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Here, we present a method that can improve the z-tracking accuracy of the recently invented

TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination)

microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the

particle’s 3D position that maximizes the likelihood of the observed time-correlated photon count

distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve

the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to

reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less

temporally correlated z-tracking error, we have precisely recovered the hybridization-melting

kinetics of a DNA model system from thousands of short single-particle trajectories in silico.

Our method can be generally applied to other 3D single-particle tracking techniques. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932224]

High-resolution tracking microscopes typically require

4–5 single-photon counting devices to track single particles

in the 3D space.1–3 Recently, we demonstrated a 3D tracking

microscope, termed TSUNAMI (Tracking of Single particles

Using Nonlinear And Multiplexed Illumination, Fig. 1(a)),

that uses only one photomultiplier tube (PMT) to achieve

high-resolution 3D single-particle tracking (3D-SPT).4,5 A

two-photon microscope by its nature, TSUNAMI enables

multicolor imaging and provides an imaging depth that

cannot be achieved by traditional feedback-driven micro-

scopes.6–8 3D tracking of epidermal growth factor receptor

complexes at a depth of �100 lm in live tumor spheroids

has been demonstrated.5 In addition, TSUNAMI can provide

particle localization precision as good as 35 nm (at shallow

depths) and temporal resolution down to 50 ls (with bright

fluorophores).5 Whereas SPT is probably the most suitable

method for determining whether the tracked particles (here,

particles can be single biomolecules such as DNA, mem-

brane receptors, and transcription factors) form dimers or

complexes with other particles,9,10 the current embodiment

of TSUNAMI cannot precisely probe binding-unbinding

kinetics of the tracked particles for two reasons. First, the

z-tracking error of TSUNAMI is considerably larger than its

xy-tracking error (nearly 2-fold).4,5 Second, the z-tracking

error is correlated over time, which has made the trajectory

analysis tools that assume tracking errors to be white

Gaussian noise perform poorly. In this letter, we overcome

the above problems by implementing a maximum likelihood

position estimator as the tracking algorithm. Precise binding-

unbinding kinetics of a model system are recovered from

thousands of short single-particle trajectories in silico.

In TSUNAMI, multiplexed illumination is achieved by

splitting the pulsed laser beam from a 76 MHz Ti-sapphire

oscillator into four beams, with each beam delayed by

3.3 ns relative to the preceding one (Fig. 1(a)). These

beams are focused through a 60 � 1.3 N.A. objective

(UPLSAPO 60XS, Olympus) at slightly offset xyz posi-

tions, generating four barely overlapped two-photon exci-

tation volumes. These four excitation volumes form a

tetrahedral geometry in the sample space (colored oval

balls in Fig. 1(a) inset), and they receive laser pulses at dif-

ferent time frames (Fig. S111). With time-correlated single

photon counting (TCSPC) analysis, each detected photon

can be assigned to a 3.3 ns-wide time gate (G1-G4 in the

fluorescence decay histogram, Fig. S111), and therefore

attributed to a specific excitation volume (EV1-EV4 in Fig.

1(a) and Note S111).

When the tracked particle (which is also called the

“emitter” below) is right at the center of the excitation tetra-

hedron, photon counts in the four time gates are about equal

(i.e., I1¼ I2¼ I3¼ I4). Any xyz displacement (Dx, Dy, and

Dz) of the emitter from the tetrahedron center can be esti-

mated via the normalized differences of photon counts in the

four time gates (Figs. S1(c) and S1(d)11), namely, the error

signals (Ex, Ey and Ez)12

Dx ¼ kxEx ¼ kx
I1 � I2

I1 þ I2

;

Dy ¼ kyEy ¼ ky
I3 � I4

I3 þ I4

;

Dz ¼ kzEz ¼ kz
I1 þ I2ð Þ � I3 þ I4ð Þ
I1 þ I2ð Þ þ I3 þ I4ð Þ ;

(1)

where kx, ky, and kz are proportional gains (constants in unit

of lm) that have been previously determined and

optimized.3

Once the particle’s displacement is determined, a feed-

back loop steers the galvo mirrors and the objective z-piezo

stage to lock the tetrahedral excitation volumes on the parti-

cle (Note S111). The particle’s 3D trajectory is given by the

xy location of the excitation beams (xy) and the z translation

of the piezo stage (z) in each time step.
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In the error signal analysis (ESA, Eq. (1)), the responsiv-

ities of the tracking system (i.e., the change of x-, y-, z-error

signal per micron displacement of the tracked particle) are

determined by the gradient of the square of excitation inten-

sity.3 Due to the elongated excitation volume, tracking

responsivity is considerably smaller in the z direction (Fig.

S211), resulting in a much worse z-tracking accuracy. Other

than this native tracking responsivity issue, we experimen-

tally found that the dependence of Ez on emitter’s xy position

(Fig. S311) could also deteriorate the z-tracking accuracy. In

our optical modeling (see Note S211 for details), we can

clearly see that the resulting z-error signal functions EzðzÞ at

the four lateral locations A-D are not identical—they have

the same slope but distinct intercepts (Fig. 1(c)). When Ez is

zero, ESA will simply interpret the situation as perfect

z-locking on the tracked particle (Eq. (1)). However, the

actual z displacement of the emitter (Dz) can be �0.12 lm

(A, yellow line), 0 lm (B, blue line) or þ0.34 lm (C, purple

line). As a result, a false Dz interpretation leads to a false

objective stage response (piezo stage does not move when Ez

is zero, Fig. S4(a)11), which not only increases tracking

errors but also reduces tracking duration (easier to lose the

tracked particle). A straightforward way to fix the problem is

to compensate the z-error signal functions in Fig. 1(c) by tak-

ing emitter’s estimated lateral position (x̂, ŷ) into account

(Note S311). However, our Monte Carlo simulations indicate

that only a marginal improvement (�10%) in the z-tracking

accuracy can be achieved by this remedy (Note S311).

FIG. 1. (a) Schematic of the TSUNAMI 3D tracking microscope. P: p-polarized light. S: s-polarized light. HWP: half-wave plate. PBS: polarizing beamsplit-

ter. BD: beam dump. TS: telescope. TSUNAMI uses spatially multiplexed two-photon excitation and temporally demultiplexed detection to achieve 3D

single-particle tracking. Spatial multiplexing is enabled through an optical system which utilizes two beam splitters (BS1 and BS2) to generate four beams,

which can be quasi-independently controlled via two mirrors (M1 and M2) and a telescope. Physical delay in free space provides temporal separation between

these beams. Tracking actuation is performed by raster scanning mirrors (SM) and an objective focusing stage (z-piezo). (b) The heat map displays the illumi-

nation intensity distribution of two excitation volumes (EV1 and EV2), at the z¼ 0 plane. EV1 and EV2 are offset by 0.6 lm in the x axis, and EV3 and EV4

(not shown here) are offset by 0.6 lm in the y axis. (c) The z-error signal functions EzðzÞ at four lateral locations: A(�0.1, 0), B(0, 0), C(0.1, 0.2), and D(0,

�0.2). EzðzÞ at r
*

0¼ (x0, y0) is calculated as follows: EzðzÞ¼ ð
P2

i¼1 Iiðr*0; zÞ �
P4

i¼3 Iiðr*0; zÞÞ=
P4

i¼1 Iiðr*0; zÞ. Although the slopes of all four z-error signal

functions are identical, their vertical intercepts vary from �0.12 to 0.025. Consequentially, a fluorescent particle at D (0, �0.2, 0) will be misinterpreted by the

error signal analysis as below the z¼ 0 plane (i.e., Dz< 0) as Ez< 0, while a particle at A (�0.1, 0, 0) will be misinterpreted as above the z¼ 0 plane (i.e.,

Dz> 0) as Ez> 0.
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An algorithm that can significantly increase the z-tracking

accuracy is maximum likelihood estimation (MLE). Using

MLE for particle position estimation, Sahl and coworkers have

previously achieved 2D single-particle tracking with xy-

localization error as small as 10–20 nm.13 MLE finds the most

likely position of the emitter by comparing the recorded pho-

ton counts in the four time gates ~I ¼ ½I1; I2; I3; I4� with a 3D

reference map ~Rðx; y; zÞ ¼ ½R1ðx; y; zÞ; R2ðx; y; zÞ; R3ðx; y; zÞ;
R4ðx; y; zÞ�, where Riðx; y; zÞ denotes the photon counts in the

i-th time gate when the reference emitter is located at position

ðx; y; zÞ. Such a 3D reference map ~Rðx; y; zÞ can either be

established by optical modeling (Note S411), or established

experimentally by raster scanning the excitation tetrahedron

with an immobilized fluorescent nanoparticle (i.e., the refer-

ence emitter) while recording the four signal intensities as a

function of the particle’s position. ~Rðx; y; zÞ is further normal-

ized such that
P4

i¼1 Riðx; y; zÞ ¼ 1. For a given emitter posi-

tion ðx; y; zÞ, the probability of detecting Ii photons in the i-th
time gate follows Poisson distribution (where Ri is the

expected value and the variance)

pi Ii; Rijx; y; zð Þ ¼ ðRiðx; y; zÞÞ Ii

Ii!
expð�Riðx; y; zÞÞ: (2)

The likelihood of detecting ~I photons at a position

ðx; y; zÞ with ~Rðx; y; zÞ expected photons on average is given

by the product of the above probabilities

Lð~I; ~Rjx; y; zÞ ¼ P
4

i¼1
piðIi; Rijx; y; zÞ: (3)

The most likely position of the emitter is thus the loca-

tion where this likelihood L is maximized, or equivalently

where the log-likelihood is maximized14

ðx̂; ŷ; ẑÞ ¼ argmax
ðx;y;zÞ

X4

i¼1

IilnðRiðx; y; zÞÞ
" #

: (4)

In each time step, we search for a position ðx; y; zÞ that

maximizes the log-likelihood ½
P4

i¼1 IilnðRiðx; y; zÞÞ] and uses

that to represent the emitter’s position (Note S411).

By virtue of MLE, the z-tracking accuracy is enhanced

by 1.7 fold (Table I, also see Note S311 for details of this

simulation). While the z-tracking error is still larger than the

xy-tracking error, their relative difference is reduced from

129 6 23% to 33 6 4%. Besides, the relative error for the

calculated diffusion coefficient is decreased from 14 6 1% to

less than 2%. The improvement of the z-tracking accuracy

can be clearly seen in the z-tracking error histograms (Figs.

S5(b) and S5(d)11). Both histograms could be well described

by a Gaussian distribution, with mean approximately equal

to zero. Comparing the two tracking schemes, MLE clearly

gives a narrower z-tracking error distribution (r¼ 50.2 nm

vs. 93.9 nm) and a better diffusion coefficient estimate

(D̂¼ 0.50 lm2/s vs. 0.47 lm2/s).

In single-particle tracking, the localization errors are of-

ten modeled as time-independent white Gaussian noise when

studying the effects of localization errors on the particle

behavior interpretation (e.g., free diffusion or confined diffu-

sion).15–17 While the white Gaussian noise model greatly

simplifies mathematical analysis of localization errors, the

white Gaussian noise assumption may not be true in the real

tracking experiments. Indeed, with close examination, we

found many of the published single-particle trajectories

show notable temporal correlation in their tracking

errors2,6,7,18–20 (Fig. S611). Below we demonstrate that tem-

porally correlated tracking errors make the current trajectory

analysis tools perform poorly and the MLE tracking scheme

alleviates this problem by generating temporally uncorre-

lated tracking errors.

To investigate the temporal properties of tracking errors,

we plotted the autocorrelation functions C(s)21 of white

Gaussian noise, ESA z-tracking error and MLE z-tracking

error in Fig. 2(a), and fitted them with a single exponential

decay model22 (Ae�t=s0Þ. As expected, the autocorrelation

function of zero-mean white Gaussian noise (CGAU) asymp-

totically approaches a delta function, showing no temporal

correlation at all. Similar to CGAU, the autocorrelation func-

tion of the MLE z-tracking error (CMLE) decays rapidly, with

a temporal correlation length s0 ¼ 0.36 (in units of time

steps). On the contrary, CESA decays slowly with s0 ¼ 2.06.

To understand the whiteness of the z-tracking errors, their

power spectral densities23 (PSD) were plotted and compared

(Fig. 2(b)). Ideal white noise has a constant PSD. Both auto-

correlation and PSD analyses indicate that the z-tracking

TABLE I. Comparison of tracking errors from four different position esti-

mation algorithms. D̂ is the estimation of true diffusion coefficient D, ESA:

error signal analysis, and MLE: maximum likelihood estimator.

Method XY (nm) Z (nm) D̂ (lm2=s)

D¼ 0.5 lm2=s ESA 42.9 87.6 0.42 60:06

MLE 38.7 50.7 0.51 6 0.06

D¼ 1.0 lm2=s ESA 53.4 123.8 1.14 6 0.13

MLE 55.6 72.8 1.00 6 0.11

D¼ 1.5 lm2=s ESA 65.7 164.7 1.76 6 0.20

MLE 69.0 95.5 1.53 6 0.18

FIG. 2. (a) Normalized autocorrelation functions of zero-mean white

Gaussian noise (CGAU, black), ESA z-tracking error (CESA, blue) and MLE

z-tracking error (CMLE, red). The autocorrelation function C(s) of error e(t)

is defined as: CðsÞ ¼ hdeðtÞ � deðtþ sÞ=eðtÞi2, where hi represents averaging

over time and deðtÞ ¼ eðtÞ � heðtÞi: (b) Power spectral densities of ESA z-

tracking error (blue) and MLE z-tracking error (red). The fitted slopes are

also shown in inset (coefficient value 6 one standard deviation). A constant

power spectral density is the characteristic of white noise. In this simulation,

the diffusive particle (D¼ 0.5 lm2/s) is tracked for 20 s. Each time step is

5 ms.
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error from the MLE scheme is a better approximation of

white Gaussian noise.

Temporally uncorrelated tracking errors can be crucial

for the reliable recovery of molecular kinetics from 3D-SPT

data. We have verified this hypothesis using DNA hybridiza-

tion and melting kinetics as a model system (see details

in Fig. S711). In our simulations, transition between the

hybridized state (Dh¼ 0.15 lm2/s) and the melted state

(Dm¼ 0.30 lm2/s) is a memoryless process, with a rate con-

stant kon¼ 2.99 � 105 M�1 s�1 for hybridization and a con-

stant koff ¼ 0.7 s�1 for melting.24 The tracking duration

varies from 0.5 s to 1.5 s, limited by the photostability of the

fluorescent tag. A hidden Markov model (HMM) is adopted

to model the random switch between the two diffusive

states,24–26 and a 3D variational Bayes method (vbSPT)27 is

used to determine the hybridization-melting kinetics (i.e., kon

and koff) from downsampled 3D trajectory data. Here, down-

sampling of the raw trajectory data (time step dt¼ 5 ms) is

just an additional step to further decorrelate tracking errors

at the expense of worse effective temporal resolution.

The relative errors of k̂on and k̂off (estimates of rate con-

stants) are a function of effective temporal resolution

(Dt¼N dt, 1/N is the downsampling ratio), number of tracks,

and tracking duration (Figs. 3 and S811). Consistent with pre-

vious reports,27 the relative errors of k̂on and k̂off monotoni-

cally decrease with increasing number of tracks and tracking

duration. Without any downsampling (Dt¼ 5 ms), the rela-

tive errors of k̂on are over þ70% for ESA tracking (Fig. 3(b))

and in a range of þ20% to þ40% for MLE tracking (Fig.

3(c)). These large positive relative errors are predominantly

caused by the temporal correlation of the tracking errors,

which can be reduced by downsampling. Using a

downsampling ratio of 1/2 (Dt¼ 10 ms), the relative errors of

k̂on fall within 65% for MLE tracking. On the other hand,

even though a downsampling ratio 1/7 is used (Dt¼ 35 ms),

the relative errors of k̂on are still biased and over þ12% for

ESA tracking. In other words, MLE tracking offers both bet-

ter molecular kinetics estimation and higher effective tempo-

ral resolution.

Both enhanced z-tracking accuracy and less temporally

correlated z-tracking errors can contribute to the improved

molecular kinetics estimation shown in Fig. 3(c). To under-

stand their relative importance, we have tested two scenarios

in our simulations (Note S511): (a) the z-tracking errors

are kept small, but they are temporally correlated; (b) the

z-tracking errors are large, but they are temporally uncorre-

lated. By comparing the relative errors given by the MLE-

based tracking and the scenario (a), we have found that more

precise kinetics estimation in MLE-based tracking cannot be

solely explained by better z-tracking accuracy (Note S511).

On the other hand, by comparing the relative errors given by

the ESA-based tracking and the scenario (b), we have found

that the quality of kinetics characterization can be dramati-

cally improved solely by making the tracking error less cor-

related over time, even when the tracking error amplitude

remains the same. Therefore, decorrelation of z-tracking

error plays a critical role in reliable recovery of molecular

kinetics.

In conclusion, we have developed a maximum likeli-

hood estimator (MLE) that can improve the z-tracking accu-

racy of TSUNAMI microscope by 1.7 fold, without

sacrificing the xy-tracking accuracy. MLE outperformed the

traditional ESA tracking scheme mainly because ESA has a

fundamental flaw in its z-position estimate—the cross-talk

FIG. 3. (a) Downsampling of the raw trajectory data. Raw trajectory data have a temporal step size Dt¼ 5 ms. Downsampling ratios of 1/2 and 1/3 result in

Dt¼ 10 ms and Dt¼ 15 ms, respectively. Downsampled trajectories are then analyzed by the 3D variational Bayes method (vbSPT)27 in order to discern the

binding-unbinding kinetics (k̂on and k̂off ) of the tracked particle. (b) Relative error of k̂on derived from ESA-based trajectories. (c) Relative error of k̂on derived

from MLE-based trajectories. In this simulation, the number of tracks and track duration are varied to assess the convergence of vbSPT. Each bar represents

one vbSPT analysis of 1,000-7,000 trajectories, with bar height showing the relative error of k̂on and bar color encoding tracking duration (0.5 s—purple,

0.7 s—dark blue, 0.9 s—light blue, 1.1 s—green, 1.3—orange, and 1.5 s—yellow). The horizontal grey planes are where the relative error equals 6 5%. The 6

bar groups in (b) correspond to k̂on obtained from 6 different downsampling ratios, whose Dt are integer multiples of 5 ms. Similarly, the 4 bar groups in (c)

correspond to k̂on obtained from 4 different downsampling ratios.
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between the lateral and axial direction is not accounted for.

MLE, on the other hand, uses all the information available

for position estimate (including any possible cross-talk),

therefore resulting in a much smaller z-tracking error. We

believe that the less temporally correlated z-tracking error

found in MLE tracking is also a result of its better position

estimate in each time step. With less temporally correlated

tracking error, precise hybridization-melting kinetics of a

DNA model system have been recovered from thousands of

short trajectories in silico. Our preliminary implementation

of the MLE algorithm on a quad-core Windows PC suggests

that MLE can be run in quasi real time (<1 ms), and

potentially can be further accelerated by dedicated field-

programmer gate array (FPGA). Our approach can be readily

applied to other feedback-driven SPT techniques which

suffer from the large z-tracking error and the temporally

correlated-tracking-error issues.7 This work demonstrates

that temporally uncorrelated tracking error is as important as

small tracking error, and binding-unbinding kinetics cannot

be correctly characterized without first examining the tempo-

ral properties of tracking/localization errors.
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