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Summary

Somatic structural variants in tumor genomes can deregulate transcription through repositioning of 

enhancer elements. A new method, PEAR-ChIP, leverages paired-end H3K27ac ChIP-seq and 

current current computational methods to identify such events.

Cancer genomes often contain recurrent somatic structural variations (SVs) in the form of 

DNA amplifications, deletions, inversions, and translocations. Conventional approaches to 

pinpointing oncogenic drivers and tumor suppressor regions within SVs usually focused on 

putative oncogenes or tumor suppressor genes found within minimal common regions of 

alteration (1). This method has proven to be widely successful, leading to the detection of 

novel and recurrent oncogenes and tumor suppressor genes across several cancer types (2). 

In the case of DNA translocations, a similar approach has been used, where mapping of 

recurrent DNA breakpoints have revealed oncogenic gene fusion products that generate 

chimeric oncoproteins. These strategies prioritized candidate genes based on the rationale 

that the SVs should correspond with gene-level associated alteration such as increased DNA 

copy number or coding sequence change. However, by applying a gene-centric focus, SVs 

targeting non-coding regions of the genome have been largely unexplored.

Unclear in cancer genomic landscapes is the prevalence of SVs that lead to gene activation, 

independent of gene-disruption, such as rearrangement of DNA regulatory elements in 

noncoding regions of the genome. Identifying such events has been perhaps challenging in 

the past due to a limited capacity to detect complex rearrangements at high-resolution, and 

the ability to ascribe function to these alterations by determining the precise genes they 

regulate. These difficulties have been overcome, at least in part, by the increasing feasibility 
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of whole-genome sequencing, allowing for more thorough characterization of cancer 

genomes. Furthermore, advancements in chromatin mapping using techniques such as 

chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) have 

unraveled the regulatory landscape of both normal and cancer epigenomes (3, 4). Histone 

modifications, specifically, indicate functional regions of the genome such as enhancers, 

marked by histone H3 lysine 4 mono-methylation (H3K4me1), and the potential activation 

status of those enhancers marked by histone H3 lysine 27 acetylation (H3K27ac).

Two recent studies leverage and integrate these genomic and epigenomic technologies, to 

identify highly recurrent SVs that reposition distal enhancer elements proximal to 

genetically intact oncogenes, termed ‘Enhancer Hijacking’ or ‘Enhancer Hitchhiking’ (5, 6). 

In aggressive subgroups of Medulloblastoma (Group 3 and 4), various classes of SVs such 

as tandem duplications, deletions, inversions, translocations, and other more complex 

rearrangements, converge to activate GFI1 or GFI1B oncogenic expression. This is 

accomplished by repositioning the intact GFI1B or GFI1B genes in close proximity with 

distal super enhancers (Highly active enhancer regions marked by extensive H3K27 

acetylation) (6). Importantly, GFI1 and GFIB activation through ‘Enhancer Hijacking’, have 

not been reported in other cancers, and are the most prevalent driver events in Group 3 

medulloblastoma. Similar observations have been observed in a type of acute myeloid 

leukemia (AML), characterized by chromosome 3q rearrangements (inv(3)/t(3;3)) that lead 

to aberrant expression of the stem-cell regulator EVI1 (5). The mechanism of EVI1 

activation is caused by a chromosomal translocation, which relocates a GATA2 super 

enhancer proximal to the EVI1 oncogene. This single SV event not only activates EVI1 

expression, but also removes an enhancer regulating GATA2, thereby leading to mono-allelic 

GATA2 expression and haplo-insufficiency. Examples in medulloblastoma and AML 

suggest that ‘Enhancer Hijacking’ events may be potentially common and driver alterations 

in other cancer types, and underscores the need for combined methodologies that leverage 

information from both genomic and epigenomic platforms.

In the current issue, Ryan and Drier et al., (2015) present a novel approach called PEAR-

ChIP, which integrates H3K27ac ChIP-seq with paired-end sequencing (7) (Figure 1). 

Utilizing pre-existing computational tools to detect genomic rearrangements, PEAR-ChIP 

maps structural variations involving acetylated regulatory elements (PEAR-ChIP, 

Pinpointing Enhancer-Associated Rearrangements by Chromatin Immunoprecipitation and 

Paired-End Sequencing). They apply this methodology to investigate a cohort of 14 primary 

patient biopsies and 8 cell line models representing a diversity of B-cell lymphomas. 

Importantly, the authors validated several known SVs, and identified numerous types of 

novel chromosomal rearrangements that delineate various B-cell lymphoma subtypes.

This approach is first validated in mantle cell lymphoma (MCL) primary tissue and cell 

lines, all of which harbor reciprocal translocations between the IGH J recombination region 

(Chromosome 14) and a gene-desert region located > 300 kb from CCND1 (Chromosome 

11). In all samples, H3K27ac enrichment was observed, and extended from the IGH μ 

intronic enhancer and overlapping the J recombination region. PEAR-ChIP identified the 

precise t(11;14) breakpoints, all of which contained peaks of acetylation signal. This 

methodology was then applied to a heterogeneous cohort of primary high-grade B-cell 
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lymphomas (HGBs), cell lines, and lymph node biopsies from patients with chronic 

lymphocytic leukemia/small lymphocytic leukemia (CLL/SLL). PEAR-ChIP identified 

several known rearrangements linking an IGH enhancer exclusively to the 5’ side of MYC 

revealing potentially significant and specific mechanisms of cis-regulation. This was in 

contrast to a collection of non-IGH rearrangement breakpoints that occurred on the 3’ side 

of MYC.

In cases where HGB cell lines were also profiled by whole-genome sequencing, PEAR-ChIP 

detected all six inter-chromosomal or large-scale inversions with improved sensitivity (2-17 

times more supporting reads) despite lower sequencing coverage (10-31 fold lower). 

Further, PEAR-ChIP was sensitive for the detection of other large-scale rearrangements 

containing several known translocation targets, including BCL2, CIITA, and PDCD1LG2, 

and novel translocation partners including PDCD1LG2-NCOA3 and CIITA-IL4R. In 

addition to translocation events, PEAR-ChIP identified several other classes of structural 

variations that repositioned candidate enhancer elements of oncogenic significance, 

including small-scale intra-chromosomal deletions and inversions. In several examples, 

kilobase-scale tandem duplications were detected targeting acetylated putative enhancers up-

stream of the rho GTPase-activating gene TAGAP, and duplication of regions harboring an 

interferon-responsive enhancer upstream of the inducible nitric oxide synthase gene NOS2. 

These events represent potentially novel mechanisms of oncogenic regulation currently 

unexplored in HGB biology.

Guided by information gained from chromosome conformation capture (3C) experiments, 

the authors utilized the PEAR-ChIP approach to investigate the complex dynamics of BCL6 

and MYC oncogenic regulation in HGB. 3C studies revealed that MCL and SLL were 

delineated by 5’ interacting enhancers with the MYC promoter, while HGBs were distinctly 

characterized by 3’ enhancers. In the case of BCL6, a gene known to frequently rearrange in 

HGB, multiple 3’ super enhancers were detected and demonstrated to form contact loops 

with the BCL6 promoter. Furthermore, PEAR-ChIP was successful in detecting a tandem 

duplication spanning one of the super enhancers, in addition to breakpoints within acetylated 

regions proximal to BCL6. Understanding the native enhancer-promoter regulation of BCL6 

and MYC in HGB, allowed the authors to explore the product of translocations between the 

BCL6 and MYC loci. In one sample, harboring a t(3;8)(q27;q24) rearrangement, PEAR-ChIP 

identified a breakpoint that swapped the BCL6 super enhancer region described above, with 

the 3’ MYC enhancer regions prevalent in HGB lines, classified as an ‘Enhancer Swap’. The 

authors report that, in independent rearrangements, the BCL6 locus is capable of acting as a 

‘donor’ or ‘recipient’ of enhancer elements, thus revealing novel mechanisms in cancer gene 

de-regulation.

These findings emphasize that rearrangement of enhancer elements by structural variation 

are potentially a general mechanism of oncogenic activation across cancer. PEAR-ChIP 

represents both a sensitive and cost effective approach to identify such alterations. One 

important consideration is the requirement for breakpoints to be located within acetylated 

regions in order to be detected by PEAR-ChIP. Breakpoints occurred within acetylated loci 

in many of the B-cell lymphomas in this study, and Group 3 and 4 Medulloblastomas, but 

this may not be the case in other cancers. The authors suggest that in such scenarios, one 
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complementary approach would be to pair the high-resolution breakpoint detection of 

PEAR-ChIP with a low-resolution, genome-wide platform, such as long-insert mate pair 

sequencing. While ‘Enhancer Hijacking’ events represent novel modes of oncogenic 

regulation that are independent of gene disruption, care should be taken to validate that the 

effects upon gene expression are indeed direct mechanisms. As shown in this study, and 

EVI1 re-arranged AML (5), chromosome conformation capture experiments can 

complement such analyses providing insights about enhancers in their native loci, and the 

consequence of their repositioning. Beyond structural variations, recurrent somatic 

mutations have recently been identified in regulatory regions across different cancer types 

(8-10). With increasing understanding of cancer epigenomes, armed with integrative tools 

such as PEAR-ChIP, revisiting cancer genome studies may be warranted, and may reveal 

novel mechanisms of oncogenic regulation.
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Figure 1. 
An illustration of the PEAR-ChIP approach used to identify genomic rearrangements within 

regions of H3K27 acetylation. The top panel is a representative H3K27ac ChIP-seq profile 

with chromosome 8 reads in red, and chromosome 2 in blue. The breakpoint region is shown 

as a green bar, and this local region is expanded in a schematic in the lower panel.
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