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Abstract

Motivation: This article presents libRoadRunner, an extensible, high-performance, cross-platform,

open-source software library for the simulation and analysis of models expressed using Systems

Biology Markup Language (SBML). SBML is the most widely used standard for representing dy-

namic networks, especially biochemical networks. libRoadRunner is fast enough to support large-

scale problems such as tissue models, studies that require large numbers of repeated runs and

interactive simulations.

Results: libRoadRunner is a self-contained library, able to run both as a component inside other

tools via its Cþþ and C bindings, and interactively through its Python interface. Its Python

Application Programming Interface (API) is similar to the APIs of MATLAB (www.mathworks.com)

and SciPy (http://www.scipy.org/), making it fast and easy to learn. libRoadRunner uses a custom

Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles

SBML-specified models directly into native machine code for a variety of processors, making it

appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, sup-

porting the bulk of the SBML specification (except for delay and non-linear algebraic equations)

including several SBML extensions (composition and distributions). It offers multiple deterministic

and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural

analysis of the stoichiometric matrix.

Availability and implementation: libRoadRunner binary distributions are available for Mac OS X,

Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is

also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org

provides online documentation, full build instructions, binaries and a git source repository.

Contacts: hsauro@u.washington.edu or somogyie@indiana.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dynamic network models (Sauro, 2014) of metabolic, gene regula-

tory, protein-signaling and electrophysiological networks require

the specification of components, interactions, compartments and

kinetic parameters. The Systems Biology Markup Language (SBML)

(Hucka et al., 2003) has become the de facto standard for
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declarative specification of these types of model (Dräger et al.,

2014; Sauro and Bergmann, 2009).

Popular tools for the development, simulation and analysis of

models specified in SBML include COPASI (Hoops et al., 2006),

Systems Biology Workbench (SBW) (Bergmann and Sauro, 2006),

The Systems Biology Simulation Core Algorithm (TSBSC) (Keller

et al., 2013), Jarnac (Sauro and Fell, 2000), libSBMLSim (Takizawa

et al., 2013), SOSLib (Machné et al., 2006), iBioSim (Myers et al.,

2009), PySCeS (Olivier et al., 2005) and VirtualCell (Moraru et al.,

2008). Some of these applications are stand-alone packages de-

signed for interactive use, with limited reusability as components

in other applications. Few are reusable libraries. Currently, none

is fast enough to support emerging applications that require large-

scale simulation of network dynamics. For example, multi-cell

virtual-tissue simulations (Hester et al., 2011) often require simul-

taneous simulation of tens of thousands of replicas of dynamic

network models residing in their cell objects and interacting between

cells. In addition, optimization methods require generation of time-

series for tens of thousands of replica networks to explore the high-

dimensional parameter spaces typical of biochemical networks

(Bouteiller et al., 2015).

We designed libRoadRunner to provide: (i) Efficient time-series

generation and analysis of large or multiple SBML-based models;

(ii) A comprehensive and logical Application Programming Interface

(API); (iii) Interactive simulations in the style of IPython and

MATLAB and (iv) Extensibility.

Most existing SBML simulation engines use built-in interpreters

to parse and execute SBML model specifications. Interpreted execu-

tion is simple and flexible, but much slower than execution of com-

piled code. Other simulation engines generate compiled executables

from SBML by first converting SBML-specified models into a gen-

eral-purpose-language representation. The engines then call an ex-

ternal compiler to translate the general-purpose-language into an

executable shared library to load at run time. E.g., SBW-

roadRunner in the SBW suite (Bergmann and Sauro, 2006) converts

SBML into C# [see § 1.4 of (Aho et al., 1986)], then compiles the

C# using the built-in compiler from the .NET distribution. This ap-

proach generates relatively fast executables. However, it requires

distribution of a separate compiler or a redistributable runtime,

reducing portability.

A more efficient approach to SBML-to-executable compilation

uses a specialized just-in-time (JIT) compiler, to compile SBML into

an optimized Intermediate Language (IL) representation and the IL

code into native executable machine code directly in-memory.

Ackermann et al. (2009) used JIT compilation to generate CUDA

code from SBML and execute it on an Nvidia GPU. libRoadRunner

and the Stochastic Simulation Compiler (SSC) (Lis et al., 2009) both

compile dynamic network-model specifications into executables,

SSC focusing on stochastic simulation of rule-based models and

libRoadRunner on SBML-specified models. libRoadRunner sup-

ports execution of a broad range of SBML models on CPUs using a

custom-built JIT compiler [based on the LLVM JIT compiler frame-

work (Lattner and Adve, 2004)] which translates SBML into highly

optimized executable code for a broad range of processors. LLVM-

based compilers are small, so all JIT operations occur in memory,

without external file or compiler access, ensuring fast, self-contained

simulations and a relatively small distribution package.

2.1 Capabilities
libRoadRunner supports time-course simulation of deterministic

and stochastic models. It also supports steady state analysis, stability

analysis and structural analysis of the stoichiometry matrix (Reder,

1988). libRoadRunner supports almost the entire SBML L3V1

specification, including hierarchical model composition and the

distribution package. Its lacks support only for delay equations and

non-linear algebraic rules.

2.2 Portability
Because new hardware platforms appear frequently, a modern simu-

lator must be portable. libRoadRunner has no run-time dependen-

cies beyond standard system libraries and it supports any processor

LLVM supports. LLVM future-proofs libRoadRunner, ensuring

that we need not change the front end of the compiler to support

new processor architectures. libRoadRunner is written in Cþþ, so it

interfaces easily with other Cþþ-based software. libRoadRunner

also provides a C language wrapper for cross-language support and

uses SWIG (Beazley, 1996) to provide a customized native-Python

API. The use of SWIG will allow future support for additional native

language bindings, such as JavaScript, R or Octave, depending on

demand.

2.3 Extensibility
libRoadRunner’s modular design is easy to maintain and extend. All

top-level components, such as solvers and integrators, interact via

well-defined boundaries (pure virtual interfaces) to reduce inter-

component dependencies and hide their internal details. A new

solver needs only to implement a standard interface to function as

part of the library, so adding a solver requires no modification of

pre-existing code.

2.4 SBML as a declarative language
SBML (Hucka et al., 2003) is a declarative specification format for

network models. Because of its history, SBML terminology derives

from biochemistry and includes common biochemical-reaction ab-

stractions like reaction steps, compartments and reaction rate laws,

though it can describe any model of form:

d

dt
xðtÞ ¼ f ðxðtÞ;pÞ; (1)

where x is the state vector of the model, and p is a vector of time-in-

dependent parameters.

SBML-specified models can also include events, discontinuous

state changes, which trigger under specified conditions.

libRoadRunner correctly handles SBML-specified events and ex-

tends the SBML specification by allowing an SBML event to call an

arbitrary user-defined function.

Declarative specification languages, like SBML, define compo-

nent objects and their interactions, rather than defining procedural

control flow (i.e. the sequence in which computational operations

proceed on execution). An SBML specification lists only the network

component objects, their interactions and rate relations and events

which change these interactions and rates, all of which are intrinsic

abstractions in SBML. Thus, an author writing a model specification

in SBML can focus on the underlying biology or chemistry of the

model rather than on how to implement the model as a simulation.

Because SBML does not specify the computational operations to im-

plement a model, the control flow, the solvers to use, or how to store

the model’s elements, an SBML compiler or interpreter must gener-

ate them appropriately from the SBML specification. Thus, compil-

ing an SBML model specification is more complex than compiling a

functionally equivalent model specification in a procedural

language.
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SBML model specifications are easier to share than procedural

specifications of equivalent models because they are not implemen-

tation dependent; any of the numerous SBML compliant tools can

process any SBML model specification. This portability allows

model archiving (e.g. in exchange repositories such as BioModels

(Le Novere et al., 2006) and reuse and the relatively simple assembly

of multiple SBML-specified sub-models into larger models. It also

simplifies the scientific validation of SBML-specified models and en-

sures that SBML-specified models remain usable, even if the specific

software tools that generated them fall out of use.

2 Architecture

libRoadRunner is a self-contained, easily embedded library with an

object-oriented API natively accessible in C, Cþþ and Python

(SWIG allows easy extension to other languages). libRoadRunner’s

component-oriented design specifies a small number of standar-

dized software interfaces (protocols) and how they interact, imple-

mented using standard Cþþ data types. Component-orientation

separates the implementation of a component from its interface, so

components are easy to add or replace and component swapping

requires no changes to existing code. E.g., we can add new integra-

tors, steady-state solvers or SBML compilers to the libRoadRunner

library via the Integrator, SteadyStateSolver and

ExecutableModel interfaces, respectively. libRoadRunner in-

cludes three implementations of the Integrator interface: two

deterministic integrators [one based on the CVODE integrator

from the Sundials suite (Hindmarsh et al., 2005) and the other a

standard fourth-order Runge–Kutta method] and a standard

Gillespie Direct Method SSA stochastic integrator (Gillespie,

1977). libRoadRunner implements the SteadyStateSolver

interface as a class which uses the NLEQ (Nowak and Weimann,

1991) solver, and we are currently developing additional methods.

libRoadRunner implements the ExecutableModel interface as a

class which uses our SBML-to-CPU JIT compiler (see § 3).

libRoadRunner statically links to the third-party libraries LLVM

(Lattner and Adve, 2004), libSBML (Bornstein et al., 2008),

CVODE, NLEQ2, LAPACK (http://www.netlib.org/lapack/) and

POCO (http://pocoproject.org/).

3 SBML-to-CPU-executable compilation

LibRoadRunner’s SBML JIT compiler compiles SBML models in the

form of strings to executable native machine code, in memory.

Compilation follows the canonical compiler phases (Aho et al.,

1986): (i) lexical analysis, (ii) syntactic analysis, (iii) semantic ana-

lysis, (iv) intermediate code generation, (v) code optimization and

(vi) native code generation. Standard generic libraries can perform

phases 1, 2, 5 and 6. However, semantic analysis (phase 3) is specific

to the source language.

In phases 1 and 2, the compiler reads the source text, parses it,

and extracts and converts the text’s syntactic information into an

abstract syntax tree (AST) data structure. Each node in the AST is

an essential construct such as an operator, symbol, literal or func-

tion call. Most SBML simulators use components of the libSBML

(Bornstein et al., 2008) library to perform lexical and syntactic ana-

lyses of SBML model specifications.

In phases 3 and 4, the compiler reads the AST and assembles it

into a sequence of IL (IL, a machine-independent assembly lan-

guage) instructions, which form a procedural instantiation of the

SBML model specification.

CPUs cannot execute IL programs directly, so phases 5 and 6 op-

timize the IL (by removing redundant operations, optimizing mem-

ory layout, . . . ) and convert it into executable machine code.

libRoadRunner uses components of the LLVM library for phases 5

and 6.

After the completion of phases 1–6, the JIT compiler returns the

executable code in the form of a list of callable functions to the call-

ing program.

During phase 3 (semantic analysis), the compiler must map lan-

guage symbols to memory address locations. The compiler of a pro-

cedural language, such as C, allocates a memory location to each

symbol (e.g. a variable or function declaration), and resolves that

symbol to that location whenever the source code references that

symbol. Procedural-language compilers map symbols to memory lo-

cations using a symbol table data structure. SBML has no construct

for creating new variables or eliminating variables at run-time, so

the compiler can compute the exact memory requirements for all

symbols and store the symbols in a contiguous memory block. At

run-time, during a time-series computation, the libRoadRunner li-

brary connects a JIT-compiled function to an integrator, which, in

turn, calls a function which calculates the rate of change of the state

vector. Because both the state vector and the rate of change occupy

contiguous memory blocks and have the same layout as the SBML

model variables, the calls pass only two pointers and require no

memory copying or rearrangement.

However, compilation of SBML poses challenges. SBML model

specifications may define rules which state that an expression should

replace a specified symbol, or a rate rule which specifies a rate of

change of the value of a symbol, rather than the symbol value itself.

SBML also allows different rules to apply in different contexts, such

as special rules which only apply when the model is loaded (initial

assignment rules). Mapping symbol names to memory locations is

not one-to-one so a symbol table is insufficient to store the mapping.

Some SBML model simulators allocate storage space for both

normal and rule-defined symbols and use auxiliary functions to

evaluate the rules at run-time as the symbols are read. However, this

approach wastes memory storing symbols which resolve to other

symbols and complicates execution, as the run-time must keep track

of rule dependencies.

Our solution is to extend the symbol table into a symbol forest, a

hash table which maps symbol names to ASTs describing all the

symbols’ rules. The SBML compiler uses the symbol forest much as

a procedural-language compiler uses a symbol table, to resolve sym-

bol names to memory locations. However, the symbol forest must

apply any rules which relate symbols to determine the memory loca-

tion for a given symbol. E.g., if the symbol x has the assignment rule

x! yþ 1, whenever the compiler references symbol x, the symbol

forest will find the rule, generate a sequence of IL instructions which

both implement the right hand side (RHS) of the rule and create a

temporary variable to store the result of the rule calculation. The

symbol forest then stores this sequence of IL instructions and returns

the memory location of the instruction sequence to the compiler.

Later in compilation, the LLVM code generator translates these IL

instructions into an executable, which calculates and returns the

value of the symbol at run-time. The symbol forest resolves auto-

matically recursive rules in which the symbols in the RHS of a rule

depend on other rules.

Naı̈vely generating IL expansions of the rule definitions inline

and creating temporary variables for rule evaluation would generate

redundant instructions which would slow both compilation and exe-

cution. libRoadRunner’s scoped symbol cache reduces such

redundancy. Many functions in libRoadRunner do not modify
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SBML-defined parameters and variables during function execution,

so any rules depending on these parameters and variables need

evaluation only once during a given call to these functions. Even if

the rule involves a condition, e.g. x! fb if ða > 1Þ else cÞ, if the

function does not change the values of a, b and c, the function needs

to evaluate the rule to obtain the value of x only once per call. The

SBML compiler therefore generates code which evaluates the rule

whenever the function is called and stores the result in a temporary

variable. During a call to the function, the first reference to the sym-

bol evaluates the rule and caches its result, and any subsequent refer-

ences to that symbol during the function call reference the cached

value. Using a scoped symbol cache reduces memory usage and exe-

cution time, typically by a factor of 10 for large models.

When JIT-compiled functions contain conditional branches

which contain rules, the SBML compiler generates redundant IL

code, which slows compilation (which scales as the size of the IL

code) but has no speed cost at execution. If the compiler examined

all possible branches, determined what rules were present, and cre-

ated temporary variables to contain the results of the rule evalu-

ations, it would reduce the size of the resulting IL code, speeding

compilation. However, slower execution would offset the faster

compilation, since the executable would evaluate all rules in all

branches, not only those which it needed. We may add a compiler

directive to allow the user to choose the second option in a future re-

lease of libRoadRunner.

4 Results

4.1 Performance
Simulation engines which interpret SBML models (Romer et al.,

1996), are inherently slower, sometimes much slower, than engines

which generate and execute complied code. libRoadRunner uses JIT

compilation to generate particularly fast simulations.

We benchmarked libRoadRunner and Jarnac (Sauro and Fell,

2000), a popular interpreter-based network simulator, for a variety of

network model types (Table 1; Supplementary Materials Table S1).

libRoadRunner’s faster execution speed is particularly evident when

solving large models, such as BIOMOD14 (Table 1), a mass-action

model including a large number of states. We also checked the scal-

ing of the execution time (t) in the number of replicas (N) of a

Brusselator model, approximating the use of libRoadRunner in a

virtual-Tissue simulation with thousands of cells, with each cell

including its own replica of an SBML-specified network model. The

run time for libRoadRunner scales as t � N, whereas the run time

for Jarnac scales as t � N2:6 (Supplementary Materials Fig. S2).

Thus libRoadRunner is more suitable than Jarnac for use in Virtual-

Tissue simulations or other simulations requiring many replicas of

one or more networks. The Supplementary Materials present the full

benchmark comparisons.

Simulation speed depends on the performance of both the state-

vector rate calculation and the numeric integrator. Because we can-

not separate these calculations in most SBML-model packages, we

also compared an SBML model JIT-compiled using libRoadRunner

with a hard-coded Cþþ version of the same model. The model im-

plemented 1000 instances of a Hofmeyr–Cornish-Bowden unimol-

ecular reaction, in which a single substrate reversibly goes to a single

product (S! P) at a rate of (Hofmeyr and Cornish-Bowden, 1997;

Sauro, 2012):

Vm S
Km1

� �
1� C

Keq

� �
S

Km1
þ P

Km2

� �h�1

1þðM=kÞh

1þrðM=kÞh
þ S

Km1
þ P

Km2

� �h
:

On a 64-bit Linux system, using the clang Cþþ compiler, execution

of 1000 to 15 000 time steps using the JIT-compiled SBML model

and the hard-coded Cþþ specification took the same time, showing

that the flexibility of libRoadRunner does not entail any significant

speed cost.

4.2 Python bindings
libRoadRunner’s Python API employs a simple, concise object

model, and follows the style and conventions of the widely used

SciPy library for ease of learning. The API provides high perform-

ance, low-overhead access to the libRoadRunner library. The API

only communicates using standard Python data types such as lists,

dictionaries and NumPy arrays, which simplifies integration with

existing applications. The NumPy array type is a data structure

which wraps a Python interface around a standard C numeric array.

Even large NumPy arrays have low overhead, since they return only

pointers to internal arrays owned by the libRoadRunner library,

with no copying of memory.

To provide the functionality of the Pandas (http://pandas.pyda-

ta.org) DataFrame object, libRoadRunner extends the NumPy array

to contain row and column name information, to support access to

rows and columns by name, and to format this name information

for console output. Unlike the Pandas DataFrame, which replaces

the Numpy array and requires conversion to work with Python and

Numpy functions, the libRoadRunner array is a standard Numpy

array which any SciPy function can use. The libRoadRunner array

requires only a single line to display the components and interaction

names in the stoichiometry matrix:

printðr:getFullStoichiometryMatrixðÞÞ

S1

S2

S3

S4

J0;

½ ½1;

½0;

½0;

½0;

J1;

�1;

1;

0;

0;

J2;

0;

�1;

1;

0;

J3;

0;

0;

�1;

1;

J4

0�

0�

0�

�1� �:

Running a libRoadRunner simulation only requires loading a

model and calling a simulation method. Defaults preset the time

spans and number of points a simulation generates. By default, the

simulate method returns time in the first column and all floating

model species in additional columns:

r¼RoadRunner(“glycolysis.sbml”)
m¼r.simulate(plot¼True)

Here m is a NumPy array, and the optional plot ¼ True argu-

ment to the simulate method calls the standard plotting library,

matplotlib, to display a basic time-series plot of the simulation

Table 1. Ratios of Jarnac and libRoadRunner run times and total

execution times (including loading) for selected network models

(Supplementary Materials for full benchmark data)

Run time Total time

Jarnac/ Jarnac/

Model name libRoadRunner libRoadRunner

Jana wolf 4.30 2.08

BIOMOD14 311 3.98

BIOMOD33 3.14 0.35

Brusselator500 22 875 225
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results. Optional arguments can customize the simulation, e.g. to

generate a 100 data-point time series for parameter ‘p’ and concen-

tration ‘S1’ from an SBML-specified model between times t¼0 and

t¼12, we specify:

r¼RoadRunner(“glycolysis.sbml”)
m¼r.simulate(0, 12, 100, [‘time’, ‘p’, ‘[S1]’])

A variety of other built-in symbols access reaction rates, rates of

change, eigenvalues, etc. Like a MATLAB top-level function, the

libRoadRunner simulate method provides a consistent front end

to all libRoadRunner’s integration engines. Because MATLAB is fa-

miliar to many scientists, the MATLAB-like architecture reduces the

effort to learn the libRoadRunner API. To simplify generation of

simulation documentation, libRoadRunner methods support in-

ternal pydoc strings, which interactive Python environments such as

IPython or Tellurium (http://tellurium.analogmachine.org/) make

available as pop-up hints.

The libRoadRunner API uses dynamic Python object properties

to simplify access to SBML model values. Loading an SBML-speci-

fied model via libRoadRunner automatically adds the SBML mod-

el’s symbol names to the RoadRunner object, allowing dynamic

introspection and modification of the object. If a model contains

parameters and species ‘x’, ‘y’, ‘S1’, ‘S2’, the RoadRunner

object will include these names as properties, which a user can read

or set. E.g.,

# load a model that has ids ‘x’, ‘y’ and ‘S1’

r¼RoadRunner(‘some_model.xml’)

r.x¼1.5 # set the ‘x’ parameter to 1.5

r.y¼2.0 # set the ‘y’ parameter to 2.0
print(r.S1) # print the ‘S1’ species concentration

4.3 Support for analysis
The C# roadrunner package inspired libRoadRunner, which inherits

many of roadrunner’s analysis functions, including: methods to cal-

culate scaled and unscaled control coefficients, elasticities, sensitiv-

ity to changes in all parameters, including conserved quantities,

eigenvalues and eigenvectors and stoichiometric quantities like the

Link and K matrices (Reder, 1988). libRoadRunner can also com-

pute frequency responses to generate Bode plots.

4.4 Identification of conserved quantities
Many biochemical network computations require identification of

conserved quantities (moieties in biochemical usage) and elimination

of linearly dependent species to avoid inversion of singular Jacobian

matrices (Vallabhajosyula et al., 2006). libRoadRunner implements

a libSBML plug-in which performs this reduction on SBML

Document objects, first identifying conserved quantities and depend-

ent species, then adding the conserved quantities to the document as

set of global parameters and replacing the dependent species with as-

signment rules. The user can modify these conserved quantities,

which behave as parameters, to investigate their effect on the dy-

namics of the model.

5 Use cases

libRoadRunner’s ease of use, ability to handle complex SBML mod-

els and fast model execution speed have led to its rapid adoption in

a variety of applications.

5.1 The tellurium interactive network solver
Tellurium is a cross-platform integrated Python environment based

on the Spyder IDE (http://code.google.com/p/spyderlib/). Tellurium

combines libRoadRunner, libSBML, Antimony (Smith et al., 2009),

libSEDML (http://libsedml.sourceforge.net/libSedML) and other

packages to provide a comprehensive development and analysis en-

vironment for Antimony-specified models. libRoadRunner’s concise

syntax and intuitive Python API are essential to Tellurium’s support

for interactive creation, simulation and analysis of dynamic network

models.

5.2 Integrating SBML-model specifications into multi-

cell virtual-tissue models simulated in CompuCell3D
CompuCell3D (CC3D), a simulation environment for multi-scale,

multi-cell virtual-tissue model development and simulation, was the

first tool to adopt libRoadRunner as a core engine. CC3D defines a

cell object class and behavior methods to allow cell objects to grow,

divide, die, secrete/absorb chemicals, move, etc. . . . libRoadRunner

integration with CC3D allows the state of an SBML-specified model

inside a cell object to control the CC3D parameters describing the

cell object’s behaviors, and vice versa.

E.g., in a model of changes in cell–cell adhesion leading to inva-

sive tumor phenotypes, the CC3D cell objects have a CC3D param-

eter adhesion-molecule density, which controls the CC3D behavior

cell–cell adhesion. An SBML-specified model relates the level of the

transmembrane adhesion receptor E-cadherin in each cell to the

cells’ level of b-catenin (Andasari et al., 2012). The CC3D-model

specification uses the libRoadRunner Python API to connect the

CC3D adhesion-molecule density to the SBML-model’s transmem-

brane E-Cadherin level. At run-time, libRoadRunner time evolves

the network models inside cells, while a specialized CC3D engine

handles the evolution of the cell objects.

Another use of SBML models in virtual-tissue modeling is simula-

tion of Delta-Notch patterning during embryonic development. Delta

and Notch are heterophilic transmembrane receptors whose signaling

is mutually inhibitory within a cell. The level of signaling depends on

both the amount of Delta on the membrane of a cell and the amount

of Notch on the surfaces of neighboring cells and vice versa. Thus, the

dynamics of the signaling network depends not only the model within

the cell, but the cell’s pattern of contacts with neighboring cells and

their levels of Delta and Notch. To model this situation, we create

CC3D cell objects and arrange them in an epithelium (a quasi-2D

sheet). Each cell contains an SBML-specified model that describes

how the cell’s levels of membrane-bound and cytosolic Delta and

Notch change, for a particular input level of transmembrane Delta

and Notch signaling (Swat et al., 2012). A Python layer uses the

libRoadRunner API to calculate the strength of Delta and Notch sig-

naling each cell experiences from the amount of Delta on the mem-

brane of each cell, the amount of Notch on the membrane of each

adjacent cell (adjacency is a CC3D model parameter) and the CC3D

model’s area of contact between each pair of cell neighbors.

libRoadRunner then updates cells’ Delta–Notch signaling and regula-

tory networks using these signaling strengths as boundary conditions,

while CC3D updates the cell shapes, positions adjacencies and contact

areas. Together, these interactions produce the checkerboard pattern

typical of embryonic Delta–Notch signaling.

5.3 Multi-scale virtual-tissue modeling of liver

metabolism
The Virtual Liver Network has developed an organ-level model of

human galactose clearance which includes single-cell metabolism of
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hepatocytes, the ultra-structure and micro-circulation of hepatic tis-

sues, and the structure of the entire organ (https://github.com/mat-

thiaskoenig/multiscale-galactose).

The liver model includes an SBML-specified model of the sinus-

oid, the smallest functional unit of the liver, consisting of a perfused

capillary surrounded by hepatocytes. This model contains a bio-

chemical network describing galactose metabolism in individual

hepatocytes. Coupling via SBML-specified discretized transport

equations for convection and diffusion results in a model with sev-

eral thousand components and interactions. The sinusoid model

uses SBML events to describe the time-varying supply of galactose

to the liver. Accounting for heterogeneity in blood flow and tissue

architecture requires simulation of more than 2� 105 replicas of the

model with varying tissue and flow parameters. This number of rep-

licas was feasible because of libRoadRunner’s fast time-series gener-

ation and support for variable step sizes, which dramatically

reduced output file size. Using the CVODE solver, single simulation

runs of the liver model take around 5–7 s on RoadRunner, resulting

in a total simulation time of 4 h for 105 simulations on a cluster with

40 cores. libRoadRunner’s Python API supported rewrite-free inte-

gration of the SBML models into a complex pre-existing modeling

workflow, which included data management using Django, model

annotation using Python bindings to libSBML, model prototyping

using Python bindings to Antimony and visualization of results using

the Python REST interface to Cytoscape (Shannon et al., 2003) with

CySBML and CyFluxViz.

5.4 Modeling of synaptic, neuronal and neuron network

dynamics in the MEMORY platform
The MEMORY platform [Multi-scale intEgrated Model Of the

neRvous sYstem, formerly EONS (Bouteiller et al., 2008)] simulates

the function and dynamics of elements ranging from single channels

or receptors (elementary models), to synapses, which include many

elementary models, to neurons, which themselves may include a

large number of synapses. MEMORY depends on libRoadRunner’s

flexibility and ease of use to assemble such complex hierarchical

models. E.g., an SBML-specified neuron model may include many

SBML-specified synapse models, each of which includes many

SBML-specified neurotransmitter release and diffusion, AMPA re-

ceptor and NMDA-receptor models (both ionotropic receptors for

the glutamate neurotransmitter). Neuronal models may be large,

e.g. representing 10 ionotropic synapses in a CA1 neuron model

(Izhikevich, 2003) requires 73 events, 290 reactions, 414 rules and

1459 parameters, so libRoadRunner’s fast time-series generation is

essential for MEMORY to solve complex neuronal models quickly.

To ensure that a neuronal model quantitatively predicts biolo-

gical functions like membrane potentials or intracellular molecular

concentrations, MEMORY can optimize the model’s parameters by

fitting between multiple simulation and experimental time-series for

characteristics including changes in receptor conductance, desensi-

tization properties and spiking patterns. MEMORY uses evolution-

ary multi-objective optimization [from the EMOO framework (Bahl

et al., 2012)], which requires large numbers of simulation replicas.

E.g., elementary-model optimization of an NMDA-receptor model

with respect to eight distinct experimental results for dynamical

changes in receptor-channel conductance following paired-pulse

stimulation, required 15 000 generations with 400 individuals per

generation, i.e. 6 million simulation replicas (corresponding to

13 000 h of simulated time). libRoadRunner took 66 h to run the en-

tire optimization on a 400-node computer cluster, orders of magni-

tude faster than other SBML simulators (Bouteiller et al., 2015).

6 Conclusions

libRoadRunner’s speed and ease of integration allow researchers to

solve very large models, include models embedded in multi-scale sys-

tems and run large ensembles of smaller models. libRoadRunner’s

Python API makes simulations easy to learn, while its Cþþ and C

APIs are attractive to developers wishing to integrate

libRoadRunner capabilities into existing simulation frameworks.

libRoadRunner runs on �86 and ARM architectures and Windows,

Mac OS X, Linux, Raspberry Pi, NVIDIA Jetson TK1 and

ADAPTEVA Parallella boards. libRoadRunner’s speed and ARM

support will make tablet-based network applications practical des-

pite tablets’ relatively slow CPU speeds. libRoadRunner’s support

for inexpensive processor boards such as the Raspberry Pi-2 allows

individual researchers and students to more easily study cluster par-

allelization options.

7 Future work

Improve Steady-State Solvers libRoadRunner uses the FORTRAN

NLEQ2 non-linear steady-state solver, which is not thread safe.

Exclusive access locks (mutexes) are on the NLEQ solver which re-

stricts its use to one thread at a time. To eliminate this restriction,

we plan to add several thread-safe steady-state solvers.

Extensions A suite of extensions to libRoadRunner is under

development. They include a bifurcation extension and a set of par-

ameter optimizers.
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