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Evaluating more naturalistic outcome
measures
A 1-year smartphone study in multiple sclerosis

ABSTRACT

Objective: In this cohort of individuals with and without multiple sclerosis (MS), we illustrate some
of the novel approaches that smartphones provide to monitor patients with chronic neurologic
disorders in their natural setting.

Methods: Thirty-eight participant pairs (MS and cohabitant) aged 18–55 years participated in the
study. Each participant received an Android HTC Sensation 4G smartphone containing a custom
application suite of 19 tests capturing participant performance and patient-reported outcomes
(PROs). Over 1 year, participants were prompted daily to complete one assigned test.

Results: A total of 22 patients with MS and 17 cohabitants completed the entire study. Among pa-
tients withMS, low scores on PROs relating tomental and visual functionwere associated with drop-
out (p , 0.05). We illustrate several novel features of a smartphone platform. First, fluctuations in
MS outcomes (e.g., fatigue) were assessed against an individual’s ambient environment by linking
responses to meteorological data. Second, both response accuracy and speed for the Ishihara color
vision test were captured, highlighting the benefits of both active and passive data collection. Third, a
new trait, a person-specific learning curve in neuropsychological testing, was identified using spline
analysis. Finally, averaging repeated measures over the study yielded the most robust correlation
matrix of the different outcome measures.

Conclusions: We report the feasibility of, and barriers to, deploying a smartphone platform to
gather useful passive and active performance data at high frequency in an unstructured manner
in the field. A smartphone platform may therefore enable large-scale naturalistic studies of pa-
tients with MS or other neurologic diseases. Neurol Neuroimmunol Neuroinflamm 2015;2:e162; doi:

10.1212/NXI.0000000000000162

GLOSSARY
HR 5 hazard ratio; IVIS 5 Impact of Visual Impairment Scale; MCS 5 SF-36 Mental Composite Scale; MFIS 5 Modified
Fatigue Inventory Scale; MS 5 multiple sclerosis; PC 5 principal components; PRO 5 patient-reported outcome; QOL 5
quality of life; SF-36 5 Short Form Health Survey.

There is a need for more sensitive endpoints for clinical trials in chronic neurologic disorders such as
multiple sclerosis (MS), in which clinical and radiologic evaluations obtained every few months may
not accurately capture the symptomatic fluctuations that affect patients’ quality of life (QOL).

New technologies that measure human behavior and function in a naturalistic setting are
becoming accessible and practical to deploy to achieve 2 important goals: (1) frequent sampling
of patient function to capture intra- and interday variation, and (2) evaluation of patients in their
own milieu, which is more relevant to their experience than measures captured in the clinic.

Smartphones, portable and omnipresent, provide an important opportunity to integrate
highly granular information across a variety of functional domains.1 Initial smartphone efforts
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in neurologic research have included symptom
assessment2,3 and symptom management.4

Individuals with MS are frequent users of smart-
phones,5 and electronic platforms (whether tab-
let6 or Web-based7) can provide an accurate
estimate of a patient’s performance when bench-
marked against standard clinical measures.

In this study we investigated the feasibility of
performing frequent smartphone-based assess-
ments of patients with MS and their cohabitants.
The overarching goal was to identify operational
challenges to deploying a smartphone platform
for passive and active data collection in a human
observational trial and to identify themes that
are likely to improve study design for next-
generation smartphone applications. It is
important to note that this study was not de-
signed to evaluate the comparative perfor-
mance of specific smartphone applications
against standard paper-and-pencil measures,
an important step in future endeavors.

METHODS Participants. Pairs consisting of 1 patient with

demyelinating disease and 1 healthy cohabitant, all aged 18–55

years, were recruited at the Partners MS Center, a large referral

clinical center in the northeastern United States. Cohabitant pairs

were recruited to control for common environment. Most patients

had a diagnosis of MS by 2005 McDonald diagnostic criteria8

(table 1). Patients were invited to participate by their MS neurol-

ogist. Of the 40 pairs screened who met inclusion criteria, 2 pairs

did not sign a consent form, so 38 pairs met all study criteria and

received phones.

Platform. Each participant received an Android HTC Sensation

4G smartphone as well as a free cellular phone service plan for the

duration of the study.

A custom application suite consisting of 19 tests was designed

to (1) assess participant performance (color vision, attention, dex-

terity, and cognition), and (2) elicit patient-reported outcomes

(PROs; fatigue, mood, and QOL) (appendix e-1 and table e-1 at

Neurology.org/nn). We directly customized the tests for application

on the smartphone, without any modifications to questions in this

first assessment (e.g., Ishihara plates, 9-Hole Peg Test, Trails A, and

Short Form Health Survey [SF-36]; appendix e-1 and figure e-1).

Protocol. During the 1-year (365 days) study, participants were

prompted daily to access the study application and complete a

quasi-randomly assigned test. A participant with 3 consecutive

weeks of noncompliance to daily testing was defined as

dropping out, and his or her study-sponsored cellular plan was

terminated. The first pair enrolled in May 2012. Enrollment

closed in January 2013, and the last pair completed the study

in January 2014.

Standard protocol approvals, registrations, and patient
consents. Ethical approval for all portions of this study was ob-
tained from the Partners Healthcare Human Research Commit-

tee Institutional Review Board.

Statistical analysis. A range of statistical techniques was used to

analyze this extensive longitudinal dataset (appendix e-2). Analy-

ses included descriptive statistics of study participants, Kaplan-

Meier curves of time to study dropout, correlations between

tests, spline (inflection point) analyses to identify practice

Table 1 Demographic and diseases characteristics of patients with MS and cohabitants, including all
participants as well as 12-month completers

Patients with MS Cohabitants p Value

All participants

N 38 38

Age, y, mean (SD) 35.1 (10.2) 37.8 (10.6) 0.2669

Female sex, n, % 28 (74) 16 (42) 0.0026a

Time since diagnosis, y, mean (SD) 7.8 (5.3) —

Disease category at study entry, RRMS/SPMS/PPMS/CIS/other 25/5/1/2/5b —

EDSS score at study entry, mean (SD) 2.3 (2.3) —

Completers only

N 22 17

Age, y, mean (SD) 34.3 (11.0) 39.9 (10.5) 0.1158

Female sex, n, % 16 (73) 9 (53) 0.2015

Time since diagnosis, y, mean (SD) 8.0 (6.0) —

Disease category at study entry, RRMS/SPMS/PPMS/CIS/other 15/4/9/0/3c —

EDSS score at study entry, mean (SD) 2.5 (2.4) —

Abbreviations: CIS 5 clinically isolated syndrome; EDSS 5 Expanded Disability Status Scale; MS 5 multiple sclerosis;
NMO 5 neuromyelitis optica; RRMS 5 relapsing-remitting MS; PPMS 5 primary progressive MS; SPMS 5 secondary
progressive MS.
aSignificant value.
bOther: “MS” (n 5 3), “NMO” (n 5 1), undefined (n 5 1).
cOther: “MS” (n 5 1), “NMO” (n 5 1), undefined (n 5 1).
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effects and other longitudinal trends,9 and multivariable

regression models.

RESULTS Demographic and disease characteristics.

Although the mean age (SD) of the patients with
MS (35.1 years [10.2]) and the cohabitants (37.8 years
[10.6]) was similar (p 5 0.27), there was an expected
greater proportion of women among the patients with
MS (p , 0.05, table 1). Among the patients with MS,
25 had relapsing-remitting MS, and the mean Expanded
Disability Status Scale score was 2.3.

Tolerance of participants to daily data capture in their

natural environment. Among the 76 study participants,
a total of 39 (51%; 22 patients with MS and 17 cohab-
itants) completed the 12 months of daily data collection.
Failure to respond to task prompts accounted for 71% of
individual participant terminations (appendix e-1 and
table e-2).

The likelihood of study discontinuation decreased
throughout the year: 50% of participants dropping out
did so within 4months, and 75% did so by 7.25months
(figure 1A). To investigate drivers of dropout rates, we
performed a series of Cox proportional hazard regression
analyses adjusting for age, sex, and, when appropriate,
disease duration. Including all participants, we did not
find an association of MS diagnosis with dropout. In
patients with MS, we analyzed 18 of the smartphone
measurements independently.We found that a low score
on the SF-36 Mental Composite Scale (MCS; hazard
ratio [HR] 5 4.1, p 5 0.017) (figure 1B) and a score
of 1 or greater on the Impact of Visual Impairment Scale
(IVIS; HR5 4.2, p5 0.03) (figure 1C) were nominally
related to the likelihood of dropping out. Age, sex, and
disease duration did not show an association with drop-
out in any of these models. IVIS and SF-36 MCS were
correlated in patients with MS at the time of first mea-
surement (r 5 0.44, p , 0.01), and when they were
both included in the model, neither was significant (p.
0.2), indicating that these factors were not independent
risk factors for discontinuation.

Response variability. To assess the extent of variability
among participants’ responses, we first used a principal
components (PC) analysis derived from all measures ob-
tained in the study to identify outliers. In general, the
range of responses provided by participants was similar,
suggesting that the handheld device did not introduce
large spurious deviations in responses. Nonetheless, we
identified 5 outliers (MS patients 221, 311, and 411 and
cohabitants 202 and 262) whose performance lay outside
2 times the interquartile range of either PC1 or PC2
(appendix e-1 and figure e-2), the 2 PCs capturing the
greatest fraction of variance in the captured data. Deficits
in 1 or 2 functions being tested, rather than technical
factors, appeared to drive participants’ identification as
outliers (IVIS [participant 311], 9-Hole Peg Test

Figure 1 Patterns of study retention

The proportion of individuals actively participating in
the study is displayed over the course of the study. (A)
The trajectories of the cohabitants and the patients
with multiple sclerosis (MS). (B) Patients with MS with
subjective cognitive impairment at study entry (defined
as an SF-36 Mental Composite Scale [MCS] score in the
lowest quartile) were more likely to drop out of the
study. (C) Patients with MS with subjective visual
impairment at study entry (defined as an Impact of
Visual Impairment Scale [IVIS] score .0) were more
likely to drop out of the study.
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[participant 311], Bladder Control Scale [participant
202], Trails A [participants 311 and 411], and Trails
B [participants 311, 202, and 221]).

Although the application suite was not intended as
a tool to differentiate between patients with MS and
cohabitants, in secondary analyses we found that pa-
tients with MS reported worse functioning than their
cohabitants (p value of ,0.05 in 9 PROs analyzed
[logistic regression adjusted for age and sex; appendix
e-1 and table e-3]). Patients with MS also had lower
average scores and greater variance than cohabitants in
the performance tests.

Linking symptom (fatigue) fluctuations with external

factors (season, daylight, and temperature). Leveraging
one of the advantages of frequent data collection af-
forded by the smartphone, we assessed whether self-
reported fatigue, which patients with MS often link
to higher temperatures, varied in relation to external
factors. We linked the time and date stamp for each
recorded data point for the Modified Fatigue
Inventory Scale (MFIS) total score to the ambient
temperature (uploaded to the smartphone) and
daylight hours (as estimated by a publicly available
sinusoidal function for Boston, MA) at the exact

Figure 2 Assessment of fluctuation in fatigue scores using environmental data

The relationship between fatigue (as measured by the Modified Fatigue Impact Scale [MFIS]) and hours of daylight is pre-
sented for patients with multiple sclerosis (MS) in (A) and cohabitants in (B). Each participant is represented by one line
describing the relation between MFIS and daylight hours. For most participants, there is no significant correlation
between fatigue and hours of daylight (represented by gray lines); however, 4 participants represented by colored lines
do show a significant increase in MFIS with more hours of daylight, and 1 participant shows the opposite, highlighting the
symptomatic heterogeneity among patients with MS. (C) The MFIS total score for patients with MS is presented over the
course of the calendar year. Each MS study completer is represented by a different line.
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time and day of survey completion. Many patients
with MS did display fluctuations in perceived level of
fatigue over the year (figure 2C), but we found no
significant evidence of a fixed effect of daylight hours
(p 5 0.091) or ambient temperature (p 5 0.18) on
MFIS (linear mixed-effects regression with random
intercepts and slope adjusted for age, sex, and disease
duration). As seen in figure 2A, there is clearly
heterogeneity in the MS patient population, with a
subset of patients displaying significant correlations
between MFIS and daylight hours. This structure in
the patient population needs to be explored further in
larger studies.

Interrogating visual function: Incorporating established

and novel outcome measures. We selected the Ishihara
color plate test of visual function to illustrate the

smartphone’s ability to collect both active (accuracy)
and passive (speed of completion) measures of indi-
vidual performance (appendix e-1 and figure e-1). As
expected, mean accuracy over all trials was lower in
patients with MS (88%, n 5 38) than in cohabitants
(93%, n 5 38). In all participants, impaired color
vision in either eye was correlated with perceived
visual deficits on the IVIS (r 5 20.35, p , 0.01),
offering some face validity to this measure. In addition
to accuracy, however, response speed captured a differ-
ent deficit among some patients withMS. For example,
in one pair, the patient with MS displays a similar
response speed to his or her cohabitant but much lower
accuracy across the study duration (figure 3A), whereas
in another pair (figure 3B), the patient with MS dis-
plays a delay in response compared to his or her cohab-
itant but comparable accuracy. These observations

Figure 3 Longitudinal performance of 2 MS–cohabitant participant pairs on Ishihara color testing

Both response speed and response accuracy are provided for both members of 2 participant pairs (patient with multiple scle-
rosis [MS] in red and cohabitant in blue) for all Ishihara tests that they completed. (A) The responses of pair 61 when their right
eye is queried. Both participants demonstrate a similar response time when their right eye is tested, but there appears to be a
deficit in accuracy in the MS patient’s right eye. (B) The response of pair 25 when their left eye is queried. The patient with MS
has much slower response time than the cohabitant, but both individuals demonstrate similar accuracy.
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illustrate the manner in which the smartphone can pro-
vide a richer perspective on an individual’s neurologic
performance and its fluctuation over time.

New outcome measure for assessing patients with MS:

Person-specific learning curve. As with traditional per-
formance tests, we observed an apparent practice

effect across all performance tests (Trails A, Trails B,
Ishihara, n-back, 9-Hole Peg Test; appendix e-1 and
figure e-3). As illustrated by Trails A (figure 4), the
mean performance score across the 26 or more times
that study completers took this test was closer to the
last score recorded than to the first score (figure 4B).

Figure 4 Illustration of a practice effect by examining longitudinal performance measures in patients with MS and cohabitants

(A) Response time for each trial of the Trails A test performed by a participant pair (patient with multiple sclerosis [MS] and cohabitant) over the course of the study.
Each point represents one trial. (B) Comparison of the first, last, and mean values for Trails A in study completers (n 5 39). The last value appears to more closely
match the mean than the first value does. (C, D) For each Trails A trial, a boxplot of the mean score for all MS (n 5 22, C) and cohabitant completers (n5 17, D) is
shown. These plots illustrate a gradual decrease inmean scores for all individuals over the duration of the study, with narrowing of the variance as the practice effect
wanes. (E, F) Results of the spline analysis for Trails A reveal a longer practice effect, on average, in patients with MS (blue line) than in cohabitants (red line) (E). A
similar effect is noted for responses on the 9-Hole Peg Test (F). (G) Illustration of the longitudinal performance of a patient withMS on the Trails A test. The individual
scores (black dashes) appear to improve over time. The black solid line represents the inflection point analysis. After 7 trials, the practice effect appears to taper off.
The location of the inflection point is determined by finding the maximal R-squared value (red line), which peaks around 7 trials for this individual.
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Although present in cohabitants, the practice effect was
more pronounced in patients with MS (figure 4, C and
D). Figure 4A illustrates this trend at the level of one
pair. To more rigorously identify the point at which

scores stop improving and variance narrows, we applied
a spline analysis in the context of a repeated-measures
regression and identified the optimal inflection point.
In Trails A, we found that the model fit best (as
determined by the Akaike information criterion) with
an inflection point at 8 trials for patients with MS and
2 trials for cohabitants (figure 4E). Similar inflection
points were identified in the 9-Hole Peg test, where
optimal inflection points for patients with MS and
cohabitants were 7 and 2, respectively (figure 4F). At
the participant level, we propose the location of the
inflection point as a new outcome measure for MS
that relates to an individual’s ability to learn a new task
(figure 4G). In the current study, almost all study
completers attained a plateau after 10 trials (appendix
e-1 and figure e-4).

Utility of repeated assessments. A major challenge to
capturing naturalistic data outside of a structured
clinical setting is the increased variability in perfor-
mance due to external factors that might influence a
participant’s responses. We illustrate this daily fluc-
tuation in performance on 2 tests, Trails A and MFIS
total score, in a participant pair (patient with MS and
cohabitant, appendix e-1 and figure e-5).

Our hypothesis was that serial measures would
enable us to overcome the environmental noise found
in any one cross-sectional measure. We compared the
correlation matrix for each MS patient’s first entry for
each of the smartphone suite’s measures (figure 5A) to
the correlation matrix for each patient’s mean score
for each measure calculated after removing the first 3
tests (to minimize practice effects) (figure 5B). The
number of pairwise correlations among the different
tests meeting a suggestive p, 0.05 significance thresh-
old increased from 44 (when using the first measure of
each test) to 85 (when using the mean of each test
after minimizing the practice effect). Additional thresh-
olds are reported in appendix e-1 and figure e-6.

Having established our approach to mitigating
environmental noise, we next sought to determine
the point at which ongoing data collection ceases to
provide additional information for a given partici-
pant. Again using Trails A to illustrate, we compared
the inflection points obtained from 26 trials over 12
months to those obtained from 13 trials performed
in the first 6 months, for study completers only. The
optimal inflection points remained stable when the
length of the trial was shortened: 12 of the 13 patients
withMS (n5 22) identified as having a clear inflection
point in learning when using all 26 trials were also
identified when using 13 trials (92.3% overlap); 11
of these 12 patients showed a stable inflection point
(62) between the 2 trial lengths. Thus, a study of half
the duration and data points may have been sufficient
to accurately capture an individual’s inflection point. In

Figure 5 Pairwise correlations between selected patient-reported outcomes
and performance tests in patients with MS

(A) The number of pairwise correlations meeting a nominal p, 0.05 significance when the first
measure obtained from each participant is used. (B) The number of pairwise correlations meet-
ing the nominal p, 0.05 threshold when themean of all responses for an individual patientwith
multiple sclerosis (MS) is used, omitting a 3-test run-in. The number of significant correlations
increases from 46 to 88. The intensity of the color is proportional to the strength of the cor-
relation, with positive correlations denoted in blue and inverse correlations in red.
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an additional approach to estimating an appropriate
trial duration, we compared the between-test correla-
tion matrices obtained when using 6- vs 12-month data
(using means after the first 3 run-in trials for each test).
We found 73 pairwise correlations using 6 months of
data, compared with 85 correlations using all 12
months of data (appendix e-1 and figure e-7).

Finally, we again used Trails A to illustrate the statis-
tical power gained to detect differences between cohorts
by obtaining repeated assessments. Between our cohort
of 22 patients with MS and 17 cohabitants, we had
19% power to detect a difference in Trails A mean post
run-in score of 2.6 seconds at an a5 0.05 level using a
2-sample t test, using the SD of mean post run-in
values.10,11 This power was 7% when using the SD
obtained after the first measurement and 8% when
using the SD obtained after the last measurement.

Thus, as anticipated, after allowing time for learn-
ing the task, the average measure of performance over
time provided a more informative measure of an indi-
vidual’s performance than a random cross-sectional
assessment and may provide greater statistical power
to detect differences between groups.

DISCUSSION In this 1-year study, we assessed the
feasibility of data collection using the smartphone
platform. We saw that both healthy participants
and patients with MS are capable of completing daily
tasks on a smartphone for 1 year and that new pheno-
types can be derived from repeated measures captured
over 6 months to 1 year. Thus, deployment of a variety
of cognitive and motor tests via the smartphone plat-
formmay be a feasible way of overcoming the challenges
of naturalistic data collection and of gathering highly
granular data that accurately describe disease course.

Our study falls within a wider effort for more
patient-powered methods of data collection. Other
strategies for the remote assessment of patient symp-
toms and status include (1) Web-based platforms for
assessment of daily symptoms requiring periodic
computer log-ins (e.g., patientslikeme.com7); (2)
large global MS research registries such as the North
American Research Committee on MS, in which par-
ticipants complete mailed questionnaires12–14; and (3)
daily gait measures using accelerometer devices.15,16 All
of these efforts document the urgency of finding better
ways to define the disability of patients withMS. No one
device or approach is sufficient to do this, so we must
begin to combine complementary platforms and devices
to achieve this goal.

The MSCODES3 study illustrates the potential
for collecting previously uncaptured dimensions of
MS disability and holds important lessons for plan-
ning future studies that will include next-generation
applications that are more agile and less burdensome.
First, perceived deficits in vision and cognition at

study entry are associated with study dropout. In
future studies, the interface will need to be improved
using user-centered design to enhance study completion
rates in individuals with such deficits. Second, subject-
specific learning curves will be a feature of repeated data
collection, and we propose an inflection-point analysis as
an additional dimension of performance.We also provide
empirical data on the length of observation needed to
establish a robust estimate of an individual’s performance;
6 months of data appeared to be sufficient. Finally, a
preponderance of participants consistently responded to
daily prompts to complete tasks despite not receiving
regular clinical or coordinator feedback on their partici-
pation. In future studies, the impact of providing each
participant with periodic feedback, whether automated
or via a personalized coordinator “check-in,” must be
assessed as an approach to enhance compliance and study
retention. Here, the integration of patient-generated data
with clinically generated data is likely to yield important
advances in the area of precision medicine.17

Our study had certain limitations. First, it was not de-
signed to identify features distinguishing participants
with and without MS. Our data now enable us to design
well-powered studies of this type. Second, future studies
are needed to identify the panel of tests that is optimal for
different MS patient subtypes (including progressive dis-
ease). Third, validation of the performance of next-
generation smartphone-based tests against specific stan-
dard pen-and-paper versions (as has been performed
for some of the tests that we deployed6) will be an impor-
tant step in future smartphone-based endeavors. Fourth,
we had significant attrition of participants over the course
of the year-long study, which limits the generalizability of
our results. Studying the relationship between cognitive
deficits and study retention, however, will inform future
study designs of this type, which was one of the primary
goals of this study. Finally, our results are more illustra-
tive and exploratory than definitive in light of the limited
statistical power due to our pilot study design and the
number of exploratory analyses performed.

Improving the understanding of the dynamics of our
patients’ symptomatic fluctuations could help to account
for some of the noise in naturalistic data collection.
Others have previously reported assessment of circadian
rhythms in fatigue using “real-time” monitoring on
wrist-worn devices.18 In the future, an improved ability
to capture meaningful fluctuations in performance could
result in automated flags alerting the user and authorized
individuals that a change in clinical function has occurred
and should be investigated. Premature today, such a clin-
ical deployment raises important privacy issues that are
technologically complex but readily addressable. What
we now need to better understand are the concerns of
patients regarding their comfort with passive continuous
digital data acquisition and what information they may
want to access.
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Current strategies that rely on intermittent clini-
cal, imaging, and neuropsychological testing in a
structured setting clearly provide valuable informa-
tion but have important limitations, particularly in
studying the progressive phase of MS and other neu-
rodegenerative diseases. Much remains to be done in
understanding whether and how smartphone-based
data can contribute clinically meaningful informa-
tion; iterative development is required to move
beyond traditional tests to more meaningful passively
acquired data. Yet harnessing the potential and over-
coming the challenges of naturalistically collected
data will be an important part of deep patient pheno-
typing as studies are scaled to the very large sample
sizes (n . 5,000) that are necessary for large endeav-
ors such as gene discovery.
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