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Abstract

Background—Genetic variants have been associated with the risk of coronary heart disease 

(CHD). We tested whether a composite of these variants could identify the risk of both incident as 

well as recurrent CHD events and distinguish individuals who derived greater clinical benefit from 

statin therapy.

Methods—A community-based cohort and four randomized controlled trials of both primary 

(JUPITER and ASCOT) and secondary (CARE and PROVE IT-TIMI 22) prevention with statin 

therapy totaling 48,421 individuals and 3,477 events were included in these analyses. We 

examined the association of a genetic risk score based on 27 genetic variants with incident or 

recurrent CHD, adjusting for established clinical predictors. We then investigated the relative and 

absolute risk reductions in CHD events with statin therapy stratified by genetic risk. Data from 

studies were combined using meta-analysis.

Findings—When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and 

high (quintile 5) genetic risk categories, a significant gradient of risk for incident or recurrent 

CHD was demonstrated with the multivariable-adjusted HRs (95% CI) for CHD for the 

intermediate and high genetic risk categories vs. low genetic risk category being 1.32 (1.20-1.46, 
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P<0.0001) and 1.71 (1.54-1.91, P<0.0001), respectively. In terms of the benefit of statin therapy in 

the four randomized trials, there was a significant gradient of increasing relative risk reduction 

across the low, intermediate, and high genetic risk categories (13%, 29%, and 48%, P=0.0277). 

Similarly, greater absolute risk reductions were seen in those individuals in higher genetic risk 

categories (P=0.0101), resulting in an approximate three-fold gradient in the number needed to 

treat (NNT) in the primary prevention trials. Specifically, in the primary prevention trials, the 

NNT to prevent one MACE over 10 years for the low, intermediate, and high GRS individuals 

was 66, 42, and 25 in JUPITER and 57, 47, and 20 in ASCOT.

Interpretation—A genetic risk score identified individuals at increased risk for both incident and 

recurrent CHD events. Individuals with the highest burden of genetic risk derived the largest 

relative and absolute clinical benefit with statin therapy.

INTRODUCTION

The risk of developing coronary heart disease (CHD) depends on a number of factors related 

both to lifestyle and genetics. Heritable factors account for as much as 30-60% of the 

variation in risk,1, 2 and large-scale studies have identified genetic variants associated with 

CHD at stringent levels of statistical significance.3, 4 Prior studies have demonstrated that an 

assessment of genetic risk burden using multiple loci can identify individuals at increased 

risk for incident CHD in population-based epidemiological cohorts.5-12 Additionally, 

whereas some individual variants have been evaluated in isolated studies for an association 

with recurrent events, an independent association between a multilocus genetic risk score 

and recurrent CHD events has not been clearly demonstrated.13-16

The clinical benefit from therapies that reduce the likelihood of CHD events might vary by 

the degree of risk at baseline. As such, in addition to identifying risk, a genetic risk score 

consisting of validated CHD-risk SNPs might also distinguish individuals who enjoy greater 

clinical benefit from statin therapy, a hypothesis that has not been validated to date in 

randomized controlled trials of statin therapy. Such a finding would be of particular interest 

in the setting of primary prevention. Therefore, the goals of the present study were two-fold: 

(1) to test if a multilocus genetic risk score based on a combination of 27 loci might predict 

not only incident CHD in an epidemiologic cohort but also incident or recurrent CHD events 

in a clinical trial setting; and (2) to evaluate whether the clinical benefit of statin therapy 

varies by genetic risk score in four randomized controlled trials of statin therapy.

METHODS

Primary Prevention Populations

Baseline characteristics from each study are provided in Supplemental Table 1. In brief, the 

Malmo Diet and Cancer Study (MDCS) is a community-based prospective epidemiologic 

cohort of middle-aged individuals from Southern Sweden.17 Genetic samples were available 

in 27,817 individuals without documented CHD at baseline. JUPITER was a primary 

prevention trial that tested rosuvastatin 20 mg daily versus placebo in individuals with low-

density lipoprotein (LDL) cholesterol <130 mg/dl and hs-CRP ≥2 mg/L and no known 

cardiovascular disease.18 Genetic samples were available in 8,749 individuals for this 
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analysis. Another primary prevention trial, ASCOT, tested the clinical benefit of different 

classes of antihypertensive therapy in high-risk individuals without documented coronary 

heart disease. The lipid lowering arm (ASCOT-LLA) randomized individuals from the main 

trial with a total cholesterol ≤251 mg/dL to either atorvastatin 10 mg daily or placebo.19 In 

total, 4,219 individuals from ASCOT-LLA were included in the treatment-related analyses. 

Additionally, 2,759 individuals from the blood pressure lowering arm of ASCOT not taking 

a statin medication were assessed in the non-treatment related analyses.

Secondary Prevention Populations

CARE was a secondary-prevention trial that investigated the clinical benefit of pravastatin 

40 mg daily versus placebo in individuals with prior MI who had total cholesterol ≤240 

mg/dL and LDL cholesterol between 115 and 174 mg/dL.20 Genetic samples were available 

for 2,878 individuals. Another secondary prevention trial, PROVE-IT TIMI 22, investigated 

the clinical benefit of moderate statin therapy (pravastatin 40 mg daily) versus intensive 

statin therapy (atorvastatin 80 mg daily) in individuals after an acute coronary syndrome 

(ACS) and who had total cholesterol ≤ 240 mg/dL.21 A genetic substudy included 1,999 

individuals.

Genetic Risk Score

A genetic risk score was derived based on 27 single nucleotide polymorphisms (SNPs) that 

were significantly associated with CHD at a genome-wide level in prior analyses (see 

Supplemental Methods).22 The loci, lead SNP, effect sizes, risk allele, and risk allele 

frequency are shown in Table 1, with the specifics for each study provided in Supplemental 

Table 2. Each individual received a score equal to the sum of the number of risk alleles for 

each SNP weighted by the log of the odds ratio observed with the SNP in the original report 

(Supplemental Figure 1).

Statistical Analysis

The outcome of interest was CHD given that the SNPs were originally reported to be 

associated with coronary events. CHD reflected the available endpoints, and an effort was 

made to harmonize the definitions across studies. In JUPITER, ASCOT, and PROVE IT-

TIMI 22, CHD was defined as a composite of coronary heart death, MI, or unstable angina. 

In MDCS, CHD represented a composite of fatal or nonfatal MI, coronary artery bypass 

grafting, or PCI; for CARE, CHD was coronary heart death or MI.

Using Cox proportional hazard models, the risk of CHD was assessed for each quintile of 

genetic risk using the first quintile as the reference group; additionally, the risk for 

categories [low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5)] and per 1-

standard deviation was calculated. These analyses were conducted among participants in 

MDCS and in the placebo or lower intensity statin treatment arms of the applicable trials. 

The models were adjusted for age, sex, diabetes status, smoking, race where applicable, 

family history of CHD, high-density lipoprotein (HDL) cholesterol, LDL cholesterol, and 

hypertension. In a meta-analysis, the estimates were combined from each study using a 

random-effects model to account for possible differences in study populations. 
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Heterogeneity across studies and types of studies was assessed, and analyses were stratified 

based on the primary and secondary prevention populations.

The treatment-specific analyses were conducted in the JUPITER, ASCOT, CARE, and 

PROVE IT-TIMI 22 trials. The effect of statin versus placebo (or high-intensity versus 

moderate-intensity statin in the case of PROVE-IT TIMI 22) was evaluated, and the number 

of events and event rates in the statin and placebo groups were analyzed based on the 

genetic risk score quintiles and aforementioned categories. Hazard ratios and 95% 

confidence intervals were generated, and absolute risk reductions were calculated. For the 

primary prevention trials, JUPITER and ASCOT, ten-year event rates were extrapolated and 

the numbers needed to treat were calculated for each study.

The relative risk ratios for the benefit of statin therapy within each genetic risk score 

category were combined across the trials using meta-analytic techniques, with separate 

analyses conducted for the primary and secondary prevention populations. The resulting 

meta-analytic risk ratios across the genetic risk score categories were evaluated using meta-

regression. In terms of absolute risk reductions with statins, within each trial and within each 

genetic risk score category, the absolute risk difference for statin versus placebo and 

corresponding standard errors and 95% confidence interval (CI) were generated. Notably, 

the fact that the trials had populations with different absolute event rates (due to different 

cardiovascular risk and different durations of follow-up) precluded a clinically interpretable 

result from simply combining the raw absolute risk differences across the 4 trials. Therefore, 

to normalize across the trials, a scaling factor was applied to the data (see Supplement for 

further details). Then within each trial, meta-regression was performed across the genetic 

risk score categories to determine how the relative magnitude of absolute risk reduction with 

statin therapy varied by genetic risk score category. Meta-analysis was then performed 

combining the regression coefficients from the 4 trials, again stratified by primary and 

secondary prevention populations. For this analysis, the funders did not assist in analysis, 

interpretation, or writing of the manuscript. Investigators associated with each study had 

access to the data, and JLM, NOS, SK, and MSS were responsible for the decision to submit 

the manuscript.

RESULTS

Genetic Risk Score and Cardiovascular Risk

Higher genetic risk scores were associated with a higher risk of CHD, adjusting for 

established clinical predictors. Specifically, dividing participants into low (quintile 1), 

intermediate (quintiles 2-4), and high (quintile 5) genetic risk score categories, a gradient of 

risk for CHD was observed in the studies (Table 2). Combining the data from the primary 

prevention cohorts, the multivariable-adjusted HRs (95% CI) for incident CHD for the 

intermediate and high genetic risk categories versus low genetic risk category were 1.31 

(1.19-1.45, P<0.0001) and 1.72 (1.53-1.92, P<0.0001), respectively (Table 2). Similarly, the 

multivariable-adjusted HRs (95% CI) for recurrent CHD in the secondary prevention cohorts 

were 1.65 (1.19-2.30, P=0.0030) and 1.81 (1.22-2.67, P=0.0029, respectively (Table 2). 

Overall, the multivariable-adjusted HRs (95% CI) were 1.34 (1.22-1.47, P<0.0001) and 1.72 
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(1.55-1.92, P<0.0001), respectively (Figure 1). Data for individual quintiles were similar and 

are presented in Supplemental Table 3.

Benefit of Statins across Genetic Risk Categories

Baseline LDL cholesterol and HDL cholesterol were similar across genetic risk score 

categories within each trial, as were the absolute and percentage changes with statin therapy 

(Supplemental Tables 4 and 5). Analyses were conducted to investigate the clinical benefit 

of statin therapy across genetic risk score. The benefit of statin versus placebo in the primary 

and secondary prevention trials with a total of 806 events is presented across genetic risk 

score categories in Table 3 and genetic risk score quintiles in Supplemental Table 6. The 

relative risk reductions across low, intermediate, and high genetic risk score categories were 

34%, 32% and 50%, respectively, in the primary prevention trials and 3%, 28%, and 47% in 

the secondary prevention trials. When combining the data, the gradient of relative risk 

reductions with statin therapy across low, intermediate, and high genetic risk score 

categories were 13%, 29%, and 48% (P for trend=0.0277, Figure 2).

Likewise, in terms of the absolute risk reductions, a graded increase in the benefit of statin 

therapy across the genetic risk score categories was evident in both the primary prevention 

(JUPITER and ASCOT) and the secondary prevention trials (CARE and PROVE IT-TIMI 

22) (Table 3 and Figure 3). Correspondingly, the number needed to treat (NNT) to reduce 

CHD events with statin therapy differed according to genetic risk score. Focusing on the 

primary prevention trials, in JUPITER, the NNT to prevent one CHD event over 10 years for 

those individuals with low, intermediate, and high genetic risk score was 66, 42, and 25. In 

ASCOT, the NNT to prevent one CHD event over 10 years was 57, 47, and 20 across the 

three genetic risk score categories.

Calculating the difference in absolute risk reduction in each trial as a function of genetic risk 

score category and combining the data from the trials demonstrated a consistent and 

significant gradient, with greater absolute risk reductions seen in those individuals in higher 

genetic risk score categories (P=0.0101, Supplemental Figure 2). The regression coefficient 

of 0.71 indicates that, compared with the absolute risk reduction seen in the intermediate 

risk category, statin therapy would result in an absolute risk difference that is 71% lower in 

the low genetic risk score category and 71% higher in the high genetic risk score category 

(i.e., if the absolute risk reduction was 1% in the intermediate risk genetic risk score 

category, it would be 0.29% and 1.71% in the low and high genetic risk score categories, 

respectively).

DISCUSSION

Large-scale genetic association studies have identified a number of genetic variants that are 

individually associated with the risk of CHD. When combined into a 27-variant risk score, 

we found, in multivariable adjusted analyses, that these variants were able to identify 

individuals at increased degrees of risk of CHD events, including incident CHD in primary 

prevention populations and recurrent CHD events in secondary prevention populations. 

Furthermore, when compared with individuals at low genetic risk, those with the highest 

genetic risk scores derived greater relative risk reduction and absolute risk reduction with 
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statin therapy. Notably, among the primary prevention statin studies, there was an 

approximate three-fold gradient in the number needed to treat to prevent one CHD event.

Clinical, biochemical, and imaging parameters have been used to stratify cardiovascular risk 

and potentially to tailor therapy. The present analysis suggests that genetics might also play 

such a role. Prior data for genetic variants predicting recurrent CHD events independent of 

traditional risk factors is inconclusive,13-16 perhaps a function of varying definitions of 

prevalent CHD (e.g., angina vs documented MI) and inclusion of less specific outcomes 

(e.g., non-cardiovascular death) in a composite endpoint. With regard to treatment options, 

the decision to prescribe any drug depends on weighing several factors including efficacy, 

safety, and cost. In the case of statins, substantial relative risk reductions in major 

cardiovascular outcomes have been demonstrated across the spectrum of primary and 

secondary prevention.23 Absolute risk reductions can depend on the risk profile of the 

population, but even in lower risk individuals, statins provide clinical benefit.24

Nonetheless, there remains debate about the use of statins in relatively lower risk individuals 

and particularly primary prevention populations,25 driven by concerns about safety and cost-

effectiveness in an extremely broad population. For that reason, an understanding of the 

absolute risk reductions achieved with statin therapy in different subgroups may be useful in 

some circumstances. Moreover, there has been interest in considering lifetime risk of CHD 

and information about genetic risk could be obtained early in life.26 As such, there have 

been discussions about considering statin therapy earlier in individuals who do not currently 

meet practice guidelines, but who may still be at elevated risk of events. Defining the best 

approach for maximizing the benefit of statin therapy in such a population is a complex 

challenge that requires further study. A genetic risk score offers a unique window onto 

future risk and may aid in selecting populations for clinical trials that, so enriched, would be 

better positioned to test the clinical benefit of early initiation of statin therapy in primary 

prevention; specifically, the role of statin therapy in individuals with apparently low clinical 

risk but with high genetic risk could be tested.27

Prior analyses have evaluated genetics and CHD events in the setting of statin therapy.28-39 

However, such approaches have been limited by either examining only a single SNP, using 

SNPs whose association with CHD has not been well validated, not testing the SNP in a 

randomized trial of statin therapy, and/or not consistently validating any observed 

interactions. In contrast, the present analysis used a multi-locus genetic risk score 

compromised of well-validated CHD-risk SNPs and tested the score in 4 randomized 

controlled trials of statin therapy.

There are some potential limitations to these analyses. First, the data from several studies 

were utilized in this analysis, and each study has its own entry criteria, treatment allocation, 

and follow-up. As such, the hazards associated with the genetic risk categories differed 

somewhat, with the genetic-based risk in JUPITER appearing to be the lowest and possibly 

related to the patient population or the lower event rates with wider confidence intervals. 

However, having access to data from a large community cohort study, as well as primary 

and secondary prevention clinical trials, allowed us to test the generalizability of the genetic 

risk score across the various populations. Second, the NNT data were calculated by 
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extrapolating the effect of statin therapy over 10 years, and the treatment effect could vary 

over time. Nonetheless, studies of statin therapy suggest a relatively linear relationship with 

coronary event reduction over the long-term.40 Third, these analyses were conducted within 

completed clinical trials, and the genetic risk score was not specifically used as an 

enrollment criterion. Dedicated clinical trials using a genetic risk score to triage statin 

therapy would further add to the knowledge base. Fourth, although we focused on the ability 

of genetics to offer insight into risk of CHD and benefit of statin therapy, optimal tailoring 

of therapy may require a combination of several factors. Fifth, the present analysis focuses 

on genetic variants that were associated with the risk of CHD. Other variants have been 

described that are associated with LDL cholesterol levels. However, these variants primarily 

affect baseline LDL cholesterol, which is already routinely measured. Moreover, as prior 

studies show, they have little impact on the change in LDL cholesterol with statins and/or 

the clinical response to statin therapy.41, 42 Therefore, the current analyses do not explore 

such variants unless there was a prior association with CHD. Nonetheless, such a line of 

inquiry might also be informative. Finally, the gradient of relative risk reduction across 

genetic risk score categories seen in the present study was unexpected. Data from other 

studies suggest that patients with a higher burden of CHD-risk SNPs have more extensive 

atherosclerosis.8 Thus, it is plausible that such patients experience a relatively greater 

benefit with statin therapy because there are more plaques that can be stabilized. However, 

this concept deserves additional study to elucidate the underlying mechanism.

In conclusion, we found that a genetic risk score identified individuals at increased risk of 

CHD across primary and secondary prevention populations. Furthermore, individuals with 

high genetic risk scores demonstrated the numerically largest relative and absolute risk 

reductions with statin therapy. In situations where optimizing the number needed to treat is 

relevant, such as in the primary prevention setting, tools such as genetics may prove useful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Systematic Review

We searched PubMed for original research pertaining to this analysis. The following 

combination of keywords were used: “genetic,” “risk score,” and “coronary disease,” and 

identified studies that describe the association of genetic variants and the risk of CHD, 

including several analyses examining the prognostic significance of multiple genetic 

variants, although these studies were largely confined to epidemiological cohorts and 

prediction of first manifestation of CHD. We searched “genetic,” “risk score,” “coronary 

disease,” and “statins” without identifying studies that directly tested this specific 

concept. Therefore, in the present study we aimed to: (1) test if a multi-locus genetic risk 

score predicts not only incident CHD in an epidemiologic cohort but also recurrent CHD 

events in a clinical trial setting; and (2) evaluate whether the clinical benefit of statin 

therapy varies by genetic risk score.

Interpretation

A genetic risk score was derived based on 27 single nucleotide polymorphisms (SNPs) 

that have been significantly associated with CHD at a genome-wide level in prior 

analyses. First, in an epidemiologic cohort, individuals with higher genetic risk scores 

were determined to have a higher risk of CHD, even after adjusting for established 

clinical predictors. We then evaluated the association between the genetic risk score and 

CHD in primary and secondary prevention trials of statin therapy, and validated a 

gradient of risk for incident as well as recurrent CHD. In terms of the benefit of statin 

therapy, we tested the genetic risk score in four clinical trials and identified a significant 

gradient of increasing relative risk reduction across the low, intermediate, and high 

genetic risk categories. Similarly, in each trial, greater absolute risk reductions were seen 

in those individuals in higher genetic risk categories, resulting in an approximate three-

fold gradient in the number needed to treat in the primary prevention trials. Thus, 

genetics could aid in selecting populations for clinical trials that, so enriched, would be 

better positioned to test the clinical benefit of early initiation of statin therapy. Moreover, 

in situations where optimizing the number needed to treat is relevant, genetics could 

provide useful information.
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Figure 1. Summary of Risk of Coronary Heart Disease Across Genetic Risk Score Categories in 
Primary and Secondary Prevention Populations
The boxes indicate the point estimates and the horizontal lines the 95% confidence intervals.
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Figure 2. Risk Ratios for Coronary Heart Disease with Statin Therapy across Genetic Risk Score 
Categories
The boxes indicate the point estimates, and the size of each box reflects the weight of a 

trial's data within that subgroup. The horizontal lines display the 95% confidence intervals. 

The diamonds provide summary data. In PROVE IT-TIMI 22, the control group is moderate 

intensity statin therapy (pravastatin 40 mg) and the statin group is high intensity statin 

therapy (atorvastatin 80 mg).
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Figure 3. Absolute Risk Reductions of Coronary Heart Disease with Statin Therapy across 
Genetic Risk Score Categories
In PROVE IT-TIMI 22, the control group is moderate intensity statin therapy (pravastatin 40 

mg) and the statin group is high intensity statin therapy (atorvastatin 80 mg).
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Table 1

Components of the Genetic Risk Score

Locus Lead SNP OR for CHD Risk Allele Risk Allele Frequency

1p13.3 (SORT1) rs646776 1.19 T 0.77

1p32.2 (PPAP2B) rs17114036 1.17 A 0.92

1p32.3 (PCSK9) rs11206510 1.15 T 0.82

1q41 (MIA3) rs17465637 1.14 C 0.75

2q33.1 (WDR12) rs6725887 1.17 C 0.13

3q22.3 (MRAS) rs9818870 1.15 T 0.15

6p21.31 (ANKS1A) rs17609940 1.07 G 0.79

6p24.1 (PHACTR1) rs9349379 1.12 G 0.43

6q23.2 (TCF21) rs12190287 1.08 C 0.63

6q25.3 (LPA) rs3798220 1.47 C 0.01

6q25.3 (LPA) rs10455872 1.70 G 0.07

7q32.2 (ZC3HC1) rs11556924 1.09 C 0.64

9p21.3 (CDKN2A) rs4977574 1.29 G 0.55

9q34.2 (ABO) rs9411489 1.10 T 0.21

10q11.21 (CXCL12) rs1746048 1.17 C 0.86

10q24.32 (CYP17A1) rs12413409 1.12 G 0.90

11q23.3 (APOA5) rs964184 1.13 G 0.13

12q24 (HNF1A) rs2259816 1.08 T 0.35

12q24.12 (SH2B3) rs3184504 1.13 T 0.48

13q34 (COL4A1) rs4773144 1.07 G 0.41

14q32.2 (HHIPL1) rs2895811 1.07 C 0.45

15q25.1 (ADAMTS7) rs3825807 1.08 T 0.57

17p11.2 (RASD1) rs12936587 1.07 G 0.53

17p13.3 (SMG6) rs216172 1.07 C 0.64

17q21.32 (UBE2Z) rs46522 1.06 T 0.48

19p13.2 (LDLR) rs1122608 1.15 G 0.77

21q22.11 (KCNE2) rs9982601 1.20 T 0.13

The material in this table is from MDCS. CHD indicates coronary heart disease.
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Table 2

Risk of Coronary Heart Disease Across Genetic Risk Score Categories

Study Low Genetic 
Risk Category

Intermediate Genetic 
Risk Category

High Genetic Risk 
Category

P Value 
(Intermediate vs. 

Low)

P Value (High 
vs. Low)

Primary Prevention Populations

MDCS 1.00 1.30 (1.17-1.44) 1.70 (1.51-1.91) 2×10−6 2×10−18

JUPITER 1.00 1.23 (0.61-2.44) 1.32 (0.58-2.98) 0.56 0.51

ASCOT 1.00 1.58 (1.06-2.34) 2.10 (1.35-3.25) 0.0236 0.0009

Meta-Analysis 1.00 1.31 (1.19-1.45) 1.72 (1.53-1.92) <0.0001 <0.0001

Secondary Prevention Populations

CARE 1.00 1.52 (0.99-2.33) 1.67 (1.01-2.76) 0.0575 0.0482

PROVE IT-TIMI 22 1.00 1.87 (1.11-3.16) 2.04 (1.10-3.79) 0.0190 0.0239

Meta-Analysis 1.00 1.65 (1.19-2.30) 1.81 (1.22-2.67) 0.0030 0.0029

These analyses were conducted among participants in MDCS and in the placebo or lower intensity statin treatment arms (PROVE IT-TIMI 22) of 
the applicable trials.
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