outside the 

expected mass fraction may indicate the presence of peptides also matching to proteoforms. 

Differences between mass fractions in the pattern of NSC with respect to developmental 

stage may additionally suggest the presence of proteoforms whose abundances are 

differentially regulated with respect to developmental stage. Additionally, the confounding 

effects of multiple proteoforms may be mitigated somewhat by examining only the pattern 

of NSC in the expected mass fraction for the protein of interest.
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Red squares in the heat map may be hovered over with the mouse pointer to view the raw 

and normalized spectral counts, and red squares may be clicked on to view peptides, PSMs, 

and spectra found for the specific developmental stage/mass fraction combination. A bar 

graph is present at the top and right side of the heat map that represents the total NSC for 

each developmental stage and mass fraction, respectively. Each bar may also be hovered 

over to view spectral counts and clicked to view peptides, PSMs, and spectra.

Peptide Coverage Heat Map—The peptide coverage heat map attempts to provide still 

further insight into proteoforms by providing a visual comparison of individual peptides that 

map to a given protein as a function of developmental stage or biochemical fraction. This 

view uses the Mason viewer [21] to lay out the protein sequence coverage as a row by 

drawing rectangles along the horizontal axis (where the left and right edges are the N- and 

C-termini) that represent which segments of the protein are covered by identified peptides. 

The colors of the rectangles are shades of red, such that brighter red indicates a higher NSC. 

The software then stacks the rows vertically using the same scale so that patterns of 

sequence coverage may be easily compared between different stages or fractions. Where 

multiple peptides overlap and map to the same position in the protein, the cumulative NSC 

for peptides mapping to a given protein position are used to determine shading. In this case, 

distinct peptides may also be viewed by expanding a developmental stage or mass fraction 

by clicking the icon to the left of the row label.

Using this view, it is simple to see how patterns of protein coverage change between stages 

or fractions. Differences in this pattern may be the result of detecting proteoforms with 

overlapping peptides and provide some insight into the sequence composition of those 

proteoforms. It is also possible to review which peptides are contributing most significantly 

to the spectral count for a given protein, and in which mass fractions those specific peptides 

are most significantly represented.

All segments of protein coverage may be hovered over with the mouse pointer to view 

position in the protein, raw spectrum count, and NSC. Where peptides overlap, a row for a 

given stage or fraction may be expanded to view individual peptides. Individual peptides 

may be clicked on to view sequence, PSMs, and spectra associated with that peptide.

Application to a Biological Example

As an illustration of how these views may be applied to proteogenomic analysis, we provide 

an example in Figure 5 that suggests a possible, unknown proteoform of a specific ATP-

citrate synthase (D1005.1) that may be differently expressed in different developmental 

stages. The protein heat map shows that peptides mapping to this protein are found in 

distinct mass fractions, and peptides mapping to those respective fractions are represented in 

different developmental stages (Figure 5a). Additionally, the peptide coverage heat map 

suggests that the proteoform in the lighter mass fraction may be missing the N-terminus of 

the protein (Figure 5b), which corresponds to a known domain in the protein (Figure 5c). 

Although not definitive, these data suggest that further biological characterization of the 

gene products from D1005.1 may be warranted.
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Viewing Underlying MS/MS Data

As previously stated, the underlying MS/MS data (peptide sequences, PSMs, and spectra) 

are available from all data visualization pages (Figure 6). Additionally, users may click the 

“View Spectra” tab to view a list of all peptides identified that mapped to the current 

protein. For each peptide, users may view all PSMs as well as in which developmental stage 

and mass fraction those PSMs were identified. For each PSM, users may view the 

underlying MS/MS spectrum using the built-in Lorikeet spectrum viewer (https://

code.google.com/p/lorikeet/). Additionally, the list of peptides may be filtered by 

developmental stage, mass fraction, or both.

Conclusions

We have presented a web application and data resource designed to search, visualize, and 

interpret data generated by SEQUEST when applied to multiple mass fractions from 

multiple developmental stages of C. elegans. The application has been designed to not only 

illustrate how proteins may change between developmental stages but also to deduce 

whether proteoforms are present, the character of those proteoforms, and how they may be 

affecting the estimation of abundance for a given protein. The web application is freely 

accessible at http://www.yeastrc.org/wormpes/. All the instrument raw files and minimally-

processed MS/MS data are available for download at the site.
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Figure 1. 
A depiction of how the Gelfree mass fractionation helps mitigate the confounding effects of 

ambiguous peptides. The left panel illustrates how discerning between proteins is not 

possible given an ambiguous peptide in a sample containing both proteins. The right panel 

illustrates how separating the proteins by mass using Gelfree prior to analysis helps 

eliminate the ambiguity by ensuring that the sampled peptide can only be from a protein 

from the respective mass range
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Figure 2. 
A screenshot depicting the NSC bar chart for the MCM-3 protein—a protein known to affect 

embryonic viability [22]. The y-axis is NSC and the x-axis is either developmental stage 

(left panel) or mass fraction (right panel). The blue shaded area in the right-hand graph 

indicates the expected mass fraction for this protein. Bars may be clicked on to view 

peptides, PSMs, and spectra associated with those spectral counts. In this example, NSC is 

highest in the embryonic developmental stage and highest in the expected mass fraction
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Figure 3. 
A screenshot depicting the protein heat map forUNC-54, the primary myosin heavy chain 

found in C. elegans. The y-axis is mass fraction and the x-axis is developmental stage. 

Brighter red indicates higher relative protein abundance as measured in NSC. Grey regions 

indicate that no PSMs were observed in that mass fraction/developmental stage 

combination. The blue-shaded mass fraction indicates the expected mass fraction for the 

protein. Each box may be clicked on to view peptides, PSMs, and spectra associated with 

those spectral counts. The bar graph at the top and right-hand side indicates the total 

abundance of the respective developmental stage or mass fraction
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Figure 4. 
A screenshot depicting the peptide coverage heat map for the MCM-3 protein—a protein 

known to affect embryonic viability. The x-axis represents the protein’s sequence laid out 

left-to-right from N- to C-terminus. The y-axis in the top graphic represents developmental 

stage and the y-axis in the bottom graphic represents mass fraction. The blue-shaded fraction 

represents the expected mass fraction for this protein. Each colored segment represents an 

area of sequence coverage specific to the respective developmental stage or mass fraction, 

and the color indicates the abundance of that observed peptide in NSC (brighter red 

indicates higher abundance). The bar-graph to the right of each section indicates the total 

abundance of protein for its respective row
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Figure 5. 
An example protein heat map and peptide coverage heat map for D1005.1 (a probable ATP-

citrate synthase), which may have two possible proteoforms. (a) The protein heat map for 

the protein D1005.1. D1005.1 has an estimated molecular weight of 121.6 kD, and the gene 

coding for D1005.1 has no known splice variants (according to WormBase). The NSC for 

this protein is relatively high in its expected mass fraction (indicated by blue shading); 

however, it is higher in the 50–57 kD mass fraction. This may indicate some highly sampled 

peptides that map to D1005.1 also map to another proteoform with a lower mass. Also of 

note is that no PSMs were found in the lower mass fraction for the embryo developmental 

stage, whereas a NSC of 108 was calculated for D1005.1 in the higher mass fraction for the 

same developmental stage. Alternatively, no PSMs were found for D1005.1 in the N2L4 

developmental stage in the higher mass fraction, whereas a NSC of 277 was calculated for 

this stage in the lower mass fraction. This indicates the possibility that each of the two 

proteoforms is regulated differently with regard to developmental stage. (b) The peptide 

coverage heat map for D1005.1 for the 50–57 kD and 120–200 kD mass fractions, which 

shows where the peptides found in the respective mass fractions map to the protein 

sequence. The lower mass fraction is missing N-terminal peptides found in the higher mass 

fraction. (c) A domain image generated by PFAM [23] for D1005.1. The missing N-terminal 

peptides largely correspond to a predicted ATP grasp domain
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Figure 6. 
A screenshot illustrating the view of the underlying proteomics data in the resource. For a 

given protein, all peptides that mapped to that protein are listed in the order of peptide q-

value. The sequence, raw spectrum count, q-value, and whether or not that peptide uniquely 

maps to this protein are presented. Each peptide’s row may be expanded to view the 

underlying PSMs in order of q-value. For each PSM, the charge, q-value, P-value, posterior 

error probability, mass fraction, and developmental stage are listed. The spectra associated 

with each PSM may also be viewed using the built-in Lorikeet spectrum viewer. 

Additionally, the list of peptides may be filtered by developmental stage, fraction, or both, 

using the form at the top of the page
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