
H O S T E D  B Y
Available online at www.sciencedirect.com
www.elsevier.com/locate/ssci

S l e e p S c i e n c e 8 ( 2 0 1 5 ) 9 – 1 5
http://dx.doi.org
1984-0063/& 201
NC-ND license (

nCorresponden
University of Sy
fax: þ61 2 9351 9

E-mail addre
Peer review un
The validity of Actiwatch2 and SenseWear armband
compared against polysomnography at different
ambient temperature conditions
Mirim Shina,n, Paul Swanb, Chin Moi Chowa

aDelta Sleep Research Unit, Exercise, Heath & Performance Research Group, Faculty of Health Sciences,
The University of Sydney, Lidcombe, NSW, Australia
bAustralian Wool Innovation Limited, The Woolmark Company, Sydney, NSW, Australia
a r t i c l e i n f o

Article history:

Received 20 October 2014

Received in revised form

30 January 2015

Accepted 16 February 2015

Available online 3 March 2015

Keywords:

Actigraphy

SenseWear armband

Validation

Sleep variables

Sleep-wake epoch analysis

Bland–Altman plots
/10.1016/j.slsci.2015.02.003
5 Brazilian Association of Sle
http://creativecommons.org/

ce to: Delta Sleep Research
dney, 75 East Street, Discip
204.
ss: mshi0568@uni.sydney.ed
der responsibility of Brazili
a b s t r a c t

There were no validation studies on portable sleep devices under different ambient

temperature, thus this study evaluated the validity of wrist Actiwatch2 (AW2) or Sense-

Wear armband (SWA) against polysomnography (PSG) in different ambient temperatures.

Nine healthy young participants (6 males, aged 23.374.1 y) underwent nine nights of study

at ambient temperature of 17 1C, 22 1C and 29 1C in random order, after an adaptation

night. They wore the AW2 and SWA while being monitored for PSG simultaneously.

A linear mixed model indicated that AW2 is valid for sleep onset latency (SOL), total sleep

time (TST) and sleep efficiency (SE) but significantly overestimated wake after sleep onset

(WASO) at 17 1C and 22 1C. SWA is valid for WASO, TST and SE at these temperatures, but

severely underestimates SOL. However, at 29 1C, SWA significantly overestimated WASO

and underestimated TST and SE. Bland–Altman plots showed small biases with acceptable

limits of agreement (LoA) for AW2 whereas, small biases and relatively wider LoA for most

sleep variables were observed in SWA. The kappa statistic showed a moderate sleep–wake

epoch agreement, with a high sensitivity but poor specificity; wake detection remains

suboptimal. AW2 showed small biases for most of sleep variables at all temperature

conditions, except for WASO. SWA is reliable for measures of TST, WASO and SE at

17–22 1C but not at 29 1C, and SOL approximates that of PSG only at 29 1C, thus caution is

needed when monitoring sleep at different temperatures, especially in home sleep studies,

in which temperature conditions are more variable.
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1. Introduction

In-home studies are becoming increasingly common for sleep
monitoring as portable sleep devices are not only more
affordable, but can be worn comfortably over extended
periods of time without interfering with the participants’
routine [1–3]. Two important factors govern the quality of
the sleep data that are recorded in the home: the validity of
the sleep monitoring instrument, and the sensitivity of the
instrument to changes in temperature.

Various models of actigraphy have been validated
against PSG under laboratory conditions [2,4,5] in healthy
adolescents, young, and older adults [1,6], and in clinical
populations of insomnia, major depressive disorder, demen-
tia and sleep-disordered breathing [1,7], with an overall
sleep and wake epoch agreement of 72.1–96.5% [4]. Similarly,
sleep validation with the SWA (SenseWear armband) which
is originally designed to measure energy expenditure and
later adopted for sleep measures has been conducted in
healthy subjects [8], children and adolescents [8,9] and
patients with obstructive sleep apnea [10] with a sleep and
wake epoch agreement of 79.971.6% [10]. However, SWA
differs from the numerous models of actigraphy in that
in addition to employing an accelerometer for motion mon-
itoring, it has a heat flux sensor, a skin temperature sensor
and a galvanic skin response sensor that detects electrical
conductivity. Despite an added feature of skin temperature
measurement, previous validation studies found that SWA
did not improve sleep onset detection compared to actigra-
phy [8,10].

Notably, the sleeping environment in which home
studies are conducted is often not standardized especially
with respect to ambient temperatures due to seasonal
changes. According to the data collected from Summer
2012 to Summer 2014 in Australian houses by the Faculty
of Architecture, The University of Sydney, the recorded
overnight average temperatures (from 2200 to 0600 h)
over the four seasons were: Summer, 24.3 1C71.6 1C; Autumn,
21.6 1C72.2 1C; Winter, 17.1 1C72.6 1C; and Spring,
21.1 1C71.9 1C (Australian Research Council’s Discovery
Projects, DP 11010559). The observed large temperature
variation, in spite of air-conditioning being used in the
monitored rooms, would suggest an expected greater
variation in homes that are not centrally heated. However,
there have been no studies that examine the validity of
actigraphy and SWA under different ambient temperature
conditions. Given the differing principles of measure-
ments between actigraphy and SWA, a validation study is
warranted to evaluate the concordance rates for sleep vari-
ables simultaneously recorded from these devices and PSG. In
this study, the Actiwatch 2 (AW2) (Phillips-Respironics) was
used. Hence, agreement rates between AW2, SWA and PSG
were examined under ambient temperatures of 17 1C, 22 1C
and 29 1C. The objective of the study was to test the validity of
AW2 and SWA for sleep assessment against PSG. We
hypothesized that the performance of SWA may be more
affected by ambient temperatures since it also measures skin
temperature.
2. Method

2.1. Participants

Nine healthy participants (six males, aged 23.374.1 y, BMI
22.672.4 kg m�2) were recruited. Participants with pre-
existing medical conditions such as sleep disorders (insom-
nia, sleep apnea, periodic limb movement disorders and
bruxism), cardio-respiratory conditions (hypertension, cardi-
ovascular diseases, respiratory infections, chronic obstructive
pulmonary diseases), and metabolic conditions (diabetes,
metabolic syndrome) were excluded. Individuals on night
shifts or medications/drugs, or who smoked or had travelled
across trans-meridian borders in the last 2 weeks were also
excluded. Participants avoided alcohol, caffeinated beverages,
and vigorous exercise 8 h before their averaged bedtime on
study days. The study was approved by the University of
Sydney Human Research Ethics Committee.
2.2. Procedures

All participants completed a consent form and a question-
naire including demographics and medical history. They
wore the AW2 for a week, prior to overnight sleep studies,
to determine their average bedtime and rise time for study
scheduling. They attended the sleep laboratory on ten occa-
sions. After an adaptation night, all participants were rando-
mized to nine different sleeping conditions with four nights
at 17 1C, two nights at 22 1C and three nights at 29 1C. At both
17 1C and 22 1C, participants wore pyjamas (long sleeve top
and pants) with bedding. At 29 1C, participants only wore
shorts and a singlet. On each test night, participants ate a
standardized mixed macronutrient meal 4 h before their
average bedtime. Participants continuously wore SWA from
the morning of each study session (removed only when
taking a shower), whereas AW2 and PSG were applied 4 and
2 h before their bedtime, respectively. All measures of PSG,
AW2 and SWA were collected simultaneously as participants
slept at the University sleep laboratory. The data were
collected as part of a study that investigated the effect
of apparel and bedding type and ambient temperatures
on sleep.

2.3. Measures

2.3.1. Polysomnography
Sleep parameters were measured using the Compumedics
E-series or W-series Sleep system (Compumedics Australia
Pty Ltd., Australia). EEG electrode placement (C3/A2, O2/A1
and F3/Cz for W-series or F3/A2 for E-series) was conducted in
accordance with the International 10–20 system. EOG, sub-
mental EMG and ECG were continuously recorded. All elec-
trode sites were referenced to the vertex (Cz), and a ground
electrode was attached to the forehead (Fpz). On the adapta-
tion night, left and right leg EMG, oxygen saturation, thoracic
and abdominal breathing movements and airflow were also
recorded to exclude sleep disorders. PSG data were scored by



Table 1 – Sleep indices (mean7SD) recorded from PSG
(n¼81), AW2 (n¼79) and SWA (n¼81).

PSG AW2 SWA

SOL (min)
17 1C 21.6717.0 15.5715.7 10.3712.0*

22 1C 22.9718.0 26.5729.6 9.279.5*

29 1C 24.9719.2 18.4718.2 17.4716.4
WASO (min)
17 1C 20.1716.1 33.2723.7* 22.9723.7
22 1C 21.5717.3 33.0721.8* 16.8714.2
29 1C 27.1721.0 34.3717.1 48.1740.2*

TST (min)
17 1C 451.2754.3 442.2755.9 451.3757.1
22 1C 433.4747.7 415.8758.2 438.8757.9
29 1C 436.4769.6 429.3768.2 403.4776.0*

SE (%)
17 1C 91.375.1 89.475.8 91.975.2
22 1C 90.274.9 86.678.3 92.374.3
29 1C 88.578.1 87.277.3 83.7710.5*

PSG, polysomnography; AW2, Actiwatch 2; SWA, SenseWear arm-
band.
n Significant difference between AW2, SWA and PSG, po0.05.
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two experienced scorers according to the American Academy
of Sleep Medicine (AASM) guidelines [11].

2.3.2. Actigraphy
The AW2 (Phillips-Respironics, Murryville, PA) was placed on
the non-dominant wrist. The data were collected in 30 s
epochs. Rest intervals were manually marked in the actigra-
phy software according to the PSG timing of lights-out (bed-
time) and lights-on (wake time). The standard factory-default
algorithm was used for the estimation of sleep parameters
using the Respironics Actiware v5.59.0015.

2.3.3. SenseWear armband
The SWA Pro3 (BodyMedia Inc., Pittsburgh, PA) was placed on
the upper non-dominant arm over the triceps. Although the
manufacturer has recommended placing the armband on the
right arm, the measurements taken between the right and
left arm were not significantly different [12]. Thus partici-
pants wore both the SWA and AW2 on the same, non-
dominant arm for comparison purposes. The estimates of
energy expenditure, physical activity duration, and sleep and
wake parameters were extracted using proprietary algo-
rithms (SenseWear professional 7.0 software).

2.4. Statistical analysis

Since all nine participants had completed nine study nights,
the PSG and SWA collected 81 data points for each sleep
variable except for AW2, which collected 79 data points due
to technical issues. All data obtained from the PSG, AW2 and
SWA were aligned to the timing of PSG lights-out and lights-
on. A linear mixed model was applied to analyze differences
in sleep variables between the devices at each temperature
condition, with temperature conditions and sleep devices
(PSG, AW2 and SWA) as fixed factors and participants as
random factors. Further post-hoc pairwise comparisons were
performed using the Fisher’s Least Significant Difference
procedure. The Bland–Altman (B–A) plots (MedCalc software,
Belgium) displayed the mean bias (the average of the differ-
ences between two methods) and 95% limits of agreement
(the mean bias plus or minus 1.96 times its SD) [13]. Addi-
tionally, B–A plot with multiple measurements per subject
with the true value varies model was also performed due to
the repeated measure design. Since PSG is considered the
gold standard measurement for sleep, plots of the differences
between AW2/ SWA and PSG against PSG rather than the
mean of the two methods were displayed in this manuscript
[14]. The linear regression was used to evaluate the associa-
tions between sleep parameters (SOL, WASO, TST and SE)
collected from AW2/SWA and PSG (SPSS v20, Chicago, IL).
Wake and sleep epoch (one epoch, 30 s) agreements were
analyzed for AW2/SWA against PSG using the kappa statistic,
which determines the amount of agreement that can be
expected by chance [15]. The kappa statistic ranges from 1
which demonstrates perfect agreement, to 0 which demon-
strates agreement based on chance alone, and to �1 which
demonstrates complete disagreement [1]. As the SWA is
limited to estimating sleep and wake in 1-min epochs, each
1 min output was divided to provide an equivalent measure
in two 30 s epochs as reported previously [10]. For sleep and
wake epoch analysis, data were coded as 0¼wake and
1¼sleep. Overall agreement rates (percentage agreement),
sensitivity, specificity and kappa statistic were calculated
using SPSS v20. Sensitivity is a measure of the ability of the
AW2 or SWA to detect sleep when the PSG has also scored
sleep, and calculated as the number of true sleep epoch/
(number of true sleepþnumber of false wake epoch). Specifi-
city is a measure of the ability of the AW2 or SWA to detect
wake when the PSG indicated the same, and calculated as the
number of true wake epoch/(number of true wakeþnumber of
false sleep epoch) [2].
3. Results

Table 1 shows the mean and standard deviations for SOL,
WASO, TST and SE for PSG, AW2 and SWA at ambient
temperature conditions of 17 1C, 22 1C, 29 1C. The sleep
measures of SOL, TST and SE from AW2, at all temperature
conditions, were not significantly different from those
recorded during PSG. However, WASO was significantly over-
estimated when compared to PSG at 17 1C and 22 1C (Table 1).
The sleep measures recorded from SWA show a significant
underestimation of SOL (at 17 1C and 22 1C), and TST and SE
(at 29 1C), but an overestimation of WASO (at 29 1C) compared
to PSG. Fig. 1, B–A plots for single measurement, has been
specifically chosen to display data sets from different ambi-
ent temperatures and the spread of data especially those that
lie outside of the limits of agreement, i.e., outliers of WASO,
TST and SE at 29 1C (Fig. 1F–H). Table 2 presents the differ-
ences between AW2/SWA and PSG (mean bias), and LoA from
B–A plots with multiple measurements per subject. Consis-
tent with the data presented in Table 1 and Fig. 1, WASO, TST
and SE for SWA show larger mean bias and LoA at 29 1C than
at 17 1C and 22 1C.

Although the correlation coefficients between AW2, SWA
and PSG were generally acceptable with values well above .49,



Fig. 1 – The Bland–Altman plots for SOL, WASO, TST and SE, Left, B–A plots for AW2 and PSG; Right, B–A plots for SWA and
PSG, Mean bias, middle horizontal line showing shift from zero; Limits of agreement (2 standard deviations of bias) as
indicated by the dotted lines on either side of the mean bias line, SOL, WASO, TST are in minutes, SE in percentages, 17 1C,

22 1C and 29 1C—temperature of the sleeping environment.
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Table 2 – Mean bias and limits of agreement for sleep indices recorded from AW2 and SWA at each ambient temperature.

1C SOL WASO TST SE

29 22 17 29 22 17 29 22 17 29 22 17

AW2–PSG
Bias �6.5 3.6 �6.7 7.1 11.5 12.4 �7.1 �17.6 �8.3 �1.3 �3.6 �1.6
LoA 23.6 55.4 22.6 30.5 30.3 27.5 40.3 73.3 38.5 8.3 14.8 7.7

SWA–PSG
Bias �7.4 �13.7 �11.3 20.9 �4.7 2.8 �33.1 5.4 0 �4.9 2.1 0.6
LoA 28.7 32.5 32.1 80.6 31.1 24.1 100.2 46.9 41.6 19.5 8.3 8.1

Table 3 – Linear regression analysis for sleep indices between AW2 and PSG, SWA and PSG.

SOL WASO TST SE

R SEE R SEE R SEE R SEE

AW2 .61 16.44 .73 14.49 .91 24.86 .72 4.92
SWA .52 11.64 .49 27.57 .83 37.71 .54 6.95

R, Pearson’s correlation coefficient; SEE, standard error of estimate.
AW2, Actiwatch 2 (n¼79); SWA, SenseWear armband (n¼81); PSG, polysomnography (n¼81). (po.001 for all results).
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SWA fared poorer compared to AW2 (Table 3). The sleep and
wake epoch agreement rates with PSG were high for both
AW2 (87.6%) and SWA (89.6%). Although the sensitivity
(ability to detect sleep) was high for AW2 (95%) and SWA
(93%), the specificity (ability to detect wake) was low for both
AW2 (45%) and SWA (57%). The Cohen’s kappa coefficients
showed moderate agreement for AW2 (.41) and SWA (.46),
po.001.
4. Discussion

The present study evaluated the concordance between AW2,
SWA and PSG under ambient temperatures of 17 1C, 22 1C and
29 1C. AW2 shows good average agreements with PSG for SOL,
TST and SE at all three temperatures, although it significantly
overestimates WASO at 17 1C and 22 1C (Table 1). The mean
bias for SOL were considered small (range from �6.7 to
3.6 min) and clinically acceptable, consistent with the finding
of a previous study except that their study showed a rela-
tively wider range of LoA [16]. The larger variability may be
the result of the proprietary software default setting. In
contrast, in the present study, lower variability may be
explained by the use of a standardized method for manual
detection of the rest interval (equivalent to time-in-bed) in
which sleep variables are calculated. Although a small bias
was observed for WASO (range from 7.1 to 12.4 min), AW2
significantly overestimated WASO at 17 1C and 22 1C but not
at 29 1C (Tables 1 and 2 and Fig. 1B). This finding contradicted
previous studies, which found that AW2 underestimated
WASO [2,16]. These differences may be explained by the
different model of actigraphy and algorithms used [5], or
different level of activity threshold set [3]. Interestingly, good
agreements for SOL and WASO were observed when sleep
onset was short and wake bouts were low during the sleep
period. Such agreements faded as sleep onset became
delayed and wake bouts increased (Fig. 1A and B) contributing
to the widening of LoA. The present study found good sleep
detection (95%) but poor wake detection (45%) consistent with
that reported in a review study [4]. Good sleep detection may
reflect the good agreement rates in TST and SE at all
temperatures (Fig. 1C and D). Poor wake detection may reflect
the large variability in WASO (Fig. 1B and Table 2). The high
correlations observed for the various sleep variables were
consistent with previous reports [1,2,17]. The correlation
coefficient is the highest for TST (Table 3). However, correla-
tions may reflect how well data points from two measure-
ments lie along any straight line or the line of equality [13].

For SWA, good agreements were observed for TST, WASO
and SE at 17 1C and 22 1C. WASO was overestimated, and TST
and SE were underestimated at 29 1C. SOL was significantly
underestimated at 17 1C and 221, although it was not statis-
tically significantly different from PSG at 29 1C. Similar to a
previous study reporting a bias of �8.7 min [9], the present
study reported mean biases for SOL from �7.4 to �13.7 min
(Table 2). Although SWA employed a skin temperature sensor
and a heat flux sensor to improve the accuracy of estimating
SOL, significant underestimations were observed at 17 1C and
22 1C (po.05) (Table 1). The mechanism for this underestima-
tion is unclear; presumably, at the lower temperatures (17 1C
and 22 1C), skin warming over time, due to heat trapped
under bedding, may cause vasodilation and may have led to
earlier sleep onset detection. SWA showed a significantly
higher WASO than PSG as well as larger LoA at 29 1C (Tables 1
and 2), in line with groups of outliers observed in the B–A plot
(Fig. 1F). This discordance may reflect the principles of
measurements and associated algorithms, in that SWA
detects sleep based on skin temperature, heat flux, skin
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conductance and movement. A study revealed that decreases
in skin conductance provided a sensitive marker for auto-
nomic arousal during sleep [18]. It may be speculated that an
increase in WASO at high ambient temperatures was asso-
ciated with a decrease in skin conductance. Accordingly,
additional analysis was performed to see whether galvanic
skin response values during wake bouts were different at
the three ambient temperatures. ANOVA revealed non-
significant findings suggesting that the outliers displayed by
WASO at 29 1C could not be explained by a drop in galvanic
skin conductance. Should the manufacturer’s algorithm be
known, then discordance would be explained and accuracy
could be improved. Interestingly, we recorded a higher EEG
arousal rate at 22 1C and 29 1C than at 17 1C, although the
difference was not statistically significant. Notably, hot expo-
sure increased wake time during the sleep period [19].
However, we cannot be ascertained of this explanation, since
the SWA’s sleep–wake detection algorithm is not accessible.
This higher WASO at 29 1C may reflect a significantly lower
TST and SE at the same temperature (Tables 1 and 2, Fig. 1G
and H). Similar to AW2, SWA also showed good sleep
detection (93%) but poor wake detection (57%), in agreement
with a previous validation study [10].

The good sleep epoch but poorer wake epoch detection
may be explained by the greater amount of time spent
immobile, so that both AW2 or SWA detect sleep with greater
ease resulting in high sensitivity [2,10,20]. The kappa coeffi-
cient adjusts the amount of agreement that can be expected
by chance. Since a high proportion of sleep epochs occur
during the sleep period, this correction for chance may have
led to a relatively lower kappa statistic, compared to percen-
tage agreement [16].

An analytic limitation was that 30-s epochs were recorded
for PSG and AW2, whereas 1-min epochs were recorded for
SWA. Hence, in the sleep–wake epoch analysis, we divided
the SWA outputs to match each 30-s epoch [10] set for PSG
and AW2. This methodology was likely biased to show poor
ability of the SWA to detect sleep or wake epochs. In addition,
SWA was placed on the non-dominant arm for comparison
purposes. However, placing the SWA on the left arm may not
yield equivalent results, given that the manufacturer-driven
study compared seven subjects that wore the SWA on the
right arm with two subjects that wore it on the left arm. This
issue may cause discordance with PSG.

In summary, AW2 showed minimal bias for the measure-
ments of SOL, TST and SE at all three temperatures, but
significantly overestimated WASO at 17 1C and 22 1C. SWA
also showed minimal bias for WASO, TST and SE but severely
underestimated SOL at 17 1C and 22 1C. In addition, SWA
significantly overestimated WASO and underestimated TST
and SE at 29 1C. Wake detection cannot be ascertained under
all temperature conditions for both devices. In conclusion,
the results of this study show similar validity for sleep
detection of SWA and AW2, except that SWA is dependent
on ambient temperature. Unlike sleep studies conducted in
sleep clinics, home sleep studies are conducted under more
variable temperature conditions. Hence, given the current
findings, monitoring of bedroom temperature is considered
crucial in home sleep studies. Future studies are instigated to
evaluate the concordance rates in sleep assessment for
patients with delayed sleep onset, higher level of WASO
and lower SE (for example, insomnia patients who have
difficulty initiating/maintaining sleep, or obstructive sleep
apnea patients who have fragmented sleep).
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