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Stem cells and progenitor cells are integral to tissue homeostasis and repair. They contribute to health
through their ability to self-renew and commit to specialized effector cells. Recently, defects in a
variety of progenitor cell populations have been described in both preclinical and human diabetes.
These deficits affect multiple aspects of stem cell biology, including quiescence, renewal, and differ-
entiation, as well as homing, cytokine production, and neovascularization, through mechanisms that
are still unclear. More important, stem cell aberrations resulting from diabetes have direct implications
on tissue function and seem to persist even after return to normoglycemia. Understanding how diabetes
alters stem cell signaling and homeostasis is critical for understanding the complex pathophysiology of
many diabetic complications. Moreover, the success of cell-based therapies will depend on a more
comprehensive understanding of these deficiencies. This review has three goals: to analyze stem cell
pathways dysregulated during diabetes, to highlight the effects of hyperglycemic memory on stem cells,
and to define ways of using stem cell therapy to overcome diabetic complications. (Am J Pathol 2015,
185: 2607e2618; http://dx.doi.org/10.1016/j.ajpath.2015.05.003)
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Diabetes is characterized by insulin resistance and hyper-
glycemia, and affects a diverse array of cells, leading to a
myriad of tissue complications. These include, but are not
limited to, cardiac arrest, stroke, nephropathy, retinopathy,
and non-traumatic lower limb amputations.1 Results from
randomized clinical trials indicate that adequate glycemic
control in diabetic patients reduces the risk of developing
one or several of these complications.2e4 The Diabetes
Control and Complications Trial reports a reduction in
the development or progression of diabetic nephropathy
(50% reduction), neuropathy (60% reduction), and reti-
nopathy (76% reduction) after intensive glycemic control.5

However, 33% of Americans with diabetes remain undi-
agnosed, approximately 12% of US adults with diabetes
exhibit poor glycemic control, and different medical
organizations recommend different glycemic targets,
increasing the occurrence of diabetic complications.1,6

Furthermore, a substantial fraction of patients develop
progressive disease despite lowering glycemia, making it
critical to study the cellular and molecular modifications
that lead to diabetic complications.7e9
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At the tissue level, vascular complications are the most
serious manifestations of diabetes.10 Closer analysis at the
cellular and molecular levels reveals that diabetic compli-
cations emerge from alterations in the intracellular signaling
of a wider range of cell types. These cellular changes, in
turn, arise from variations in the oxidation reduction and
glycation state after exposure to hyperglycemia.11,12 Stem
cells and progenitor cells are one of the more critical cell
types to be affected by the glycemic modulations.13e15 This
review addresses the emerging role of hyperglycemia on
stem and progenitor cells, and the subsequent consequence
of these changes on specific tissues.
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Stem Cell Contribution toward Regeneration
and Repair

Stem cells are the fundamental building blocks of tissue and
defined by the ability to self-renew and the capacity to
differentiate into progenitor cells that perform specific
functions. True stem cells exhibit both these criteria, whereas
progenitor cells or transit amplifying cells cannot self-renew
in perpetuity. In the adult tissue, hematopoietic stem cells
(HSCs) are the only cells known to repopulate the hemato-
poietic system, making them indispensable for repair and
regeneration.16,17 HSCs reside in the bone marrow, harbored
by mesenchymal stromal cells (MSCs) with multipotent
differentiation capacity.18 Herein, MSCs are believed to
regulate the quiescence, proliferative potential, differentia-
tion fate, and trafficking of HSCs through release of growth
factors and chemokines.19,20

MSCs have also been isolated from fetal bone marrow,
umbilical cord, placenta, and adipose tissue. They are pro-
vasculogenic, and facilitate angiogenesis after injury by func-
tioning as pericytes.21 There is consensus on the basis of
correlative tissue engineering, in vitro observations, and stem
cell niche studies that MSCs contribute to local healing.22e24

However, the presence of MSCs in circulation is dis-
puted.25e27 Because of the rare distribution of MSCs and the
lack of definitemarkers for their identification in vivo, it remains
difficult to determine whether these cells are indispensable for
physiological regeneration at distant sites.

In addition to HSCs and MSCs, the bone marrow is also
reported to contain endothelial precursor cells that circu-
late and aid in physiological and pathological neo-
vascularization.28,29 Early endothelial precursor cell
studies reported migration of these cells toward ischemia
after injury, where they initiated vasculogenesis, the pro-
cess of de novo vessel formation.30,31 However, the iden-
tity and existence of endothelial precursor cells have since
been highly controversial, especially because the cells are
derived through inconsistent protocols of expanding
peripheral blood mononuclear cells. It is suggested, on the
basis of discrepancies in surface marker identity, that these
cells either do not circulate or are most likely monocytes or
macrophages.32,33
Stem Cell Renewal

Stem cells have the unique ability to reside in a quiescent G0

phase. Injury and tissue loss triggers their activation, and the
cells enter the G1 phase of the cell cycle, where they commit
to either self-renewal or differentiation.34 Between the G0

and G1 phases of the cell cycle exists a newly described
reversible phase of quiescence called the Galert phase that is
proposed to prime stem cells for either renewal or differ-
entiation.35 Imbalance within these states can have patho-
logical consequences on the body’s ability to repair injured
tissues.36e38
2608
Stem Cell Bioenergetics

There is an increasing emphasis on glucose metabolism in
determining stem cell fate.39 A stem cell in an undifferen-
tiated state, a progenitor committed to differentiation, and a
terminally differentiated cell are expected to possess varying
metabolic demands. Thus, stem cells would benefit from
flexibility in metabolic pathways, with a balance of anabolic
processes for building and catabolic processes to ensure
supply of bioenergetics resources. Complete consumption of
substrates, including glucose, that occur during oxidative
phosphorylation may be insufficient to support the energy
requirements of the stem cell. Instead, stem cells are
postulated to prefer glycolysis, which allows for partial
breakdown of glucose and shunting of intermediates
through the pentose phosphate pathway. This allows for
both the catabolic process of ATP generation and the
production of substrates for anabolic processes.40,41

When stem cells switch the bulk of their ATP generation
from glycolysis to oxidative phosphorylation, they are found to
undergo differentiation.41,42 Similarly, the balance between
ATP/AMP ratios has been found to control the transition be-
tween quiescence and proliferation.43 Therefore, maintaining a
balance between glycolysis and oxidative phosphorylation
offers a potential strategy to deterministically alter the fate of
downstream proliferation versus differentiation and improve
homeostasis and regeneration. Regulations of these pathways
have implications during hyperglycemia and diabetes.
Other nutrient- and glucose-sensing mechanisms detailing

the exit from quiescence and the activation of stem cells are
being actively investigated. Induction of autophagy, the
process of self-eating of cellular components, is emerging as
one of the alternate mechanisms by which stem cells rapidly
meet their bioenergetics demands and get activated. This
mode of activation has been studied in embryonic stem
cells, HSCs, MSCs, and neural stem cells (NSCs).44e46

Correlative studies demonstrate that aging and diabetes
perturb and inhibit the autophagic machinery of cells.47,48

This would suggest that a specific disruption of the auto-
phagic signaling in stem cells in response to the diabetic
state might contribute to the dysfunctional stem cell
phenotype.
Altered Stem Cell Dynamics in Diabetes Results
in Diabetic Complications

Diabetes is associated with a myriad of tissue-specific com-
plications. These include, but are not limited to, renal failure,
blindness, neuropathy, atherosclerosis, and cardiac failure.
Diabetes also results in generic complications, such as
impaired neovascularization and microvascular complica-
tions, resulting in ulcers and chronic nonhealing wounds.
There is increasing evidence that suggests that stem cell
dysfunction underlies some of these complications. Exposure
to hyperglycemia is found to produce both stem cell deficits
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Diabetes disrupts stem cell dynamics. Altered metabolic signaling in the stem cell niche after exposure to high glucose leads to the loss of stem
cell quiescence and activation of differentiation, preferentially into adipocytes. There is also an increased presence of inflammatory cells within the stem cell
niche after diabetes. AGE, advanced glycation end product; HIF, hypoxia-inducible factor; ROS, reactive oxygen species.
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and alterations in the tissue microenvironment surrounding
the stem cell.49e53 These impairments include, but are not
limited to, changes in migration, recruitment, survival, self-
renewal, and differentiation capacity (Figure 1). This sec-
tion details the changes produced by hyperglycemia in stem
cells of the bone marrow, nervous system, bone, and heart.

Hyperglycemic Impairments in Bone Marrow Stem Cells

Diabetes produces a global remodeling of the bone marrow.
From a stem cell standpoint, there is decreased efflux of dia-
betic progenitors from the marrow and reduced vasculogenic
potential of these cells.54 Murine models of both type 1 and
type 2 diabetes confirm this impaired egress of bone marrow
progenitors after injury.13,55 Furthermore, clinical studies
demonstrate that diabetes causes a reduction of hematopoietic
tissue, increased fat deposition, and microvascular rarefaction
in the bone marrow.56 These changes have a cumulative
negative outcome on progenitor cells.

More important, diabetic patients with satisfactory gly-
cemic control display more circulatory progenitors than
patients with poor glycemic control, but fewer progenitors
compared with nondiabetics.57 This suggests that normal-
izing glucose levels after hyperglycemia may not be suffi-
cient to normalize tissue homeostasis.

Hyperglycemic Impairments in NSCs

The effect of diabetes on stem cells is not limited to the adult
tissue alone. Maternal diabetes produces a hyperglycemic
environment for the developing embryo and has been linked to
congenital malformations in various tissues, including the
nervous system. NSCs are self-renewing multipotent cells that
produce neurons and glia (astrocytes and oligodendrocytes) of
the central nervous system. Exposure of the fetus to high
glucose has been found to impair NSCs in the developing
brain, altering cell fate and producing neural tube defects.
These include spina bifida, anencephaly, craniorachischisis,
The American Journal of Pathology - ajp.amjpathol.org
and encephalocele.58 Specifically, exposure to high glucose
produces epigenetic changes in NSCs: histone H3K9 trime-
thylation, DNA methylation, and decreased histone H3K9
acetylation. These changes alter genes, such as Dcx and
Pafah1b1, which regulate neural migration and microtubule
formation in the cortex. Neurogenesis and neural migration are
affected by these changes.59 Hyperglycemia also induces
reactive oxygen species (ROS) production and intracellular
oxidative stress in NSCs, altering the balance between their
proliferation and apoptosis.60 Reduction of ROS is, therefore,
one strategy to overcome NSC dysfunction during fetal
development in the presence of high glucose.

Hyperglycemic Impairments in Osteoprogenitor Cells

In the bone microenvironment, after injury, diabetes has been
found to impair blood supply to the fracture site undermining
bony union. Diabetes also leads to increased bone resorption
and osteopenia, significantly increasing the risk of fractures.61

Increased reactive oxygen stress and the formation of
advanced glycation end products (AGEs) are found to un-
derlie impaired osteoblast function and reduced formation of a
mineralized matrix. Although literature on progenitor im-
pairments in diabetic fracture healing remains sparse, pre-
liminary evidence suggests that both skeletal stem cell
dysfunction and impaired recruitment of vascular progenitor
cells are central to poor healing outcomes after bony injury.62

Hyperglycemic Impairments in Cardiac Stem Cells

Diabetes has been found to impair growth reserves of the heart
by activating ROS-induced apoptosis of cardiac progenitor
cells (CPCs), leading to cardiac aging and failure.63 The dra-
matic loss of CPCs correlates with premature myocyte
senescence and death, resulting in cardiac myopathy and
characterized by a decrease in cardiac muscle mass, chamber
dilation, and impaired ventricular function. Diabetes also
causes telomere shortening in CPCs, accelerating cell
2609
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aging.64,65 Ablation of P66shc, a gene that critically regulates
ROS and cellular lifespan, has been found to prevent
hyperglycemia-induced loss of CPCs and increase resistance
of CPCs to oxidative stress and apoptosis. These reports
provide evidence that CPC alterations after diabetes negatively
affect the health of the heart.
Single-Cell Studies Reveal Progenitor Cell
Subpopulation Deficits after Diabetes

Diabetes alters the intrinsic properties of stem cells,
impairing their function and therapeutic capacity. In the
skin, for example, population-based studies of transplanted
diabetic adipose-derived stem cells (ASCs) from mice
demonstrate decreased proliferation, migration, and growth
factor production, with an inability to promote keratinocyte
and fibroblast proliferation and migration.66 However, stem
cells and progenitor cells are complex cell populations
associated with functional heterogeneity. Traditional
population-level assays, such as microarray or immuno-
blotting, that involve pooling of RNA or protein from
hundreds of thousands of cells report aggregate expression
of data. The resolution afforded by these assays is insuffi-
cient to capture the complex relationships in heterogeneous
samples, and is unable to detect differential expression
among cell subgroups.67,68 Single cells within seemingly
homogeneous populations exhibit differences not only in
their gene expression, but also in protein levels and
phenotypic output, shifting functional consequences of the
population. Although methods such as flow cytometry have
been able to interrogate protein expression on single cells,
the rate-limiting factor is the number of proteins that can be
tested at a time.

Only recently have high-throughput techniques evolved
to interrogate samples with single-cell resolution. These
systems, such as the Biomark HD for gene expression, C1
for single cell RNA-sequencing, Juno for single-nucleotide
polymorphism genotyping,69 and CyTOF2 for multi-
parametric mass spectrometry (all from Fluidigm, South San
Francisco, CA), make use of micro-fluidic technology to
achieve massively parallel single-cell analysis. These
evolving techniques provide novel insights into the re-
lationships among individual cells in complex tissues.70 The
rapidly evolving single-cell RNA-sequencing technique, for
example, is a powerful approach that precisely determines
cellular variations on the basis of transcriptome-wide
changes, and helps identify functionally important, but
rare, cellular responses.71,72

Single-cell gene expression allows for identification of
cells objectively without a priori knowledge of biomarkers.
When combined with advanced mathematical modeling, it
allows for the characterization of heterogeneity within pu-
tatively homogeneous progenitor populations, and identifies
critical perturbations in these cell subpopulations on expo-
sure to various stimuli.73e76
2610
By using the Fluidigm Biomark, which analyzes the tran-
scription of 96 genes, our group has detected single-cell
changes in diabetic murine and human ASCs.14 Similarly,
single-cell gene expression analysis of wild-type bone marrow
progenitor cells has identified differences in key genes related
to ischemic neovascularization.55 These results suggest that
selective subpopulation depletion is a potential mechanism for
the impairment of diabetic progenitor-vasculogenic potential.
Furthermore, selective subpopulation enrichment may be used
to support vasculogenesis for therapeutic application.
Molecular Pathways that Underlie Stem Cell
Dysfunction during Diabetes

A distinct stromal cell microenvironment, termed the niche,
harbors the stem cell and is found to regulate cell-intrinsic
signaling and extrinsic cues, determining stem cell fate and
function.19,20 In most stem cell systems, the organization of
the niche remains only partly uncovered. In the bone
marrow, for example, MSCs are thought to maintain the
HSC niche.20 Herein, they regulate the quiescence, prolif-
erative potential, differentiation fate, and trafficking of
HSCs.19 In the skin, multipotent hair follicular stem cells
that are responsible for regenerating hair follicles, inter-
follicular epidermis, and sebaceous glands after wounding
form a niche for melanocyte stem cells.10

Diabetes is thought to negatively affect stem cell niches,
altering stem cell dynamics and disrupting homeostasis and
repair. Predominantly, changes in ROS and hypoxia from
neighboring cells in the presence of excessive glucose alter
juxtacrine and paracrine signaling to the stem cells.77,78

Moreover, diabetes causes an influx of inflammatory cells
and stimulates adipocyte production, altering the stem cell
microenvironment.79 These molecular changes are addressed
in this section.

ROS

Diabetic hyperglycemia affects a wide range of cell types.
Because of the closely associated microvascular complica-
tions associated with diabetes, endothelial cell impairment is
the most widely studied. At the molecular level, sustained
exposure of cells to excessive levels of glucose produces
increases in ROS.11 Three independent biochemical re-
actions arise as an outcome: glucose-induced activation of
protein kinase C isoforms, increased glucose-derived AGEs,
and increased glucose flux through the aldose-reductase
pathway.11 Normalizing mitochondrial superoxide dismut-
ase is found to block each of these three pathways, pointing
toward a potential therapeutic avenue.80

Stem cells similarly exhibit changes in response to al-
terations in environmental and intracellular ROS. In health,
stem cells exist in hypoxic niches and maintain low ROS
levels by fine-tuning metabolic pathways, such as anaerobic
glycolysis.81,82 Stem cells are also characterized by the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Diabetes disrupts progenitor cell
recruitment. Diabetic wounds are characterized by
decreased influx of progenitor cells and more in-
flammatory cells, resulting in impaired neo-
vascularization and nonhealing wounds. bFGF,
basic fibroblast growth factor; HIF, hypoxia-
inducible factor; SDF, stromal-derived factor;
VEGF, vascular endothelial growth factor.
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presence of well-organized antioxidant defense systems.
Collectively, the metabolic and antioxidant systems protect
stem cells from extrinsic oxidative stress, maintaining
quiescence. A modest increase in ROS activates self-
renewal and promotes differentiation, or initiates migration
of stem/progenitor cells to regions of injury, leading to
neovascularization and tissue repair.

Diabetes produces a surge in ROS, generating a prolonged
inflammatory and oxidative environment. Increases in glucose
and ROS cause accumulation of AGEs and impair functioning
of the receptor for AGEs. AGE accumulation inhibits stem cell
proliferation, and causes stem cell senescence, impairing
innate tissue repair mechanisms.77,78 ROS exposure also pro-
duces epigenetic changes within stem cells, resulting in
cellular senescence.83 These reports suggest that induction of
oxidative stress within the niche contributes to reducing the
angiogenic and vasculogenic potential of stem cells, leading to
less efficient healing and revascularization.84

HIF

Hypoxia-Induced Impairments at the Site of Injury
The physiological response to local wound hypoxia plays a
major role in determining the success of the normal healing
process. At the site of tissue damage in response to hypoxia,
there is stabilization of hypoxia-inducible factor (HIF) 1a,
the primary transcription factor of oxygen homeostasis that
drives the transcription of several key genes. Active HIF-1
is a heterodimer comprising a hypoxia-stabilized a-subunit
(HIF-1a) and a constitutively expressed b-subunit (HIF-1b).
Stabilized HIF-1a translocates to the nucleus and dimerizes
with HIF-1b, where it is activated by p300, after which it
binds to a conserved and defined hypoxia response element.
A cascade of genes, including vascular endothelial growth
factor, basic fibroblast growth factor, and stromal-derived
factor-1 (SDF1), are activated. Vascular endothelial growth
The American Journal of Pathology - ajp.amjpathol.org
factor and basic fibroblast growth factor activate angio-
genesis by endothelial cells. SDF1 has been reported to
mobilize circulating progenitors expressing C-X-C chemo-
kine receptor 4 (the receptor for SDF1) toward the site of
injury, where the cells engraft, release growth factors, and
contribute to neovascularization.30,49,85,86

Diabetes causes the overproduction of superoxide anion and
the accumulation of glycolytic metabolites, such as methyl-
glyoxal.87 This alteration prevents the stabilization and acti-
vation of HIF, preventing HIF-mediated activation of vascular
endothelial growth factor and SDF1 and resulting in impaired
progenitor homing and poor neovascularization50,88 (Figure 2).
Current literature suggests that the impaired recruitment of
progenitors after diabetic injury contributes to decreased neo-
vascularization and deficiencies in healing.85 Poor wound
healing outcomes in diabetic patients stem, in part, from an
inadequate response of progenitor cells to hypoxia.

Hypoxia-Induced Impairments within the Niche
Within the bone marrow stem cell niche, HIF-1a stabiliza-
tion maintains stem cell pluripotency by up-regulating
genes, such as oct-4 and klf-4.89 HIF-1a also controls
HSC fate through close regulation of MSCs. In conditions
of demand-driven hematopoiesis, HIF-1a is specifically
down-regulated in MSCs via a STAT-1emediated mecha-
nism, triggering expansion and differentiation of HSCs.90

Pathological destabilization and deficiencies in the
hypoxic factor produce decreases in HSC numbers.91 HIF-
1aedeficient mice not only display loss of HSC cycle
quiescence, but also show decreased HSC engraftment
after bone marrow transplantation, in a p16Ink4a/p19Arf-
dependent manner.91 Although causality between HIF-1a
destabilization and progenitor dysfunction within niches,
such as the bone marrow and adipose tissue, during dia-
betes has not been directly tested, reduced HIF-1a in the
setting of diabetes and reduced progenitor function within
2611
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Figure 3 Diabetes causes population-wide and single-cell alterations within progenitor cells. Exposure to sustained hyperglycemia causes depletion of
critical progenitor cell subsets and alterations within individual progenitor cells. Hyperglycemic memory prevents the normalization of progenitor function on
curing of diabetes.
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the niche suggest that regulation of hypoxia contributes to
progenitor dysfunction.

Increased Adipocyte Accumulation and Inflammation

Accumulation of adipose tissue in obesity-induced type 2
diabetes attracts and harbors inflammatory cells.92,93 Spe-
cifically, diabetics display an increase in M1 macrophages
within the adipose tissue and muscle that release proin-
flammatory factors, including tumor necrosis factor-a, IL-1b,
and chemokine ligand 2.93 Concurrently, stem cells in the
adipose tissue, bone marrow, and muscle that divide in hy-
perglycemia divert to pathological adipogenesis in response
to glucose stress.94e97 Subsequent divisions of these pro-
adipogenic diabetic stem cells could contribute to the
extensive population of fat cells in adipose tissue.95 More-
over, the pro-adipogenic stem cells deposit extracellular
matrix preferentially adhesive to monocytes.94 Thus, the in-
flammatory environment surrounding progenitor cells in the
adipose tissue might play a role in shifting the differentiation
outcomes of the stem cell.
Diabetic Stem and Progenitor Cell Defects Are
Reversible Only in Part

Clinical data suggest that the control and treatment of dia-
betes through regulation of diet or bariatric surgery amelio-
rate some comorbidities.7,98e100 However, not all diabetic
2612
subjects under intensive glycemic control and treatment
reduce the incidence and progression of tissue complica-
tions.8 Stem cells and progenitor cells are dysfunctional at
both a population-wide and a single-cell level in diabetes.14

It would be expected, therefore, that correcting or treating
diabetes will restore the function of these progenitors and
prevent further tissue complications. However, this is not
always the case. Although some clinical observations suggest
a reversibility of diabetes-induced progenitor cell dysfunc-
tion,15,101 preclinical data indicate that progenitor cell deficits
may be reversible only in part, after normalization of the
glycemic environment.55

Normalizing glucose in vitro in bone marrow progenitor cell
cultures or in vivo in type 1 diabetic mice by insulin treatment
reveals these phenomena of partial reversal of function.55

Diabetic MSCs in normoglycemic conditions in vitro do not
recover to wild-type baseline capacities in cytokine expres-
sion.55 Furthermore, the Sca-1þ/CD45�/Lin� subpopulation of
progenitors within the nonhematopoietic bone marrow
compartment is reduced in number 6 months after normaliza-
tion, despite hyperglycemic correction.55 A 16-hour exposure
to hyperglycemia in vitro (on aortic endothelial cells) and a
6-hour exposure to hyperglycemia in vivo are sufficient to
produce long-lasting epigenetic changes.102 Specifically,
monomethylation of H3K4 in the proximal promoter of the NF-
kB subunit p65 has been shown to cause sustained expression
of p65 and p65-dependent inflammatory genes. Similarly,
demethylation of a histone lysine residue in the proximal p65
promoter H3K9 produces a reduced inhibition of p65 and acts
ajp.amjpathol.org - The American Journal of Pathology
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synergistically with the H3K4 modification to produce
increased inflammation, modifying cell signaling.102

These epigenetic changes are stimulated by an over-
production of hyperglycemia-induced ROS and are carried
onto daughter cells.

The effects of hyperglycemia on cells are not limited to
adult tissue alone. Stem cell dysregulation has been found to
be causative for congenital anomalies that occur in the fetus
because of the presence of diabetes in the pregnant mother.
Murine studies show that once the blastocyst has been
exposed to hyperglycemia, exertion of tight glycemic con-
trol is insufficient to prevent or reverse congenital defects
that have already occurred.59

Given the impairments within progenitor cells during
diabetes, the impact of hyperglycemic reversal on cell
functionality is crucially important for designing targeted
therapeutics. Specifically, if cells display hyperglycemic
memory suggestive of permanent modifications that are
passed to daughter cells, the translational potential for
autologous therapies may be limited. With access to healthy,
diabetic, and post-bariatric surgery patients, our group has
been able to study human progenitor cell biology in the
prediabetic, diabetic, and corrected-diabetic state. Pre-
liminary data from our first 40 patients demonstrate unique
progenitor cell subpopulations, and dysregulation of these
progenitors on morbid obesity and diabetes.103

Taken together, hyperglycemic memory of progenitors
suggests that cellular alterations are not always completely
reversible (Figure 3). A cure for diabetes is, therefore, insuf-
ficient to preserve progenitor capacity and prevent diabetic
complications in all cases if genetic changes in response to
sustained hyperglycemia have already taken hold.
Treating Diabetic Complications

Various stem and progenitor cells have been tested in pre-
clinical studies and have shown promise in treating sec-
ondary complications associated with diabetes. Diabetic
retinopathy, the most frequent cause of new blindness in
adults, is a severe ocular complication. Embryonic stem
cells, HSCs, bone marroweMSCs, and ASCs have been
used to treat diabetic retinopathy and macular degeneration
by promoting retinal neovascularization in small animals.104

Similarly, bone marroweMSC and ASC transplants have
been tested for the modulation of diabetic nephropathy and
for the treatment of nonhealing diabetic wounds resulting
from neuropathy and microvasculopathy.14,105,106 This
section details the various approaches of using autologous
stem cells for treating diabetic complications.
Enriched Progenitor Cell Subpopulation Therapy

From a therapeutic standpoint, enrichment of autologous
progenitor subsets that have retained their neovascularization
and regenerative potential is an emerging choice for
The American Journal of Pathology - ajp.amjpathol.org
transplants. Fundamentally, enrichment of subpopulations is
accomplished through the inclusion of surface marker genes in
the transcriptional query, followed by linear discriminate
analysis to determine the surface markers most closely mir-
roring expression of critical subpopulation defining
genes.68,103

The feasibility of this approach has been demonstrated by
transplanting a subpopulation of human ASCs enriched for
genes related to osteogenesis, for reconstruction of bone.73

Similarly, a subpopulation of murine ASCs with enhanced
wound healing potential has been transplanted for treating
diabetic wounds in mice.103 As predicted transcriptionally,
prospective enrichment for these ASC subpopulations and
application in diabetic wounds enhance therapeutic efficacy,
resulting in the restoration of normal healing kinetics in
diabetic wounds. Conversely, depleting this population
impairs the therapeutic potential of these cells, strongly
suggesting that alterations in stem cell subpopulations
contribute to impaired healing.103

Despite the promising outcomes, the main challenge with
using enriched autologous stem cell subpopulations for treating
diabetic complications is the severe limitation of cell numbers.
This opens avenues for preconditioning of autologous stem
cells before transplant.

Preconditioning Stem Cells with HIF

Because Hif-1a destabilization contributes to the collapse of
progenitor function during diabetes, one approach of over-
coming progenitor dysfunction is by stabilizing Hif activation.
Both the deficiency and overexpression of Hif have patholog-
ical outcomes, with Hif overexpression leading to fibrosis
during healing.107 The ideal balance would be a sustained low-
level stabilization of Hif, which can be achieved through small-
molecule therapy, such as deferoxamine (DFO). DFO, an iron
chelator, shown to improve healing in diabetic mice, has been
tested for improvement of progenitor function.88,108 Treatment
of bonemarrowederivedMSCs from streptozocin-diabetic rats
with DFO in vitro elevates Hif-1a levels and increases the
expression of the homing receptors C-X-C chemokine receptor
4 and CCR2. DFO treatment also increases the activity of the
matrix metalloproteases 2 and 9, important for matrix break-
down and cell invasion. DFO-treated diabetic MSCs migrate
and home to injury faster in vivo compared with untreated
MSCs. InHSCs, DFOhas been used to reduce iron load, reduce
ROS levels, and attenuate apoptosis.109 These reports suggest
that sustained low-level DFO pretreatment ex vivo could
improve the efficacy of autologous MSC therapy.

Reversing Progenitor Function by Targeting AGEs

Another approach of preconditioning stem cells is by targeting
the AGE pathway. During diabetes, because of the increased
glucose flux, there is an accumulation of glyceraldehyde-3-
phosphate intermediates that are nonenzymatically degraded
into the reactive aldehyde, methylglyoxal. Methylglyoxal
2613
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increases oxidative stress and leads to the formation of AGEs.
Glyoxalase-1 is the enzyme that eliminates methylglyoxal; its
overexpression prevents diabetic neuropathy, retinopathy, and
microvascular complications.110 This approach has been
extended to treat stem cells exposed to hyperglycemia.
Overexpression of bone marrow cells with glyoxalase-1 and
protection from methylglyoxal are sufficient in restoring the
neovascular potential of diabetic bone marrow cells and car-
diac stem cells.111 Similarly, reducing intake of AGEs in the
diet restricts both insulin resistance and inflammation, modu-
lating hyperglycemic memory.112

Other methods of overcoming AGE-induced dysfunction
and apoptosis in diabetic bone marrow cells have also been
tested. Pretreatment of hyperglycemia-exposed bone
marrow MSCs with pirfenidone, a tumor necrosis factor-a
blocker, and N-acetyl-L-cysteine can counter ROS-induced
inflammation and progenitor apoptosis through modulation
of AGEs.78

Taken together, preclinical data suggest that enriched
autologous progenitor cell subsets preconditioned in vitro to
metabolically withstand a high-glucose, high-ROS envi-
ronment are a promising approach for treating diabetic
complications. In the event where sufficient numbers of
critical autologous progenitor subsets cannot be obtained,
readily available banked allogenic progenitors from adult
bone marrow, adipose tissue, or blood, or from umbilical
cord blood or placenta, might serve as alternative sources of
cell-based therapy.
Conclusions

Diabetes remains the seventh leading cause of death in the
United States,1 requiring treatment modalities that will curb
disease progression. Closer cellular analysis underlying
diabetic complications reveals that stem and progenitor cells
are adversely affected by the constant exposure to high
levels of glucose. These adverse changes are outcomes of a
microenvironment high in ROS, inflammation, hypoxia, and
AGE products. Progenitor cells faced with an altered envi-
ronment exhibit changes in their quiescence, cell cycle,
differentiation, and migration abilities, negatively affecting
both tissue homeostasis and repair after injury. Furthermore,
altered progenitor function correlates with poor clinical
outcomes after diabetes.

Our recent reports, validated by high-throughput single-
cell analyses, suggest that progenitor dysfunction is a result
of specific progenitor cell subpopulation-depletion, rather
than loss and modification of the entire progenitor pool.
Other reports suggest that intensive glycemic control in
some patients is found to reduce the incidence and pro-
gression of progenitor dysfunction; however, the outcomes
do not normalize to individuals without diabetes. The
cellular alterations that follow exposure to high glucose are
not completely reversible because progenitor cells retain
hyperglycemic memory. Epigenetic mechanisms, advanced
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glycation, and changes in the oxidative state of the cellular
microenvironment provide clues toward explaining the
pathogenesis of hyperglycemic memory in progenitor
cells.
There are several drawbacks in studying these complex

pathological changes that occur within the stem cells. Cur-
rent in vitro studies involve mirroring of the diabetic envi-
ronment by exposure of stem cells to media with high
glucose. These studies are unable to recapitulate the com-
plex changes in the stem cell niche comprising other cell
types and its effect on the stem cell. Furthermore, such
studies make it highly difficult to study well-controlled
diabetes, the most common form of diabetes today.
Murine models have their own drawbacks, with epigenetic
pathways and diabetic outcomes varying with the genetic
background.113 The use of high-fat dieteinduced diabetes in
mice helps eliminate some of these anomalies, and allows
for a system of strict regulation of diet. Clinical studies,
especially studies monitoring stem cell function over
extending periods of time, are especially valuable and open
avenues for further elucidation of stem cell dysfunction in
diabetic complications.
Taken together, we conclude that curing diabetes is

insufficient to completely preserve progenitor capacity and
prevent diabetic complications in all cases, especially if
genetic changes in response to hyperglycemia have already
taken hold.
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