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Abstract

Introduction—When establishing the physiological roles of specific receptors in normal and
disease states, it is critical to have selective antagonist ligands for each receptor in a receptor
system with several subtypes. The melanocortin receptors have five subtypes referred to as the
melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4
receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of
human health and disease.

Areas covered—This article reviews the current efforts to design selective antagonistic ligands
for the five human melanocortin receptors summarizing the currently published orthosteric and
allosteric antagonists for each of these receptors.

Expert opinion—Though there has been progress, there are still few drugs available that address
the many significant biological activities and diseases that are associated with these receptors,
which is possibly due to the lack of receptor selectivity that these designed ligands are currently
showing. The authors believe that further studies into the antagonists’ 3D conformational and
topographical properties in addition to future mutagenesis studies will provide greater insight into
these ligands which could play a role in the treatment of various diseases in the future.
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1. Introduction

The melanocortin receptors (MCRS) are a class of five 7-transmembrane GPCRs that are
critically involved in many important aspects of human health and disease including
pigmentation, feeding behavior, response to stress, immune response, sexual motivation and
behavior, pain, energy utilization, learning, sebaceous gland secretion and many others [1-
4]. Though the pigmentary hormone a-melanocyte stimulating hormone (a-MSH) and the
stress hormone, adrenal corticotropic hormone (ACTH), were among the early peptide
hormones and neurotransmitters whose structures were determined [5], the cloning of the
five receptors was only accomplished in the early 1990s [2,3]. The cloning of these
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receptors and the availability of the biological potent, stable and bioavailable a-MSH
analogs NDP-a-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-Pro-Val-NHo,
MT-I) [6] and MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys)-NH,) [7,8] and the potent
melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) antagonist
SHU-9119 [Ac-Nle-c[Asp-His-D-Nal (2/)-Arg-Trp-Lys]-NH; [9] (it is a potent agonist at
the melanocortin 1 receptor (MC1R) and melanocortin 5 receptor (MC5R)) led to an
explosion of scientific interest. Though there were earlier reports of a-MSH derivatives and
analogs that had weak antagonist activity in pigmentary assays (MC1R) [10,11], none of
these compounds turned out to be useful in vivo nor did they provide critical insights into the
structural features that could be utilized for the design of more potent analogs. Similarly for
ACTH, though ACTH-11 to -24 was reported to be a weak antagonist to the steroidogenic
receptor for ACTH [12], it provided little insight into designing potent antagonists for the
ACTH receptor (melanocortin 2 receptor (MC2R)). Despite these early shortcomings, in
1977, Schwyzer, who made many early outstanding contributions to this area, stated: ‘I
personally believe that we have about reached the limits of insight that can be reasonably
provided by structure-activity studies — except in the realm perhaps of stimulus-effect
coupling’ [13]. Since then, it has become very clear that given the complexity of hormone
and neurotransmitter biological activity of these hormone/neurotransmitter systems, the
development of structural and conformational considerations that can lead to biologically
potent, stable, bio-available and receptor selective antagonist analogs is essential for sorting
out and understanding the biological activities of these hormones and neurotransmitters and
their specific receptors. Furthermore, it is clear that highly receptor selective agonist and
antagonist ligands are essential for determining the specific contributions of each specific
hormone/neurotransmitter and its receptor to a specific biological effect in health and
disease states that may involve the specific endogenous ligand and receptor. Indeed,
systematic approaches to developing such ligands including antagonist ligands have been
developed (for antagonist design reviews see for example [14-18]). In this paper, we review
the approaches which have been taken for the design of selective antagonist ligands,
including allosteric antagonists, for the MCRs. Though there is still much to be developed,
we hope this review will aid in the needed future developments.

2. Design of melanocortin receptor selective antagonist ligands

A major focus in designing new melanotropin analogs and mimetics is to gain potency,
selectivity and improved pharmacological properties that will be suitable for biological and
medical applications. Ligand structure-based drug design has been used for many years in
peptide and peptide mimetic-based drug design [18] and has played a critical role in the
development of melanocortin ligands [19]. Moreover, the development of sophisticated
biophysical and computational methodologies provides additional important tools for
designing constrained analogs that can provide critical insights for antagonist ligand design.

This review, due to space limitations, will primarily examine efforts that have been made to
modify the natural peptide ligands for the human MCRs (hMCRs). We have previously
reviewed the strategies that can be used to establish a peptide pharmacophore (e.g., [16,18—
20]). Further design, especially conformational and topographical constraint, (B-turn
mimetics and so on are needed, and many of these methods have been applied to develop
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stable and selective melanotropins. In addition, 3D structural analysis (NMR, X-ray) of
selected ligands, combined with computational studies have aided in the design of selective
small molecule hMCR ligands, and chimeric or hybrid structures also have been used more
recently. N-methylation of the amide bonds also has been introduced into melanocortin drug
design [21]. Substituting amide protons with methyl groups can result in receptor subtype
selectivity, and in addition other pharmacological properties can be improved, such as
metabolic stability, lipophilicity, enhanced potency, enhanced bioavailability and BBB and
gut permeability. All of these approaches may also turn an agonist into an antagonist.

3. hMC1R antagonists

MCI1R is mainly present in the skin of most animals where it is involved in the control of the
relative amounts of pheomelanin and photoprotective eumelanin. Appropriate MC1R
agonist ligands may offer protection against damaging and mutagenic effects of UV
radiation or be useful in the diagnosis and treatment of certain types of skin cancer, such as
melanoma [I]. MC1R is also present on the surface of various immune cells (e.g.,
macrophages, fibroblasts, monocytes, mast cells, neutrophils) and is a potential target for the
development of ligands for the treatment of acute and chronic inflammatory diseases,
neurodegenerative diseases and systemic host reactions [22]. In the CNS, the MC1R is
present only on neurons in the periaqueductal grey matter of the midbrain [23], where it is
thought to have a role in pain control [24,25].

The first selective human MC1R (hMC1R) antagonist with nanomolar potency was Ac-Nle-
Asp-Trp-D-Phe-Nle-Trp-Lys-NH, [10] (pA, = 8.4 in frog skin) but with agonist activities at
the MC3R, MC4R and MC5R (ICgg = 260, 60 and 910 nM, respectively) [24]. All efforts to
develop a structure—activity relationship (SAR) were unsuccessful as modified analogs were
either agonists or inactive. However, the analog was used to demonstrate that the h(MC1R is
important in modulating pain by female specific mechanisms of analgesia [24].

A promising early antagonist of the hMC1R was c[Gly-Cpg-D-Nal(2’)-Arg-Trp-Glu]-Val-
Val-Gly-NH, (1, Table 1) [26] which was highly selective versus the human MC4R
(hMC4R) (1, 110-fold, Table 1) though only modestly selective versus the MC3R. Again,
efforts to establish a SAR around this a-MSH/deltorphin chimera were unsuccessful, but it
did lead us to explore other cyclic melanotropin derivatives which have been more
successful.

The cyclic peptides 2 and 3 (Table 1) by Mayorov et al. [27] show the effects of the linker
arm rigidity and ring size on the antagonist selectivity of MCRs for the hMC1R. This study
explored the use of a novel cyclic lactam a-MSH template. A variety of dicarboxylic acid
linkers were introduced between the a-amino group of His® and the e-amino group of Lys0
which led to high-affinity, selective hMCR-1 and -5 (hMC1R and human MC5R (hMC5R))
antagonists [27]. The incorporation of more hydrophilic groups into the linker arm was
found to be unfavorable for both binding potency and receptor selectivity. Peptides 2 and 3
containing highly conformationally constrained hydrophobic linkers (m- and p-phthalic
acids) were found to be selective nanomolar range hMC1R antagonists (IC5o = 4 and 7 nM,
respectively), whereas the employment of a small conformationally constrained linker
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(maleic acid) resulted in a high-affinity (ICsg =19 nM) and selective hMC5R antagonist (not
shown). The newly developed melanotropins have served as critical biochemical tools for
elucidating the full spectrum of functions performed by the physiologically important MC1R
and MC5Rs.

Another successful approach has been the design of cyclic sulfide analogs (manuscript in
preparation) of which compound 4 is an example. As shown in Table 1, this compound is a
highly potent (ICsg = 17 nM) antagonist at the h(MC1R and has excellent selectivity against
the human MC3R (hMC3R), MC4R and MC5R (230, > 600, 76). It was used to demonstrate
the importance of the hMC1R in mediating opioid-induced hyperalgesia [28]. A structure—
activity study is being prepared for publication.

4. Human MC2R antagonists

The MC2R, also known as the ACTH receptor, requires a different pharmacophore than the
other subtypes of MCRs. ACTH is the endogenous ligand for the MC2R. ACTH is a 39-
residue peptide whose first 13 amino acids are identical to the sequence of a-MSH.
However, unlike other MCRs, the C-terminal cationic portion of the POMC product in
ACTH is necessary for MC2R binding. Binding of ACTH to the MC2R increases the
adenylate cyclase activity and thus the activation of protein kinase A. Shorter peptides
ACTH;j.»4 and ACTH4.o3 were shown to have agonist properties similar to that of the full
length ACTH, whereas a 13-residue peptide ACTHq1.o4 was shown to have antagonist
properties (Table 2) [29]. It was also shown that a peptide with an N-methyltryptophan
instead of Trp at the 9 position in ACTH1.o4 had antagonist activity [30]. In a recent study
by Kovalitskaya et al., it was shown that the cationic C-terminal sequence -Lys-Lys-Arg-
Arg- (ACTH5.1g) had antagonist activity [31]. This tetrapeptide binds to membranes of the
rat adrenal cortex with high affinity (Table 2), but does not show any adenylate cyclase
activity even at 1000 nM concentration. Therefore, they concluded that the tetrapeptide
KKRR (ACTHjs5.1g) is an antagonist for the ACTH receptor. The same research group has
also found in a separate study that a synthetic peptide GKVLKKRR corresponding to the
fragments 81 — 88 of human pro-IL-1a protein acts as an antagonist at the MC2R [32]. They
chose this peptide because it has 80% sequence similarity with fragments 10 — 18 of ACTH.
Clearly, much additional work is needed to develop useful and selective MC2R antagonist
ligands.

5. hMC3R antagonists

Pharmacological and genetic studies have shown that MC3R is involved in the control of
energy homeostasis, host inflammatory responses, thermoregulation and cardiovascular
function. Some observations have also suggested that this receptor might be an inhibitory
autoreceptor which suppresses release of a-MSH on POMC neurons. In the CNS, MC3R is
usually colocalized with MC4R, and selective MC3R ligands are needed to understand and
separate physiological actions of these two receptors. There are suggestions that such
compounds could be useful in the treatment of disorders of nutrient imbalance and have
protective effects in myocardial ischemia, reperfusion-induced heart arrhythmias and/or in
some inflammatory conditions [33-36].
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A very great effort has been made to develop highly potent h(MC4R-selective agonists and
antagonists due to the proposed involvement of this receptor in the regulation of feeding
behavior, sexual behavior and other biological activities. On the other hand, comparatively
little attention has been given to obtaining selective ligands for the hMC3R especially
considering the dearth of specific evidence of its physiological functions. The availability of
highly selective antagonists for the hMC3R relative to the hMC4R should greatly enhance
this understanding. Studies of MC3R-deficient mice show increased fat mass, reduced lean
mass and higher feed efficiency than their wild-type littermates [37]. Furthermore,
peripheral injections of an hMC3R selective agonist [D-Trp8]y-MSH can stimulate food
intake in mice suggesting an important role of this receptor subtype in the regulation of
feeding and energy partitioning [38]. In addition, possible involvement of the hMC3R in the
regulation of inflammatory responses and cardiovascular function have also been proposed
(e.0., [39,40]). Finally, emerging evidence points to a potential role of the h(MC3R in the
regulation of erectile function and sexual behavior [41], which provides further impetus for
the development of highly selective hMC3R agonists and antagonists.

Several approaches to the design of hMC3R-selective agonists and antagonists have been
described in the literature. Among the natural MSHSs, y-MSH exhibits substantial h(MC3R
agonist selectivity, whereas a-MSH and -MSH show little selectivity for any specific
receptor subtype. For selective antagonists for the MC3R the D-Nal(2)7 substitution for D-
Phe’ as used in SHU-9119 [9], but in a novel cyclic structure (5, Table 3), resulted in good
binding affinities at all four receptor subtypes and converted a full h(MC3R agonist to a good
affinity somewhat selective hMC3R antagonist [42]. Interestingly, when His® was
substituted with a proline residue a similarly selective hMC3R antagonist analog was
obtained with particularly good selectivity versus the MC1R (6, Table 3). Proline plays an
important role to stabilize the secondary structure. The structurally similar a-MSH analog 7
also was reported to be a highly potent hAMC3R antagonist (7, Table 3) with good selectivity
against the hMC4R and the hMC5R [43]. This peptide shows an improved antagonist
potency and selectivity toward the hMC3R compared to the parent peptide, the nonselective
hMC3R/hMC4R antagonist SHU9119 [9]. A further improvement for the MC3R in addition
to the cis olefin bridged compound 7 [43] was the bridged heterocyclic 2,3-pyrazine-
containing compound (data not shown [43]). The cyclic lactam analog containing the special
Aba residue (compound 8, Table 3) had > 200-fold selectivity against the MC1R and the
MCA4R, and to a lesser extent the MC5R, and was a potent antagonist at the MC3R [44].
Interestingly, the Aba-D-Nal(2’) analog (data not shown, [44]) displayed high affinity
hMC3R and hMC5R antagonist properties (ICsq = 43 and 87 nM, respectively), but weak
binding affinity for the hMC4R (ICsq = 1.7 uM). The observed lack of agonist activity at the
hMC3R points to possible steric interference from Aba. Analog 9 [45] was designed as a
hybrid a-MSH-AGRP structure. This hybrid showed high antagonist binding affinity at the
hMC3R (1.7 nM) and good selectivities against the hnMC1R and hMC4R, but also is a potent
antagonist at the hMC5R

Analog 10 (Table 3) [46], a cyclic analog related to SHU-9119, was a weak but selective
antagonist at the hMC3R and completely inactive as a ligand at the hMC4R and hMC5R.
These results indicated that a simple, unconstrained amino-acid residue ((3-Ala) in the 6
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position of MT-1I can lead to selective ligands for the hMC3R. Interestingly, analog 11
(Table 1), which differs from 10 by having a Mamb (3-aminomethylbenzoic acid) residue in
position 5, was a more potent and highly selective antagonist for the hMC3R [46]. These
data suggest that the Mamb residue has a considerable impact in the formation of ligand—
receptor complex but only for antagonists at the hMC3R. It is possible that the same residue
could destabilize the ligand—receptor interactions for other MCRs.

Replacement of His® with Acpc (1-aminocyclo-propane-1-carboxylic acid), a highly side
chain constrained amino acid in SHU-9119 [47], leads to a potent antagonist at the hMC3R
(IC50 = 2.5 nM) (12, Table 3). Interestingly, the compound is a potent partial agonist at the
hMC5R (Table 3).

Substitution of Trp8 with D-Nal(2’)8 and Phe® with D-Phe® in [Nle3]-y-MSH-NH, forms a
unique selective antagonist for the hMC3R, 13. In this group of hybrid melanotropin
peptides, analog 13 was found to be a hMC3R selective antagonist (ICsg = 6 nM), but with
potent agonist activity at the MC1R, MC4R and MCER In this analog, the sterically bulky
D-Nal(2’)8 was substituted for the D-Trp8, which converts a hMC3R selective agonist to a
hMCS3R selective antagonist [48]. The side chains of residue 8 in peptide analog 13 [D-
Nal(2")] favored the gauche(+) conformation. It was proposed that the gauche(+)
conformation of the side chain of the residue 8 may be important for selective h(MC3R
antagonist activity.

Analog 14 is a noncompetitive allosteric antagonist of the hMC3R which was designed as a
hybrid AGRP/MSH pharmacophore. Compared to the previous cyclized melanotropins with
a 23 membered cyclic p-turn pharmacophore, this peptide has only a 17 membered ring and
there is no B-turn moiety involved in the pharmacophore. The orientation of the aromatic
groups of Phe and Trp and of the positive charged Arg, which are critically important for
binding to the hMC3R, is changed in 14. This could explain why this peptide is a
noncompetitive allosteric ligand for the hMC3R [49].

6. hMC4R antagonists

The MC4R is mainly expressed in the CNS where it is found in virtually all areas [50] and
also is present in sensory neurons in the periphery [51,52]. It has a major role in control of
feeding behavior [53,54]. hMC4R agonists were shown to increase metabolic rate and
reduce appetite in various models of rodent obesity [54], while hMC4R antagonists reversed
these effects [54]. Consequently, hMC4R peptide and non-peptide agonists were sought
which could be developed as potential therapeutic agents for the treatment of obesity and
other feeding disorders. In addition, hMC4R antagonists also have been designed and
evaluated for the potential treatment of anorexia, wasting in the elderly, or cachexia which
accompanies many chronic diseases [55]. Additionally, the hMC4R has been recognized as
an important target for the development of compounds which could alleviate sexual
dysfunction [41,56,57].

As shown in Table 4, many peptide and non-peptide small ligands have been designed and
found to be highly selective antagonist ligands for the hMC4R. Perhaps this is not surprising
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due to the great interest in both academia and the pharmaceutical industry in obesity, sexual
function and other bioactivities associated with the hMC4R.

Among the first selective antagonist ligands for the MC4R were the peptides 15 and 16 in
Table 4. Compound 15 ([58], known as MBP10), is a cyclic tetrapeptide derivative based on
the antagonist pharmacophore of SHU-9119. It was found to be quite selective versus the
MC3R and MC5R (330- and 1100-fold), respectively. It was not tested against the MC1R.
The cyclic disulfide peptide 16 [59] also based on the SHU-9119 pharmacophore was not
very selective for the MC4R (~ 10- to 60-fold) but was very potent.

The linear y-MSH analog 17, H-Tyr-Val-Nle-Gly-His-Phe-Arg-D-Nal(2")-Asp-Arg-Phe-
Gly-NH, (Table 4), was found to be a potent and selective antagonist at the hMCA4R [60]
while the cyclic Pen3-Cys? analog 18 also is a potent and selective MC4 antagonist [60], a
potent partial agonist at the MC1R and a potent full agonist at the MC5R. The D-Nal(2/)-
containing analog 18, on the other hand, is a potent and selective antagonist at the hMC4R,
and a moderate potent agonist at the hMC3R (ICsg = 150 nM) and a weak antagonist (ICgq =
1700 nM) at the MC5R [60]. Compound 19 (Table 4) is an interesting cyclic analog related
to y-MSH [45] which, though a modest binder, has highly selective antagonist activity at the
MC4R with no binding to the MC1R, MC3R and MC5R.

The cyclic disulfide-containing analog 20 (Table 4) has been found to be a selective MC4R
antagonist, which enhances feeding behavior [61]. Another cyclic disulfide analog 21 (Table
4) showed high affinity (Kj = 0.95 nM) and high selectivity (80-fold) for the MC4R over the
MC3R [62]. Thus, 21 shows both higher affinity and higher selectivity for the MC4R
compared to the earlier described MC4R selective ligand 20 (Table 4).

We found some time ago that replacement of the His® residue in ligands related to MT-11
and SHU-9119 with proline analogs such as 2-aminoindone-2-carboxylic acid (Aic) and 1-
amino-1-cyclopentane carboxylic (Cpe) gave analogs 22 and 23 (Table 4) [63]. They had
high subnanomolar binding affinities at the MC4R and were antagonists with good
selectivity as well, with 22 being 150-fold selective for the MC4R versus MC3R, and 23
being 220-fold selective for the MC4R versus MC3R [63]. Interestingly, as discussed
earlier, the analog which contains a 1-aminocyclopropane-1-carboxylic acid in the 5 position
to give Ac-Nle-c[Asp-Acpc-D-Nal(2)-Arg-Trp-Lys]-NH, [47] is a highly potent (IC5g = 2.5
nM) and selective (110-fold) ligand for the MC3R rather than the MC4R [63]. These results
suggest that proper substitution in the 5 position replacing the hydrophilic His residue with
various proline analogs leads to a potent and MCR selective agent.

A tripeptide analog 24 with D-Nal(2”) and Nal(2’) residues was found to be a potent
antagonist at the MC4R [64] with no binding at the MC1R, MC3R and MC5R.

There is increasing evidence that allosteric ligands (agonists and antagonists) for GPCRs
such as the MCRs might provide an advantage in modulating their biological responses
especially in disease states. Recently, we have discovered allosteric ligands for the hMC4R
(25 and 26, Table 4) [65]. These ligands were designed as structural analogs with the
arginine side chain moiety in different relationships to the other pharmacophore side chain
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groups for the MCRs [65]. As discussed for peptide 14, these two peptides are cyclized with
17 membrane rings, and the critical aromatic amino acids Phe, Trp and the charged amino
acid Arg, which are important for binding to the hMC4R, are re-orientated. These changes
made them noncompetitive hMC4R antagonists. In addition, compared to the peptide 14 the
N-guanidinylbutyl and D-Trp might contribute to selectivity between the hMC3R and
hMC4R. The unique pharmacological properties of 25 and 26 indicate that they may
modulate the hMC4R in novel ways. Thus, they may provide a unique specific tool to
examine the functions of the MC4R in animals.

Recently, a series of substituted piperazinebenzylamines exemplified by analogs 27 and 28
have been reported as potent and selective MC4R antagonists [66,67]. Interesting are the
MCA4R peptide antagonists such as (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-
yl)ethyl]-4-[4-(2-methoxynapthalen-1-yl)butyl]piperazine (MCL 0129), analog 27 and the
MCA4R antagonist 28 which also had serotonin transport inhibitory activity and has the
structure (1-[2-(4-fluorophenyl)-2-(4-methylpiperazin-1-yl)ethyl]-4-[4-(1-
naphthyl)butyl]piperazine (MCL0042) (28) [67]. It was suggested that the MC4R
antagonists may be useful for the treatment of stress-related disorders such as depression and
anxiety [67].

A wide variety of complex heterocyclic ligands have been reported that are claimed to be
potent and selective antagonists ligands for the MC4R (Table 4 and Figure 1). As can be
seen from the table and the figure, though it is claimed that these ligands are selective
antagonist ligands for the hMC4R, a complete evaluation of the ligands at the hMCL1R,
hMC3R, hMC4R and hMC5R have not been reported in many cases. Compounds 29, 32 and
33 ([68-70], respectively) are the only compounds which have been fully evaluated for their
selectivity against the hMC1R, hMC3R, hMC4R and hMCB5R. It is interesting to note that
compound 29 which is shown as two different isomers in Figure 1 has totally different
biological activities. The S,S,R-isomer has agonist activity, but the R,S,S-isomer has
antagonist activities. We list the others and leave it to the individual reader to evaluate the
extent to which claims of receptor selectivity can be accepted and utilized to plan future
work (30 [71], 31 [72], 34 [73], 35 [73)).

A general question which arises is whether the non-peptide antagonists for the MC4R are
actual peptide mimetics, that is, do they utilize the same structure features as peptide
antagonists to bind to the hMCA4R in its antagonist conformation or do they bind by some
other mode to the receptor that maintains the receptor structure in an inactive state. The
studies of Yang and co-workers for the native orthosteric agonist ligand a-MSH (MTI)
indicate that the conserved amino acids of the hMCRs are involved in the binding, whereas
for a small molecule agonist, such as THIQ, in addition to the conserved amino acids of the
hMCRs, other non-conserved amino acids of the hMCRs are involved to the binding
[49,74]. It is proposed that for the non-peptide antagonists, the non-conserved amino acids
can provide the extra stability to keep the receptor structure in an inactive state. However, a
much more careful analysis is needed to more clearly evaluate the similarities and
differences between peptide and non-peptide antagonists. In addition, computational aided
molecular docking of antagonists towards the MC4R may also provide useful insights.
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7. hLMC5R antagonists

MCS5R is expressed in many peripheral tissues [75], in particular the secretory epithelia of
many exocrine glands where it affords secretory and trophic controls. The MC5R may also
be present in the CNS, but its function in this location is unknown. In rodents, this receptor
has been shown to play a role in pheromone and lipid production in the exocrine glands [76].
Together with the other MCRs, the MC5R might be involved in the control of some immune
effects [77]. It has been suggested that MC5R agonists may alleviate conditions such as dry
eyes and mouth [22], and MC5R antagonists might perhaps be useful in the treatment of
acne [78]. We report here on hMC5R antagonists that have been published. In vivo
evaluation of these ligands thus far has not been done.

A number of synthetic antagonist ligands for the hMC5R have been reported, but most do
not have appreciable selectivity. In this review, we discuss only those ligands which have
appreciable selectivity for the h(MC5R.

The first highly selective hMCB5R ligand was a cyclic disulfide-containing derivative of an
a-MSH-B-MSH hybrid where the cyclic part was a-MSH related and the C-terminal p-MSH
related (36, Table 5) [79]. As shown in Table 5, 36 is a potent (IC5y =10 nM) hMC5R
antagonist that does not bind to the hMC1R, and hMC4R.

Grieco et al. [80] developed an alkylthioaryl-bridged macrocyclic peptide template related
to the MT-Il and SHU-9119 and the analogs obtained produced several cyclic ligands of
varying potencies and MC5R antagonist selectivities (37 — 39, Table 5) [81]. These 20-
membered macrocycles were synthesized by a tandem combination using solid phase
peptide synthesis and microwave-assisted reactions. Biological assays for binding affinities
and adenylate cyclase activities for the h(MC1R, hMC3R, hMC4R and hMC5R showed that
the three compounds 37, 38 and 39 (Table 5) are selective antagonists at the hMC5R. In
particular, compounds 37 and 38 are selective and competitive hMC5R antagonists with
ICsq values of 130 (pA, = 8.3) and 38 nM, respectively. They can provide important tools
for further in vivo biological investigations of the hMC5R.

A non-peptide class of hMC5R selective antagonist ligands has been reported by Cain et al.
[80]. These are bicyclic heterocyclic compounds 40 - 43 in Table 5. All four of these
compounds appear to bind only to the hMC5R [80], though some related analogs bind to
other MCRs (data not shown). Based on binding profiles all of these four compounds act as
allosteric antagonists at the hMC5R.

8. Expert opinion

It has become clear, though there is still much to be learned, that ligands can be designed
that are potent and selective antagonists for the various hMCRs. These ligands have been
and will continue to be valuable tools for helping to sort out the complex pharmacology and
physiology of the melanotropin peptides and their receptors. However, there still are not
many orthosteric antagonists for the hMCRs that have > 1000-fold selectivity, and so greater
effort is needed to obtain more selective ligands. In addition, the specific structural and 3D
conformational and topographical properties that determine antagonist versus agonist
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activity, and most importantly, the 3D structural correlates of ligand antagonist selectivity
for the five different MCRs are still to be determined. We have investigated some aspects of
this structural pharmacology for antagonists, but there is still much to be learned in this
regard as it can provide critical insights. Similarly, though mutagenesis studies have
provided important insights into melanocortin agonist ligand—-MCR interactions [49,74],
virtually nothing is known about the differences associated with agonist versus antagonist
ligand—-MCR interactions. Ultimately, these studies and related studies using novel
biophysical and biochemical methods will be invaluable for the development of a wide
variety of melanotropin ligands for the treatment of various diseases, including cancer,
obesity, anorexia, sexual dysfunction, immune response, diabetes, pigmentary disorders and
many others in which the MCRs play a critical role.
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ACTH antagonists and their inhibition of [3H] ACTH11.24 in rat adrenal cortex membranes by unlabeled

Table 2

peptides.
Compound  Peptide sequence 1C5 (NM) K (nM)
ACTH{.»4 SYSMEHFRWGKPVGKKRRPVKVYP
ACTHy104 KPVGKKRRPVKVYP 113 17
ACTHisq5  KKRR 151 23
plL-laggs GKPVGKKRR 7.6 2
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