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Biofilms are microbial communities of surface-attached cells embedded in a self-produced extracellular matrix.
They are of major medical significance because they decrease susceptibility to antimicrobial agents and enhance
the spread of antimicrobial resistance. Biofilm-associated bacterial and fungal microorganisms have increasing-
ly been recognized to play a role in multiple infectious diseases, particularly in their persistence and recurrence.
More recently, biofilms have also been implicated in vaginal infections, notably bacterial vaginosis (BV) and
vulvovaginal candidiasis (VVC), particularly in the setting of treatment failure and recurrence. The purpose
of this review is to discuss the impact of biofilms on the management and treatment of BV and recurrent
VVC and highlight the need for additional research and development of novel therapeutics targeting pathogenic

vaginal biofilms.
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BIOFILM DEVELOPMENT

Biofilms have been described since Antonie van Leeu-
wenhoek examined the “little living animalcules, very
prettily a-moving” in the plaque of his teeth in 1683,
but the concept of biofilm growth was not officially de-
scribed until 1978 [1]. With the advent of sophisticated
microscopic techniques, biofilms are now characterized
as highly organized sessile microbial communities of
bacteria, fungi, or both. Attachment of these microor-
ganisms to an interface is considered an initiating event
in the biofilm-process, triggering the self-production of
an encasing extracellular matrix in addition to an altered
phenotype with respect to growth rate and gene
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transcription [2]. Biofilms are of major medical signifi-
cance because they decrease susceptibility to antimicro-
bial agents and enhance the spread of antimicrobial
resistance [3]. Additionally, they provide a safe haven
for other opportunistic pathogens to thrive and be a
source of infection [4].

Biofilm formation occurs when planktonic (or free-
floating) microorganisms encounter a surface and
adhere in a reversible fashion while they “explore” the
location to ascertain whether it offers nutrients or other
advantages. The ability to adhere is a fast process [5]. If
the “decision” favors permanent settlement, adherent
cells up-regulate genes involved in matrix production
and biofilm formation begins [6]. The extracellular
matrix provides the physical architecture for microbial
interactions, facilitating feedback (sensing and sig-
naling) among the cells [7]. Quorum sensing (QS), or
cell-to-cell signaling, is the controlled expression of spe-
cific genes in response to extracellular signal molecules
or “autoinducers” produced by the microorganisms. QS
allows for a unified response that benefits the microbial
population as a whole; indeed, QS communication cir-
cuits have been found to play a role in the coordinated
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Table 1.
Biofilms

Examples of Human Infections That May Involve

Native valve endocarditis

Prosthetic valve endocarditis

Chronic otitis media

Chronic sinusitis

Chronic bacterial prostatitis

Cystic fibrosis pneumonia

Periodontitis

Central venous catheter associated infections
Urinary catheter associated infections
Contact lens related eye infections (ie, keratitis)
Intrauterine device related infections
Gonococcal cervicitis

Bacterial vaginosis

Recurrent vulvovaginal candidiasis

regulation of a diverse array of physiologic activities, including
biofilm development and detachment [6, 8]. A mature biofilm
community is composed of tower- and mushroom-shaped mi-
crocolonies containing sessile cells enclosed by matrix material
[2]. Open water channels are interspersed between the micro-
colonies for nutrient circulation. Biofilm communities have
properties similar to a viscous fluid [6]. Basic community struc-
ture is universal with only minor variations noted [2].

Biofilm-associated bacterial and fungal microorganisms have
increasingly been recognized to play a role in multiple infectious
diseases, particularly in their persistence and recurrence
(Table 1) [9]. Biofilms have also been found to colonize a
wide variety of medical devices, putting patients at risk for de-
vice-related infections [2, 5]. More recently, biofilms have been
implicated in vaginal infections. Biofilms formed by Gardnerel-
la vaginalis and Candida spp., key pathogens in bacterial vagi-
nosis (BV) and recurrent vulvovaginal candidiasis (VVC),
respectively, represent potentially important virulence attri-
butes and mechanisms of resistance often encountered clinical-
ly. The purpose of this review is to discuss the impact of biofilms
on the management and treatment of BV and recurrent VVC
and highlight the need for additional research and development
of novel therapeutics targeting pathogenic vaginal biofilms.

BIOFILMS: PATHOGNOMONIC IN VAGINITIS

It is well accepted that BV results from a loss of the normal
lactobacillus-predominant vaginal flora and a synergistic rela-
tionship between a large number of microorganisms including
Gardnerella vaginalis and other anaerobes (BV-associated bac-
teria, BVAB) [10]; however, the trigger that initiates these alter-
ations is controversial. The epidemiology of BV suggests that it
is acquired via sexual transmission, but it is unknown whether

BV results from acquisition of G. vaginalis as the “founder” or-
ganism, leading to the complex changes in vaginal flora [11], or
whether BV is transmitted as a polymicrobial consortium [12].
Nonetheless, recent data have shown that BV is associated with
the development of an adherent polymicrobial biofilm contain-
ing abundant G. vaginalis and smaller numbers of BVAB, in-
cluding Atopobium vaginae, on vaginal epithelial cells that is
apparent by fluorescent in situ hybridization of vaginal biopsy
specimens from women with BV [13]. Subsequent desquama-
tion of these cells coated with bacterial biofilm results in the for-
mation of “clue cells” visualized on saline microscopy of vaginal
secretions. Indeed, G. vaginalis has been found to have a greater
virulence potential (more adherent, more cytotoxic, and has the
greatest ability to form biofilm) relative to other BVAB [14-17],
supporting the hypothesis that G. vaginalis biofilm formation
may be an initiating event in the pathogenesis of BV. In an in
vitro model for G. vaginalis biofilm formation, susceptibilities
of biofilms (cohesive G. vaginalis) vs planktonic (dispersed G.
vaginalis) cultures of this organism to H,O, and lactic acid
(substances normally produced by lactobacilli in the healthy va-
gina that reduce the vaginal pH to <4.5 and prevent colonization
by pathogenic anaerobes) were compared [18]. Gardnerella
vaginalis biofilms tolerated 5-fold and 4-8-fold higher concen-
trations of H,0O, and lactic acid, respectively, than planktonic
cultures, whereas proteolytic dissolution of the biofilms in-
creased susceptibility of G. vaginalis to H,O, and lactic acid.
This suggests that biofilm formation contributes to G. vaginalis
survival and that biofilm disruption resensitizes otherwise
resistant biofilm-associated pathogens. This is consistent with
biofilm resistance as a phenotypic phenomenon and has impor-
tant implications for management.

Building on the discovery of the BV biofilm, Swidsinski et al
refined the picture of BV transmissibility in a study of women
with symptomatic BV and their partners as well as married
pregnant women and their partners [19]. In this study, women
with symptomatic BV consistently presented with cohesive
G. vaginalis (indicative of the presence of G. vaginalis in a bio-
film mode of growth) as did their partners. Among the married
pregnant women and their partners, cohesive G. vaginalis was
also consistently found among the partners of women with co-
hesive G. vaginalis. This concordance was not observed for dis-
persed (planktonic) G. vaginalis. The authors concluded that
the biofilm mode of growth represents the infectious or trans-
missible mode of G. vaginalis and BV, whereas the presence of
dispersed G. vaginalis seems to be of less clinical significance.

Treatment of BV is recommended for symptomatic women
[20]; however, despite an initial response, BV recurs or persists
in a significant proportion of women [21-23]. This is likely due
to persistence of the biofilm, now documented by vaginal biop-
sy, following FDA-approved therapies such as metronidazole
[24, 25]. Alternative treatment approaches targeting the
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underlying biofilm are thus needed. In addition, opponents of
the sexual transmission theory of BV pathogenesis cite older
studies in which treatment of the male sexual partner did not
prevent recurrence of BV in the female. The methodological
flaws of these studies are nicely described in a recent systematic
review by Mehta [26]. Taking these methodological flaws into
account, a new phase III clinical trial is currently underway to
determine if the treatment of male sexual partners of women
with recurrent BV significantly decreases the recurrence rate
of BV in the female [Schwebke, unpublished data].

Like BV, VVC is also common, affecting up to 75% of women
during their lifetime; 5%-8% subsequently develop recurrent
VVC (RVVC), defined as 4 or more episodes per year in the ab-
sence of predisposing factors [27].In addition to causing symp-
tomatic disease, Candida spp. can also colonize the vagina in
approximately 15%-20% of asymptomatic women [27, 28].
Candida albicans is the most common Candida spp. associated
with VVC although C. glabrata, C. tropicalis, and rarely other
Candida spp. are also implicated [28].

It has been hypothesized that virulence factors other than an-
timicrobial resistance contribute to the pathogenesis of RVVC,
including germ tube formation (associated with adherence) and
biofilm production (consequence of adherence) [29]. Candida
spp., particularly C. albicans, are well known for forming bio-
films on the acrylics of dentures, on implantable devices in
the bloodstream, on urinary catheters, and on mucosal surfaces
including the oral cavity [30, 31]; it is thus possible that Candida
biofilm formation may also occur on mucosal tissues of the fe-
male genital tract, perhaps during times of increased fungal bur-
den [32]. Although no vaginal biopsy studies parallel to those in
the BV literature have been performed in women with VVC or
RVVC, in vivo and ex vivo murine vaginitis models examining
C. albicans biofilm formation on vaginal epithelial cells have
confirmed this suspicion [32]. In this study, wild-type C. albi-
cans strains formed biofilms on the vaginal mucosa as indicated
by the high fungal burden and microscopic analysis demon-
strating typical biofilm architecture and presence of extracellu-
lar matrix co-localized with the presence of fungi. In contrast,
mutant strains defective in regulation of morphogenesis (ie, hy-
phal formation) and biofilm production exhibited weak to no
biofilm formation. The ability of 5 types of Candida spp. (C. al-
bicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. guillier-
mondii) isolated from patients with VVC to form biofilms has
also been investigated in vitro [29]. In this study, C. albicans and
C. parapsilosis demonstrated the strongest ability to adhere and
form biofilms. Candida albicans biofilms have also been grown
on reconstituted human vaginal epithelial cells, which further
supports the virulence attributes of this organism in the lower
genital tract [33]. Candida glabrata, the second most prevalent
pathogenic fungal species in humans after C. albicans [34], is
also able to form biofilms. A recent in vitro/in vivo study in

rats noted that C. glabrata is a unique microorganism, which,
despite its lack of transition to the hyphal form, formed thick
biofilms inside foreign bodies in vivo [35]. Considering the re-
sults of these studies, it will be interesting to investigate whether
the presence of a biofilm determines whether Candida spp. be-
have as pathogens or colonizers on the vaginal mucosa, allowing
a switch from commensalism to a pathogenic state.

Compared with conventional azole antifungal medications,
one of the more effective therapies for RVVC is intravaginal
boric acid [36], which also has demonstrated clinical utility
for recurrent BV [37]. Although its mechanism of action is un-
known, boric acid effectively inhibits Candida [38] and G. vag-
inalis biofilm formation in vitro (personal communication,
Elinor Pulcini, PhD, Center for Biofilm Engineering, Bozeman,
Montana), which may account for its efficacy in vivo. Although
the role of G. vaginalis biofilms in BV has been characterized
[13, 14, 24, 25], further research is needed to clarify the role of
Candida biofilms in the pathogenesis of VVC, particularly
RVVC. Novel agents with the ability to interrupt Candida [5]
and G. vaginalis biofilms [11] offer a promising approach to
the management of common vaginal infections as primary
and/or adjunctive treatments but require additional study.

MECHANISMS OF BIOFILM RESISTANCE

Bacterial biofilms are highly resistant to antimicrobial agents
and host defenses by multiple mechanisms that are inherently
multicellular (ie, they act together to provide the biofilm with
multiple levels of defense against antimicrobial agents) [39,
40]. This resistance typically only applies to microorganisms
embedded within the biofilm matrix (ie, G. vaginalis) as plank-
tonic organisms are usually more susceptible to killing [18, 39].
Known mechanisms of biofilm resistance include (1) slow or in-
complete penetration of antibiotics and host immune cells
through the matrix, (2) physiological changes in the biofilm mi-
croenvironment due to slow growth and starvation responses,
(3) phenotypic change in biofilm cells, similar to spore forma-
tion, (4) QS between biofilm microorganisms, (5) expression of
efflux pumps, which remove solutes (such as antimicrobials)
out of the cells, and (6) “persister cells,” small fractions of mi-
croorganisms that are able to survive antibiotic concentrations
well above minimal inhibitory concentrations [31, 40].

In vitro studies have shown that some antimicrobial agents
can readily permeate the biofilm as there is no generic barrier
to the diffusion of solutes through the extracellular matrix
[41]. However, if an antimicrobial agent is deactivated in the
upper layers of the biofilm by catalytic enzyme(s), penetration
can be delayed [42]. For example, ampicillin can penetrate a bi-
ofilm formed by a B-lactamase-negative Klebsiella pneumoniae
but not a biofilm formed by a B-lactamase-positive wild-type
strain of the same organism where deactivation of ampicillin
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occurs in the biofilm surface layers more rapidly than it is able
to diffuse [43]. Regarding physiologic changes in the biofilm mi-
croenvironment, oxygen may be completely consumed by mi-
croorganisms in the surface layers, leading to anaerobic niches
in deeper layers that may render pathogenic organisms more re-
sistant to antimicrobials that are less effective under hypoxic
conditions [44]. Similarly, accumulation of acidic waste prod-
ucts produced by biofilm microorganisms may lead to pH
changes which can directly antagonize the action of an antibi-
otic [45]. Depletion of substrates can also cause microorganisms
as part of a biofilm community to enter a dormant state, pro-
tecting them from killing by antimicrobials such as B-lactams,
which require actively dividing cells to be effective [39]. It is
also hypothesized that a small subpopulation of biofilm cells
(ie, “persister cells”) can evolve to a unique, highly protected
state, similar to spores, which are more likely to survive in the
ongoing presence of an antibiotic [39]. Additionally, expression
of efflux pumps in biofilm resistance to antimicrobials has also
been shown to occur [40]. Efflux pump activity may also play a
role in biofilm development as it has been shown that efflux sys-
tems are implicated in QS regulation, allowing the intrusion or
extrusion of molecules by biofilm cells [40].

Like bacterial biofilms, Candida biofilms also demonstrate re-
duced susceptibility to antifungal agents such as azoles and are
less sensitive to killing by the host immune system [31]. Resis-
tance mechanisms in Candida biofilms include differential reg-
ulation of drug targets (ie, changing the drug target structure so
the antifungal is incapable of binding the target), up-regulation
of drug efflux pumps, “persister cells” living in a dormant state
with inactive targets, and presence of matrix components that
prevent antifungals from reaching their targets [31, 46, 47].

RETHINKING TREATMENTS: TARGETING
PATHOGENIC VAGINAL BIOFILMS

With the growing realization that biofilms play an important
role in the pathogenesis of common vaginal infections such as
BV and RVVC and in the setting of low cure rates using current
FDA-approved therapies [24, 25], novel therapeutic agents tar-
geting biofilms are needed. This is especially true for BV, owing
to the associated serious secondary health complications such
as preterm birth and acquisition and transmission of sexually
transmitted infections (STIs), including human immunodefi-
ciency virus [48, 49]. Simplified in vitro biofilm models (such
as microtiter-plate assays used to grow biofilms and flow cell
models that closely mimic natural shear conditions that occur
in biofilm development) have been utilized to address basic
questions about biofilm formation, physiology, and architecture
[9]. Indeed, disruption of the biofilm matrix has been shown to
re-sensitize otherwise resistant organisms, as in the case of
G. vaginalis, consistent with the phenotypic nature of biofilm

resistance [18]. However, there are currently very few treatment
options targeting vaginal biofilms in any stage of development.

With respect to BV, research on the ability of novel therapeu-
tic agents to disrupt the biofilm has been hampered by the lack
of a validated in vitro model of this infection [50]. Despite this
challenge, a recent study using a murine vaginal colonization
model for G. vaginalis demonstrated that G. vaginalis biofilms
contain extracellular DNA and that enzymatic disruption of this
DNA with DNase inhibited the biofilm, suggesting its use as a
potential adjunct to existing BV therapies [51]. Hooven et al
have also recently evaluated a synthetic retrocyclin (an antimi-
crobial peptide) in vitro against G. vaginalis biofilms, with
mixed results [52]. As mentioned previously, intravaginal boric
acid has clinical utility in the setting of both recurrent BV and
VVC, perhaps by influencing the biofilm [38] and enhancing
the antibacterial effect of conventional antimicrobial therapy
[37]. In addition, Swidsinski et al recently evaluated the use of
octenidine among women with recurrent BV, a local antisep-
tic previously shown to be highly effective in several biofilm-
associated infections including oral infections, orthopedic steel
implant biofilms, and biofilms involved in wound infections
[53]. The initial cure rate following a 7-day course was high at
87.5%; however, relapse at 6 months due to bacterial resistance
was significant at 66.6%. Repeated treatment with a 28-day
course led to a cure rate of 75% but was not sustained and was
associated with emergence of complete resistance in a consider-
able proportion of patients. The authors concluded that although
initial treatment with this agent was highly effective, the efficacy
of repeated and prolonged treatment dropped quickly.

Quorum sensing inhibitors (QSIs) have recently been identi-
fied as antibiofilm agents for a number of bacterial species in-
cluding Pseudomonas aeruginosa, Staphylococcus epidermidis,
and Bacillus cereus [54-56]. QS inhibition can be achieved by
inhibiting signal synthesis or direct degradation of the signal,
inhibition of binding of the signal molecule to the receptor,
and/or inhibition of the signal transduction cascade. It is cur-
rently unknown whether these nonantibiotic compounds
could be useful in biofilm-related infections in humans, includ-
ing pathogenic vaginal biofilms (perhaps as an adjunct to tra-
ditional antibiotic therapy). Future research should explore this
possibility. It has also been noted that D-amino acids, produced
by many bacteria including P. aeruginosa and Staphylococcus
aureus, trigger biofilm disassembly by causing the release of
amyloid fibers that link the biofilm cells together [57]. This typ-
ically occurs when biofilms have aged, nutrients have dimin-
ished, and wastes have accumulated. It would also be useful to
determine if these agents could be used as a strategy for biofilm
disassembly in the treatment of common vaginal infections
such as BV. Complicating research and development in this
area is the current lack of validated vaginal infection bio-
film models, which limits the ability to evaluate potential
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antibiofilm agents in a standardized way. Once this issue has
been resolved, clinical trials should be conducted using combi-
nation antimicrobial therapy for vaginal infections (such as BV)
and biofilm inhibiting agents.

Despite current advances in the understanding of pathogenic
vaginal biofilms, particularly with regards to BV, additional re-
search and development in the area of vaginal biofilm infections
is needed with the goal of developing validated biofilm models
for both BV and RVVC, expanding current treatment options,
improving outcomes, and stemming secondary public health
risks, which remain significant.
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