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The usefulness of a climate-model simulation cannot
be inferred solely from its degree of agreement with
observations. Instead, one has to consider additional
factors such as internal variability, the tuning of
the model, observational uncertainty, the temporal
change in dominant processes or the uncertainty
in the forcing. In any model-evaluation study, the
impact of these limiting factors on the suitability of
specific metrics must hence be examined. This can
only meaningfully be done relative to a given purpose
for using a model. I here generally discuss these points
and substantiate their impact on model evaluation
using the example of sea ice. For this example, I
find that many standard metrics such as sea-ice area
or volume only permit limited inferences about the
shortcomings of individual models.

1. Introduction
Climate models are tools that have been developed to
understand and to predict specific features of the real
climate system of our Earth. In order to be useful for
this purpose, it is necessary to evaluate the capability
of the models to realistically represent these features.
Such model evaluation is most commonly based on
the direct comparison between simulation results and
measurements of individual observables. Related studies
often imply that such a comparison can result in
absolute statements regarding model quality, which is
reflected, for example, in rankings of model simulations
based on their agreement with a specific observable,
in the misleading use of terms such as ‘verification’ or
‘validation’ [1], or in generic calls that models need to be
improved that fail to match a specific observable.

However, such assessments ignore the fact that
models are tools that are in practice used to answer
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specific questions, be it to project the global temperature at the end of this century or to
understand how a melting of the Greenland ice sheet affects the global ocean circulation. As
climate models are only tools, they do not have a generic quality that one could usefully evaluate
independent of the specific purpose for which a given model is being used. This line of thinking
has been very clearly laid out by Parker [2] who argues that the significant simplifications
underlying any climate model imply ‘that the complex hypothesis embodied by a climate model
is false’, which is why only a model’s ‘adequacy for a specific purpose’ can be evaluated.

In this contribution, I examine such evaluation of adequacy, or usefulness, in more detail.
In doing so, I establish three points: first, the usefulness of a climate-model simulation cannot
be inferred solely from its degree of agreement with observations. Second, the suitability of a
metric for model evaluation depends crucially on the given research question. And third, model
selection based on model evaluation can be counter-productive if one aims at robustly reducing
the uncertainty range of future projections.

To establish these points, I here use the example of sea ice. This focus, however, does not limit
the general validity of this analysis. It simply allows this contribution to remain in line with the
other contributions in this issue. Furthermore, the example of sea ice makes it straightforward to
concretize the main findings of this paper.

Take, for example, the magnitude of the loss of Arctic sea ice. One might think that any major
mismatch between the observed loss and the loss simulated by a model necessarily implies
that the model does not capture the relevant physics of sea-ice loss and needs to be improved.
However, as discussed in more detail below, any such mismatch might simply be caused by
the chaotic nature of the climate system, which would largely preclude inferences about the
usefulness of the model for long-term projections based on this metric. A helpful analogy might
be the case of a numerical model of casting a die that produces in three simulations a 1, a 3 and
another 3. These simulation results do not allow one to infer that the model needs to be improved
even if casting a real die results in a 6.

Internal variability is only the most prominent factor that often hinders climate-model
evaluation, but there are others. For example, the tuning of individual models to match specific
metrics can cause a false sense of adequacy of the model for a particular purpose. If, say, a model
is tuned to match the observed sea-ice area over the past 10 years, this does not imply that the
model’s physics allows the model to give credible projections of the future evolution of the sea-ice
cover. Other factors that hinder a direct evaluation of adequacy relate to the possible uncertainty
of the forcing used in a model, or to the difficulties in establishing a link between the good
modelling of the past evolution of some observable and an equally good modelling of the future
evolution of that observable.

These factors always affect model evaluation, but their impact is very different for different
research questions. For example, while a mismatch between modelled and observed sea-ice area
might be irrelevant if one examines whether a model can simulate the long-term evolution of
the climate, such a mismatch is very relevant if one tries to determine whether a model can
adequately simulate the short-term evolution of sea ice: a model that simulates far too much
sea ice in the Arctic for a particular June is unlikely to be adequate for estimating whether the
Northern Sea Route will become navigable in the following July. This illustrates that in any
model-evaluation study, the usefulness of a particular metric first needs to be demonstrated for
the particular purpose for which a simulation is supposed to be used.

In the following, I exemplify these points through a case study that aims at estimating when
the Arctic Ocean might become virtually free of sea ice during summer for a given emission
scenario. As discussed in more detail in §3, the full CMIP5 model ensemble gives a very wide
range as to when this might happen. A standard approach for narrowing down this range is based
on evaluating individual models through a direct comparison with observations. The models
that are thus shown to be inadequate for simulating the past evolution of the sea-ice cover are
considered as inadequate for simulating the future evolution of the sea-ice cover, and hence
excluded from the ensemble. This then results in a smaller ensemble with a smaller uncertainty
range. However, this approach carries with it some severe difficulties, which are outlined in §4.
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In particular, the impact of internal variability, observational uncertainty, the unclear relevance of
a metric, the tuning of the models and the unclear link between the past and the future evolution
of the system are analysed. In §5, these results are briefly discussed. Building on this discussion,
§6 briefly describes some possible ways forward. The paper concludes with a summary of the
main findings.

2. Material and methods
I analyse the period 1975–2005 of the historical simulations from the CMIP5 archive that
describe the past sea-ice evolution resulting from the observed evolution of, for example, solar
variability, greenhouse-gas levels and volcanic eruptions, and the period 2005–2100 of the RCP
simulations for the possible future evolution of the sea ice resulting from the Representative
Concentration Pathways as described by the CMIP5 protocol [3]. Simulations from 28 different
models are used, providing a total of 107 historical simulations, 42 simulations for the RCP
2.6 scenario, 54 simulations for the RCP 4.5 scenario and 57 simulations for the RCP 8.5 scenario.
For each scenario, the number indicates the amount of anthropogenically caused radiative
forcing from well-mixed greenhouse gases in units of watts per square metre by the end of the
twenty-first century.

For all simulations, I calculate monthly mean sea-ice area and monthly mean sea-ice volume
in the Arctic. Sea-ice area is calculated by multiplying the area of the model grid cells with their
fractional sea-ice cover as provided by the CMIP5 archive, and then summing over all grid cells of
the Northern Hemisphere. Sea-ice volume is calculated by multiplying the area of the model grid
cells with their sea-ice volume per grid-cell area, which is the ‘equivalent sea-ice thickness’ that is
provided by the CMIP5 archive. For both measures, linear trends are calculated as a least-square
fit to the resulting timeseries.

As an estimate of true sea-ice coverage, I use sea-ice area as derived from satellite retrievals
of passive microwave emissions. As different algorithms result in different estimates of sea-ice
concentration, I here use two different algorithms, namely the Bootstrap algorithm [4] and the
NASA Team algorithm [5]. Both algorithms cover the period from 1979 until today. I use sea-ice
area as the main metric of sea-ice coverage to avoid some of the undesirable effects that result
from the more commonly used nonlinear metric of sea-ice extent [6], noting that the use of two
algorithms that are both based on passive-microwave emissions only provides a lower limit of
observational uncertainty.

Because there is no similarly long observational timeseries of sea-ice thickness, I use for
an estimate of the true sea-ice volume simulations of the Pan-Arctic Ice-Ocean Modelling and
Assimilation System PIOMAS [7]. This system consists of an ocean–sea-ice model that is driven by
NCEP/NCAR atmospheric reanalysis data, with an additional assimilation of satellite-retrieved
sea-ice concentration. For the past decade, simulations of sea-ice thickness from PIOMAS agree
well with satellite estimates [8], though the reliability of these estimates is sometimes not clear [9].
For earlier decades, sporadic comparisons of PIOMAS simulations with point observations also
suggest a reasonable agreement of PIOMAS simulations with reality, though the uncertainty there
is obviously high because of the low spatial and temporal coverage of the observations.

Section 4 describes how these data sources are used to possibly reject individual models for
the case study.

3. Estimating the timing of an ice-free Arctic Ocean
The time and/or the atmospheric CO2 concentration at which the Arctic Ocean is virtually free
of sea ice in summer has received considerable public attention in recent years. I here define
that time as the first year in which September sea-ice area drops below 1 million km2, noting
that the terms September and summer are used synonymously in this contribution. The CMIP5
simulations that are analysed here differ substantially in their related projections, with a temporal
range for the first year of a virtually ice-free Arctic spanning in the RCP 8.5 scenario from 2005
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Figure 1. (a) Each dot specifies for a particular simulation the first year duringwhich Arctic September sea-ice area drops below
1 million km2 for CMIP5 simulations under the scenario RCP 8.5. The respectivemodel is identified along the y-axis. (b) Each dot
specifies the CO2 concentration at which Arctic summer sea-ice area drops below 1 million km 2 for the RCP 8.5 scenario. No dot
indicates that the specific model only gets ice-free after the year 2100 and a CO2 concentration of more than 900 ppm.
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Figure 2. Percentage of CMIP5 model simulations that have a September Arctic sea-ice cover below 1 million km2 for any
particular year. For each scenario, the number in brackets indicates the number of simulations that were available in the CMIP5
archive. The orange dashed line represents the range of 2040–2060 during which the Arctic becomes ice-free in five selected
models [10].

until not within this century (figure 1a). Assuming initially that all these simulations are equally
likely to be correct, one can determine a distribution of the percentage of models that simulate
an ice-free Arctic during summer in a particular year (figure 2, red, green and blue lines). Given
the breadth of the resulting distribution, it can be desirable to narrow down the distribution by
excluding individual simulations from the ensemble. Such a narrowing down of the projection
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range might in particular be desirable from a policy perspective, as it reduces the uncertainty of
scientific information on which a specific policy can eventually be based. This might be one reason
for why such a reduced ensemble is discussed, for example, in ch. 12 of the 5th IPCC report [10],
represented roughly by the dashed orange line in figure 2.

It is generally not obvious that a meaningful rejection of individual simulations based on the
information we have available today should be possible, because the simulations describe the
evolution of a dynamic system that is in part determined by chaotic fluctuations. A mismatch
between a simulation and an observation hence does not necessarily imply that that simulation is
unphysical. In our case, however, rejection of individual models should be possible in principle,
as individual models that contributed several simulations to the CMIP5 archive typically result
in a range of around 20 years as to the timing of a largely ice-free Arctic Ocean. This range
represents the modelled uncertainty of the timing of an ice-free stage that is caused by chaotic
internal variability. If we assume that a range of around 20 years uncertainty holds for all models,
then for the period 2020 to 2080 only about six to eight models lie within this uncertainty range for
any eventually observed year of an ice-free Arctic. The other approximately 20 models are then,
for whatever reason, clearly inadequate for estimating the timing of an ice-free Arctic Ocean,
as all their projections are more than 20 years away from the observed time. This finding even
remains correct if the true internal variability of the climate system is larger than that given by
the models: in that case, the models are inadequate simply because they underestimate the true
internal variability. Hence, it seems like a promising endeavour to try to reject individual model
simulations based on the information we have at hand already now.

A similar analysis can be carried out for the CO2 concentration at which the models project
below 1 million km2 of ice coverage in the Arctic Ocean. Such an analysis gives a range from
below 400 ppm to around 1100 ppm atmospheric CO2 concentration (figure 1b). With a spread of
around 100 ppm for individual models, it will again be possible to determine that many of these
models are inadequate to determine the threshold CO2 levels for an ice-free Arctic Ocean once
that state has been reached. For a robust assessment of this inadequacy, it might be necessary to
rerun models with the actually observed forcing, as the CO2 level of an ice-free Arctic depends
for individual models on concentration pathways. Most models reach in their RCP 4.5 scenarios
eventually an ice-free stage at CO2 concentrations at which the Arctic is still ice covered in the
RCP 8.5 scenarios. This implies that there is some delay for the sea-ice response to changes in
CO2 concentration [11]. Nevertheless, in principle it should be possible to reject many of these
models for the purpose of determining the CO2 levels at which the Arctic becomes ice-free.

In the following, I will discuss why such a rejection of individual model simulations is often
very difficult in practice, even if we have just established that it should be possible in principle.
In doing so, I will not describe all possible ways that one could try to reject individual models but
simply use a few specific metrics to exemplify some generic difficulties of this approach. Later, in
§6, I will then outline possible ways to overcome these difficulties.

4. Obstacles for estimating the adequacy of a simulation for a particular
purpose

(a) Internal variability
Arguably, the most common obstacle that one faces when trying to reject a climate-model
simulation as inadequate for a specific purpose derives from the internal variability of the climate
system. Such variability is caused by the inherently chaotic nature of the atmospheric and oceanic
circulation, which, for example, prohibits weather forecasts beyond about two weeks. Long-term
climate projections can therefore only ever give a possible range for the temporal evolution of
any specific variable, and the same model can result for the same external forcing in a multitude
of possible trajectories for the time evolution of any climate metric. Take, for example, the
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Figure 3. Comparison of satellite-retrieved and simulated evolution of September Arctic sea-ice extent. The two simulations
were both carried out with the Max Planck Institute for Meteorology Earth SystemModel MPI-ESM and differ only very slightly
in their initial condition at the beginning of the historical simulation in 1850. From 2005 onwards, the simulations follow the
RCP 4.5 scenario.

three ensemble members of the Max Planck Institute Earth System Model MPI-ESM in its low-
resolution set-up MPI-ESM-LR that were submitted to the CMIP5 archive [12]: for the same
model and the same external forcing, one of these simulations projected an increase in Arctic
sea ice over the period 1979–2012, while another simulation resulted in a decrease of Arctic sea
ice similar to the one observed (figure 3). The fact that one simulation resulted in an increase in
Arctic sea ice does not tell us anything about the capability of this model to realistically capture
the processes that determine the future evolution of Arctic sea ice: despite a stark disagreement
between this simulation and the observed sea-ice evolution, the model might well be very useful
for our purposes, as reflected by the fact that another simulation with the same models matches
the available observations quite well. This is simply a reflection of the fact that reality just realized
a single trajectory of the infinite number of possible trajectories that are allowed for any given
external forcing to the system.

The simple example depicted in figure 3 indicates how important it is to reasonably take
internal variability into account for any attempt to reject a specific model for any purpose that
is affected by internal variability. This hence usually affects all applications of climate model
simulations that span time scales on which internal variability of the specific observable becomes
a dominant source of fluctuations. It is often assumed that a period of 30 years is sufficient to
neglect internal variability of the Earth’s climate system, but, as also shown in the following, this
assumption usually does not hold during periods of a rapidly changing climate [13].

A major challenge for taking internal variability into account during model evaluation lies in
the difficulty of estimating the true internal variability based on the shortness of the available
observational record. We have a consistent timeseries of sea-ice area retrievals from satellite from
1979 onwards and have no comparable timeseries for sea-ice volume at all. Previous studies have
therefore estimated internal variability either from the fluctuation of the observed timeseries
around the long-term trend [14] or by considering the spread of multiple simulations from
individual models [6,15] that was assumed to be valid also for those models that only provided
a single simulation to the timeseries. None of these methods, however, considers the strong
and random temporal variability of many sea-ice-related parameters. Doing so allows one to
obtain a more realistic estimate of internal variability, as considering temporal variability can be
interpreted as a synthetic extension of ensemble size. This then results in a much larger estimate
of internal variability than that given in previous studies.
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In order to estimate an internal variability from such a synthetically increased ensemble size,
I examine 30-year trends from the CMIP5 archive that start between the simulated years 1975
and 1984. This results in 10 possible trends for each individual model simulation. I then assume
that a plausible range for any observable is given by the range of simulation results from those
models that capture the observed value in their range of simulations. This reasoning is based
on the fact that we cannot exclude the possibility that the observed evolution of the climate
system follows a rather unlikely extreme trajectory for the given change in forcing. Hence, for
any observable those models that have the observed trajectory at the extreme upper end of their
simulated trajectories must currently be assumed to be equally likely to be correct as those that
have the observed trajectory at the extreme lower end of their simulated trajectories. Unless we
obtain an independent estimate of internal variability, the range obtained is the possible range
of climate trajectories. Hence, any individual simulation that falls into this range cannot per se be
rejected as unrealistic.

One could argue that individual models can nevertheless be rejected, namely if the observed
trajectory of the climate system does not fall into the model’s ensemble spread. This reasoning
would be correct if the ensemble spread of those models that submitted several simulations to
the CMIP5 archive represented the entire range of internal variability of the individual models.
This, however, does not seem to be the case. We have just started analysing a recent very large
ensemble of 100 historical simulations with an updated model version MPI-ESM-1.1, finding that
the spread of the simulated 30-year-long trends over the single period 1975–2004 is for this single
model even larger than that given by all CMIP5 simulations from all models that were used to
construct internal variability as described in the previous paragraph.

This indicates that the change in start dates can indeed primarily be interpreted as a synthetic
increase of the ensemble size that we can analyse. The overall contribution to the range that stems
from the fact that the examined variables do change over time independent of internal variability
is very small: this forced component can be estimated by examining for each simulation a linear
regression through the individual data points for all start years. Such an analysis shows that
usually less than 10% of the total range can be explained by the change in forcing over the 10-
year-long period. Such a small contribution does not qualitatively affect the present analysis, so
it is neglected in the following for simplicity.

If we now apply this method to analyse the most often used metric, namely the trend in
September sea-ice coverage, it becomes immediately clear that this measure is of very limited use
if one tries to reject individual model simulations as unrealistic: the estimated internal variability
is so large that it encompasses almost the entire range of simulated trends (figure 4a). Based on the
present estimate of internal variability that is indicated by the yellow shading in the figure, the
observed trend could have been twice as largely negative over the past three decades, or could
even have been positive for the same external forcing. Accepting this range of internal variability,
we can only directly reject those very few models as unrealistic that have ensemble members
outside of the yellow shading in figure 4a.

Those models that have all their simulations inside the range of internal variability as
estimated here could only be rejected if we could be sure that the model would not be able
to simulate the observed trend within its ensemble spread even for a substantially increased
ensemble size. However, as shown by the 100-member large ensemble simulation with MPI-ESM,
it is very likely that for a very large ensemble, the observed trend of sea-ice area falls into the
possible ensemble range of most models that we examine here. Hence, based on an analysis of
the trend in sea-ice area, we cannot exclude any of them beyond those few that have simulations
outside of the reasonable range.

The same holds for the trend in September sea-ice volume. Here, individual models simulate
in their ensemble members trends that can range from a faster decline than given by the PIOMAS
reanalysis to even an increase in sea-ice volume over the past 30 years (figure 4b). Hence, long-
term trends in neither September sea-ice area nor September sea-ice volume allow us to reject
individual models as inadequate for describing the response of the system to the change in forcing
over the past 30 years. These observables are hence not useful measures if one aims to exclude
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Figure 4. (a) Each dot represents for each simulation available in the CMIP5 archive the simulated trend in September Arctic
sea-ice area for all 30-year-long periods starting between 1974 and 1984. The lines represent the respective values from satellite
retrievals from 1979onwards and for themulti-modelmeanacross all simulations. The yellowarea represents the rangeof trends
consistent with the external forcing as given by those models that encompass the observed trend within their ensemble range.
(b) Same as (a), but for September Arctic sea-ice volume. ∗The last row shows for reference the 30-year trends starting in 1975
for a 100-member ensemble with an updated version of MPI-ESM.

individual models to estimate a narrower range of the point in time as to when the Arctic might
become ice-free in summer. It should also be noted that any mismatch in these metrics between
models and observations then obviously also does not allow us to robustly discredit the quality of
CMIP simulations of the Arctic sea-ice evolution and to use this mismatch as the main argument
to motivate sea-ice-related research.

(b) Observational uncertainty
For other metrics, internal variability is just one contributor as to why one cannot reject individual
models even if they do not agree with a specific observation. One example for this in the case of
sea ice is given by the the satellite-based estimates of sea-ice area. For this observable, at least half
of the plausible range for which models cannot be rejected stems from observational uncertainty
(figure 5): mean sea-ice area as derived from the Bootstrap algorithm is more than 1 million km2

larger than that derived from the NASA Team algorithm. As we do not know which of these
values is correct (and it is likely that indeed none of them is), I here take the spread of the
observations as a direct measure for observational uncertainty and estimate the range of internal
variability based on all those models that include either of the observational estimates within their
ensemble spread. Doing so, I find that the internal variability gained such is amplified to a degree
that only very few models clearly fall outside the uncertainty range of possible mean September
sea-ice area over the past 30 years, which I estimate as spanning from 4 million km2 to just below
7 million km2 (figure 5).

As both satellite estimates are derived from the same underlying passive microwave data, the
range of observational uncertainty might in reality be even larger than estimated here. Because
of this large observational uncertainty of sea-ice area, model-evaluation studies often use the
nonlinear metric of sea-ice extent, which is based on adding the size of all grid cells with at least
15% ice coverage. While sea-ice extent can more reliably be estimated from satellite than sea-ice
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Figure 5. Each dot represents for each simulation available in the CMIP5 archive the simulated mean in September Arctic sea-
ice area for all 30-year-long periods starting between 1974 and 1984. The lines represent the respective values from satellite
retrievals from 1979 onwards and for the multi-model mean across all simulations. The yellow area represents the range of
mean area consistent with the external forcing as derived from those models that encompass the observed trend within their
ensemble range.

area, its nonlinear construction causes a number of issues for model-evaluation purposes [6]. For
example, the estimate of sea-ice extent depends crucially on the size of the underlying grid cells,
with larger grid cells usually causing a larger estimate of sea-ice extent. Hence, usage of sea-ice
extent is not necessarily a good solution to circumnavigate the observational uncertainty of sea-
ice area in model-evaluation studies. Indeed, not even sea-ice area is an ideal choice, as it still
allows for compensating errors in different regions. These could be considered by examining the
RMS error of sea-ice concentration [6], for which again observational uncertainty is a major issue
that hinders the robust evaluation of sea-ice coverage in our models.

(c) Unclear relevance of a metric
Based on the discussion so far, it is obvious that the ideal observable for model-evaluation
purposes has little observational uncertainty, is barely influenced by internal variability and
shows little spread for the various simulations of any particular model. Unfortunately, not all
observables that have these properties are automatically useful for our purposes. This is primarily
because often a causal link of the performance of the model for a particular metric and the
timing of an ice-free Arctic is not clear. Take, for example, the mean seasonal cycle in sea-ice area
(figure 6a), which is remarkably stable over the observational period: independent of the start date
between 1979 and 1983, the 30-year mean amplitude lies at around 8.5 million km2. The observed
standard deviation for any 30-year period during this time is only around 0.5 million km2. Also
the model simulations have a comparably small range of the amplitude of the seasonal cycle
across all ensemble members for 30-year periods starting between 1969 and 1989: the range
of the amplitude lies typically at around 1 million km2. More importantly, however, only few
simulations match the observed amplitude, even if one takes internal variability of around
1 million km2 into account. From the perspective of both improving our models and of narrowing
down the uncertainty range for the future evolution of sea ice, this finding might initially
appear promising: the seasonal cycle represents the model’s response to a significant change in
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Figure 6. (a) Each dot represents for each simulation available in the CMIP5 archive the simulated mean amplitude of the
annual cycle in Arctic sea-ice area for all 30-year-long periods starting between 1974 and 1984. The lines represent the respective
values from satellite retrievals from 1979 onwards. The yellow area represents the range of mean amplitude consistent with the
external forcing as derived from those models that encompass the observed trend within their ensemble range. (b) Same as
(a), but for March Arctic sea-ice thickness. The observed values are derived by dividing PIOMAS estimates of sea-ice volume by
satellite-derived sea-ice area from two different algorithms.

forcing between winter and summer, and as we have sufficient data available to reject individual
simulations, this metric might be a good candidate for allowing us to improve projections of the
future evolution of sea ice. Unfortunately, there is no clear correlation between the amplitude
of the seasonal cycle in a particular model and the rapidity of the sea-ice loss in that model
(not shown). In practice, it hence seems unlikely that an exclusion of models with an unrealistic
seasonal cycle will provide for a much improved estimate of the timing of an ice-free Arctic.

(d) Model tuning
In addition to such unclear relevance, also the tuning of individual models directly affects the
usefulness of individual observables for model-evaluation purposes. Consider, for example, the
mean sea-ice thickness during March, which is here calculated by dividing the March PIOMAS
sea-ice volume by either the NASA Team- or the Bootstrap-derived sea-ice area. The reliability of
this sea-ice thickness estimate hence rests on the reliability of both the PIOMAS model simulation
and the uncertainty of sea-ice concentration retrievals, so the uncertainty of the ‘true’ value for this
variable is obviously quite large. Notwithstanding these limitations that might eventually cause
a slight shift in the true value of mean thickness of March sea ice, for our purposes it is most
important to note that mean winter sea-ice thickness is a remarkably stable metric, with most
models and the observations showing a spread of less than 50 cm (figure 6b). While a number of
models clearly lie outside the range of observational uncertainty plus internal variability, it is not
straightforward to show that these models are less useful to establish the timing of an ice-free
Arctic Ocean than are the models that better agree with observations. This is in part because the
linkage between mean winter sea-ice thickness and the timing of an ice-free Arctic Ocean is even
less clear than a possible linkage with the amplitude of the seasonal cycle. However, even worse
for our purposes, the mean thickness of winter sea ice is used in some of the models that we
consider here as the main parameter that one attempts to match during the tuning of the model.
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Such tuning is necessary during the development of any climate model given the large number of
processes that simply cannot be resolved explicitly and that hence need to be parametrized [16].
The models that use mean March sea-ice thickness for their tuning will almost automatically
better agree with the observed state than models that use different parameters for the tuning.
A fair assessment of the quality of the underlying model is hence not possible for this metric
unless one carefully takes the tuning of every single model into account. It should be noted that
in practice, most modelling groups will only use very few observational targets to tune their
sea-ice model, which is why tuning becomes a less relevant factor in studies that consider many
metrics simultaneously.

(e) Unclear link between past and future
The discussion of individual metrics has so far been based on the tacit assumption that we can
infer the quality of simulating the future evolution of a climate observable from the quality of
simulating its past evolution for which observational data might be available. However, the link
between the model performance for a past evolution and the performance for the future evolution
of the system is often not clear. A trivial example for this fact is given in figure 3, where the
obviously ‘poor’ simulation with an increase in sea-ice cover over the period 1979–2012 becomes
almost identical to the much more ‘realistic’ simulation shortly after this period. This change
in perceived quality is simply related to internal variability, but for the severe changes that the
climate system of the Earth currently undergoes, additionally the relevance of individual physical
processes is very likely to change with time. This implies that a model that did well in the past
does not necessarily do well in the future and vice versa.

Sticking to the example of sea ice, the multi-year sea ice that used to be the prevalent ice type
in the Arctic until some years ago has distinctly different properties compared with the first year
ice that covers much of the Arctic Ocean today. If the processes that a particular model represents
well are parametrized based on the properties of the multi-year sea ice, such a model is likely to
suffer in performance when simulating the future evolution of the ice pack.

To establish a clear link between the past and the future evolution of a specific observable, one
ideally uses observational data from periods where the climate state was similar to the one that
one aims at simulating. This is reflected by the growing interest in paleo data in particular from
those periods where the climate state of the Earth was distinctly different from what it is today.
Observational data from such periods allow us to evaluate the model performance over a large
range of climate states [17], which forms one of the so-called severe tests that are an important
means to increase our trust in Earth System Model simulations [18].

Unfortunately, for many observables we currently have no reliable data that would allow us to
test climate-model performance for different climate states. In these cases, the model simulations
themselves allow one to estimate the linkage between the state of the system in a particular year
and the state of the system some years later. This is discussed in more detail in §6.

5. Discussion
The past evolutions of sea-ice area and sea-ice volume are often taken to be the most relevant
observables for a possible narrowing down of the temporal range for a possibly sea-ice-free
Arctic Ocean, as they most directly relate to this observable. It is hence sobering that neither
the long-term trend nor the long-term mean of either area or volume allow us to substantially
reduce the uncertainty as to when the Arctic Ocean might become free of sea ice in summer
based on the rejection of individual models from the ensemble. Not only is the link between
the past and the future evolution of these observables often not clear, their temporal and spatial
variability is additionally too large to allow us to reject a significant number of model simulations
as unreasonable.

Such a large internal variability of an observable has sometimes counterintuitive implications
regarding model quality. For example, it is usually not possible to use such an observable to
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draw firm conclusions regarding a possible improvement in model quality for CMIP5 simulations
relative to CMIP3 simulations: the fact that, in our case, the CMIP5 ensemble more closely matches
the observed trend and observed mean of sea-ice area and sea ice volume compared with CMIP3
simulations [14] could, at least in principle, also indicate an on average worse quality of our
models: if the observed sea-ice evolution over the past decades forms an extremely unlikely
realization for the given atmospheric forcing, one would expect the real evolution of the sea-
ice cover to only show up in but very few simulations. It is hence by no means a desirable aim to
have the real state of the climate system lie roughly in the center of any model ensemble, nor is it
an indication of a particularly realistic model ensemble if this is achieved.

While the severe difficulties in narrowing down projection ranges through the rejection of
individual models have here only been examined for sea ice, our findings are generally true
for any metric for which the observational period is too short to robustly remove the impact
of internal variability, where in our case even 30 years are too short a period to fulfil this criterion.
The most prominent example for a metric with similar issues is arguably the evolution of global-
mean surface temperature, where the 15-year-long hiatus that occurs in temperature records that
do not include measurements in the Arctic does not allow us to robustly reject climate-model
simulations as unrealistic [19].

It should also be noted that even if one manages to robustly reject a particular simulation
of, say, Arctic sea-ice evolution as unrealistic, this does not necessarily imply that the sea-ice
component of that particular model is insufficient. This is exemplified by the fact that the sea-
ice simulations of the CMIP5 ensemble differ substantially from those of the CMIP3 ensemble,
while the sea-ice model components of most models remained largely unchanged from CMIP5
to CMIP3. The change in simulated sea ice is hence only explicable through a different tuning
of this component, or through changes in other components of the Earth System Models. Such
changes will usually directly affect the sea-ice simulations as on the temporal scales typical for
large-scale models the time evolution of the sea-ice cover depends primarily on the total amount
of heat that is provided to the ice from both the atmosphere and the ocean. If this amount of
heat is modelled unrealistically, not even the best sea-ice model could produce a reasonable time
evolution of the sea-ice cover. By contrast, if the amount of heat that is provided to the ice is
modelled realistically, even a relatively simple sea-ice model component will produce reasonable
results regarding, for example, the time evolution of sea-ice volume. While a better understanding
of sea-ice-related processes is hence clearly desirable from a scientific point of view, it is often
not clear that such improved understanding will also lead to measurably improved simulations
of sea ice in large-scale models. Also the approach sometimes taken to examine shortcomings of
Earth System Model components by examining them in a stand-alone, uncoupled set-up has quite
substantial limitations. Such set-ups automatically remove many of the feedbacks that govern the
evolution of the system and hence also usually do not allow for a direct assessment of the quality
of individual Earth System Model components.

6. Ways forward
In the previous sections, I have laid out why it is very difficult to narrow down the uncertainty
range of the timing of near-complete Arctic sea-ice loss by rejecting individual models from the
ensemble based on their agreement with observations. However, as described, for example, by
Collins et al. [20], one can sometimes circumnavigate these difficulties by examining the entire
model ensemble for emerging constraints that allow one to establish the most likely future
evolution of the climate system based on its past evolution. This approach does not require
one to exclude models from the ensemble, and indeed it is most robustly used by establishing
relationships that hold for the greatest possible number of models.

In the case of sea ice, a number of studies have used this approach. They established, for
example, a relationship between the trend of Arctic sea-ice coverage over the past 30 years and
the amount of sea ice that remains by the mid-twenty-first century [20,21], or between the sea-
ice area over the past few years and the sea-ice area in 10 years’ time [22]. These relationships
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allow one to estimate the most likely future evolution of the Arctic sea ice cover by establishing
the functional relationship between an observable from the past and the evolution of the same
or some other quantity in the future and to then constrain the future from the actually observed
evolution of the climate system. This method has the added advantage of also resulting in an
estimate of uncertainty based on the robustness of the statistical relationship.

The approach of using emergent constraints is conceptually different from the approach of
excluding models from the ensemble, in particular as it does not require any particular model
to be close to the observed state. The usefulness of emergent constraints instead derives from
the robustness of statistical (and ideally also physical) relationships between climate observables
from many models, and actually profits from a rather large spread of contributing model
simulations. Hence, for using this method it is neither necessary nor desirable that the models
converge on the single trajectory that the real world followed, even though this is sometimes seen
as the ultimate aim of climate-model development.

Such emergent constraints can allow for robust insights into the future evolution of the climate
system even for variables that have large internal variability. They, however, do not judge the
quality of individual models and are hence not useful if one aims at improving the physical
realism of the models themselves. To achieve model improvement, model evaluation remains
the ultimate pathway (in a sea ice context cf. [23–26]). Some of the observables that we discuss
here can be useful to identify shortcomings of our models, as exemplified by the mean March
sea-ice thickness or the seasonal cycle. However, a more promising route to model improvement
is given by a process-based evaluation of model performance rather than sticking primarily to
an evaluation that considers only individual observations. Such a process-based evaluation of
model performance can initially be carried out entirely in the realm of models, by focusing not
only on identifying the differences between individual models but also on understanding the
underlying sources for these differences (cf. [27]). Possible processes that one could evaluate in
a sea-ice context are the relationship between thickness and growth, the relationship between
sea-ice concentration and cloudiness or the seasonal evolution of ice albedo, to name but a few.
An improvement of our models based on an improved representation of these processes would
pave the path for ever more reliable simulations of the climate system of our Earth—and might
ultimately even allow us to further narrow down the spread as to when the Arctic becomes
potentially sea-ice-free during summer.

7. Conclusion
In this contribution, I have used the example of Arctic sea ice to examine why the agreement
between model simulations and observations only provides limited insight into the usefulness of
a climate model. The main conclusions of this analysis are the following.

(i) Climate models can only meaningfully be evaluated relative to a specific purpose. For
such an evaluation, the suitability of any given metric for that specific purpose needs to
be demonstrated.

(ii) Any mismatch between observation and model simulation might simply be caused by
chaotic internal variability. This variability hence must be considered if one wants to draw
firm conclusions about the shortcomings of a model based on its lacking agreement with
observations.

(iii) For any study that aims at narrowing down projection ranges, the link between the
models’ performance in simulating the past evolution of the climate system and their
performance in simulating the future must be demonstrated.

(iv) As we cannot usually know if the observed evolution of the climate state follows a
rather unlikely pathway for a given forcing, it is not necessarily a desirable aim to have
observations lie in the centre of a model ensemble.
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(v) A metric that was used as an aim for tuning during the development of individual
models will often give irrelevant results regarding the adequacy of models for a particular
purpose.

(vi) Because of internal variability, those metrics usually allow for most robust insights during
model evaluation that are based on probability distributions over many data points,
rather than on long-term means or long-term trends.

(vii) A 30-year-long averaging period can be insufficient to substantially reduce the impact of
internal variability, in particular during periods of a significant change in external climate
forcing.

(viii) Statistical relationships of emerging constraints can give reliable insights into the future
evolution of the climate system. These insights are the more reliable the larger the variety
of underlying models is.

Regarding the specific case of sea ice that was examined here, the following concrete findings
have been made.

(i) It is difficult to robustly narrow down the uncertainty range as to when the Arctic
becomes free of sea ice during summer by rejecting individual models from the ensemble.
This is primarily because the link between the past and the future evolution of the
modelled sea-ice state is often not robust enough, and because internal variability
hinders us to reject most models as unrealistic. Hence, in addition to estimates
from emerging constraints, a probability distribution of an ice-free Arctic Ocean as
estimated from all models might be the most insightful way of informing policy makers
(figure 2).

(ii) Both the simulated mean and the simulated trend of sea-ice area and sea-ice volume
are too variable even for 30-year-long periods to robustly ascribe a possible mismatch
between models and observations to a shortcoming of most models. This is partly
related to the fact that we lack an independent estimate of the true internal variability
of the system.

(iii) The usefulness of the long-term mean or the long-term trend of the 35-year-long record
of Arctic sea-ice observations is limited by the fact that its length only allows for five
data points for any 30-year mean value or any 30-year trend. These five data points are
too variable in time and too much influenced by internal variability to allow for a robust
model evaluation. By contrast, a 35-year-long record provides 35 data points for, say, the
seasonal cycle, which then allows for a much more robust assessment of the adequacy of
individual models.

In summary, despite its widespread use, the direct comparison of model simulations with
observations often only allows for rather limited inferences about the shortcomings of a particular
climate model. Such shortcomings can, by contrast, be directly inferred from process-based
evaluation studies, which can hence more robustly guide the development of ever better tools
for understanding the climate system of our planet.
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