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Purpose: The work presented here demonstrates an application of diffuse optical tomography (DOT)
to the problem of breast-cancer diagnosis. The potential for using spatial and temporal variability
measures of the hemoglobin signal to identify useful biomarkers was studied.
Methods: DOT imaging data were collected using two instrumentation platforms the authors devel-
oped, which were suitable for exploring tissue dynamics while performing a simultaneous bilateral
exam. For each component of the hemoglobin signal (e.g., total, oxygenated), the image time series
was reduced to eight scalar metrics that were affected by one or more dynamic properties of the breast
microvasculature (e.g., average amplitude, amplitude heterogeneity, strength of spatial coordination).
Receiver-operator characteristic (ROC) analyses, comparing groups of subjects with breast cancer
to various control groups (i.e., all noncancer subjects, only those with diagnosed benign breast
pathology, and only those with no known breast pathology), were performed to evaluate the effect
of cancer on the magnitudes of the metrics and of their interbreast differences and ratios.
Results: For women with known breast cancer, simultaneous bilateral DOT breast measures reveal a
marked increase in the resting-state amplitude of the vasomotor response in the hemoglobin signal for
the affected breast, compared to the contralateral, noncancer breast. Reconstructed 3D spatial maps
of observed dynamics also show that this behavior extends well beyond the tumor border. In an effort
to identify biomarkers that have the potential to support clinical aims, a group of scalar quantities
extracted from the time series measures was systematically examined. This analysis showed that
many of the quantities obtained by computing paired responses from the bilateral scans (e.g., inter-
breast differences, ratios) reveal statistically significant differences between the cancer-positive and
-negative subject groups, while the corresponding measures derived from individual breast scans
do not. ROC analyses yield area-under-curve values in the 77%–87% range, depending on the
metric, with sensitivity and specificity values ranging from 66% to 91%. An interesting result is
the initially unexpected finding that the hemodynamic-image metrics are only weakly dependent
on the tumor burden, implying that the DOT technique employed is sensitive to tumor-induced
changes in the vascular dynamics of the surrounding breast tissue as well. Computational modeling
studies serve to identify which properties of the vasomotor response (e.g., average amplitude,
amplitude heterogeneity, and phase heterogeneity) principally determine the values of the metrics
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and their codependences. Findings from the modeling studies also serve to clarify the influence of
spatial-response heterogeneity and of system-design limitations, and they reveal the impact that a
complex dependence of metric values on the modeled behaviors has on the success in distinguishing
between cancer-positive and -negative subjects.
Conclusions: The authors identified promising hemoglobin-based biomarkers for breast cancer from
measures of the resting-state dynamics of the vascular bed. A notable feature of these biomarkers is
that their spatial extent encompasses a large fraction of the breast volume, which is mainly indepen-
dent of tumor size. Tumor-induced induction of nitric oxide synthesis, a well-established concomitant
of many breast cancers, is offered as a plausible biological causal factor for the reported findings.
C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4932220]

Key words: mammography, cancer, image processing in medical imaging, biological signal process-
ing, modeling of biomedical systems

1. INTRODUCTION

Evidence of increased tissue stiffness,1,2 structural malforma-
tions,3 altered perfusion of the vascular bed,4 and changes in
molecular expression5 have all served as phenotypic markers
for the presence of breast cancer. While examinations of
these have resulted in the development of improved strategies
for the assessment and management of breast cancer, the
determination of which methods are preferred is influenced
by a host of unrelated factors. An ideal endpoint would be
an economical sensing methodology that has high patient
comfort and that, owing to its simplicity and robustness,
can be used by nondomain experts and outside of complex,
costly environments. However, experience with many sensing
strategies has shown that these considerations frequently lead
to conflicting requirements.

For instance, one principled approach to developing
improved assessment and management strategies is to adopt
methods that are sensitive to the increasingly well-understood
molecular environment changes that accompany tumorigen-
esis. An example of this is in vitro examination of various
molecular markers. This is highly useful for diagnosing
disease and guiding treatment,6 but it is also invasive, costly,
and not suitable for use by nondomain experts, among other
limitations.

A growing number of functional assessment tools represent
a bridge between direct assays of molecular markers and
observation of structural changes. Within this category, one
class of markers that has been considered is noninvasive
measures of tissue stiffness.7,8 Among these are tactile
sensing methods,8,9 as well as stiffness-sensitive varieties of
ultrasound10 and MR imaging.11 In its simplest form, tactile
sensing, as incorporated in the clinical breast exam (CBE),12

meets many of the aims listed above. Unfortunately, while this
technique has high specificity in the case of palpable tumors,
it is poorly suited for the nonpalpable tumors that commonly
are present in early stage disease.

Various optical inspection methods also hold potential to fill
the gap, while retaining the desirable elements of low cost and
reduced complexity. One of the most frequently considered
strategies is use of near-infrared methods, which are sensitive
to the hemoglobin (Hb) signal.7,13–18 Other elements of tissue
composition, such as tissue fat and water content, can be

additionally considered by NIR methods.19 There are strong
phenomenological grounds for expecting correlations between
cancer and abnormal levels of one or more of these tissue
constituents,5 and studies have been carried out to evaluate
their diagnostic utility.18,20

An alternative to the preceding, mainly static, examination
methods is techniques that explore the naturally occurring
dynamics of the hemoglobin signal that accompany modula-
tion of the vascular tree and its interactions with tissue.7,13,21

Similar to other time-varying measures of tissue function
(e.g., measures of tissue bioelectric properties), these can
be obtained either under conditions of rest or in response to
controlled provocations.7 To this end, our group has developed
several different instrumentation platforms that are suitable
for exploring tissue dynamics while a simultaneous bilateral
exam is performed.7,13,21 In one form, and following the
spirit of the CBE procedure, we have implemented a system
design that combines optical measures with tactile sensing
and controlled articulations.7 In keeping with the disease
phenotype-independent considerations outlined above, one
factor guiding this approach was the aim of leveraging the
clinical expertise and other factors associated with the CBE
procedure while augmenting them in a quantitative manner.

While we have succeeded in developing a robust device,7

the dimensionality of the information space that could be
examined in pursuit of identifying suitable biomarkers has
prompted us to also explore more limited data-collection
conditions. One such consideration is a simple resting-state
measure, wherein time-series optical measures are obtained
from both breasts simultaneously under defined conditions of
optode contact. Our initial aim was to compare such baseline
measures to responses evoked by controlled provocations in
the expectation that findings of interest would align mainly
with the latter. However, as evidenced by the results reported
here, notably promising findings have been obtained based
solely on examination of the resting-state responses.

1.A. Strategy for identifying suitable biomarkers
for cancer detection

A key assumption underlying efforts to identify suitable
biomarkers is the expectation that the impact of disease on
measured quantities exceeds the natural variance inherent
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in the subject population. Here, our attention is drawn to
elements of spatiotemporal behavior obtained from resting-
state vascular dynamics. Obvious factors that can add to
variance are the wide range in breast sizes and in breast
composition (e.g., ratio of adipose to glandular tissue), and
the presence of common comorbidities (e.g., atherosclerosis).
One approach to minimizing intersubject variance is to adopt
some form of referencing scheme wherein subject-dependent
differences are substantially canceled out. Depending on how
this is implemented, additional data-collection requirements
may arise. Here, we have systematically explored elements
of spatiotemporal behavior, ranging from simple univariate
metrics obtained from individual breasts to various metrics
derived from simultaneous bilateral measurements.

Our analysis approach has been to divide the information
space into different principal domains and then to identify
levels of statistical significance in comparisons between the
affected and unaffected groups, as a prelude to receiver-
operator characteristic (ROC) analysis. The domains consid-
ered are elements of the Hb signal (e.g., total, oxygenated
component, deoxygenated component), measures of central
tendency derived from the reconstructed image time se-
ries, and use of elementary variance reduction methods to
minimize intersubject variance arising from measurement
issues (e.g., variations in skin-optode contact in different
measurement sessions) and from biological factors that are
not related to the presence of cancer (e.g., the previously
noted variations in breast size and composition). Apart from
identifying promising metrics, one aim of this approach has
been to determine factors that influence the robustness of a
given metric (see Sec. 4).

2. METHODS
2.A. Data collection

Data reported here were obtained from the first-13 and
second-generation7 simultaneous bilateral, high density, time-
series optical tomographic imaging systems developed by
our group. One of the guides to system design was the
hypothesis that the hemodynamic response evoked by a
controlled provocation may yield useful biomarkers stemming
from the presence of the aberrant vascular bed that is produced
by tumor angiogenesis.7,13,22

For both systems, following the initial setup, data collection
included a baseline measurement lasting 5–10 minutes
with subjects resting comfortably, followed by a series of
controlled provocations. For the scans conducted using the
first-generation system, subjects were asked to perform a
quantitative Valsalva maneuver13 while lying prone with
breasts in the pendent position. While the optical system
performance was excellent,13 the ability of patients to
perform the respiratory maneuvers proved disappointing.23

This prompted us to develop a second-generation device that
eliminated the need for active participation on the part of
the subject. Instead, vascular responses are evoked by using
a feedback-controlled articulating device upon a supported
breast, with subjects examined while comfortably seated.7

Thus, while our principal aim has been to explore evoked
responses, measures obtained under resting-state conditions
have been available from studies conducted with both imaging
systems.

2.B. Summary of system functionality

2.B.1. First-generation imager

This unit performed simultaneous bilateral measures
(31 sources× 31 detectors per breast) with subjects lying
in the prone position and breasts hanging pendent.13 The
sensor heads have a cup-like geometry and contain spring-
loaded optodes uniformly spaced over the breast surface.
The measuring cups are positioned beneath the subject and
carefully translated to achieve contact.

2.B.2. Second-generation imager

This unit also performed simultaneous bilateral measures,
but with a higher sensor density (32 sources× 64 detectors
per breast) and with subjects in the seated position.7 Another
innovation was the introduction of active articulating elements
with embedded optodes and the ability to perform concurrent
viscoelastic measures under conditions of controlled articula-
tion. Each sensing head is attached to a multi-axis articulating
arm that supports stable optode contact with a breast. Because
measures reported here are restricted to the resting-state, the
latter sensing capabilities were not explored.

Each system has an image sampling rate of 1.8 Hz
and performs simultaneous dual-wavelength measures (760,
830 nm). Additionally, the geometry of the sensing heads
assured that most of the breast volume was explored to
within the limits of optical penetration. Also common to
both systems is the ability to accommodate a range of breast
sizes (larger range for the articulating system), while imposing
substantially symmetric external boundary conditions.

2.C. Processing of optical data

Because of the wide range of breast sizes among subjects,
appreciable variability can be expected in the noise level for
any given optical channel associated with full tomographic
measures. To limit effects of breast size on signal quality, a
noise threshold was imposed, restricting data for subsequent
processing to only those channels having coefficients of
variation (CV) of less than 15%. Additionally, to avoid
biases in interbreast comparisons, a symmetry restriction was
imposed, such that channels deleted from one breast were also
deleted from the other, yielding bilaterally symmetric data sets.
Also, while either instruments could accommodate a range of
breast sizes (greater size range with the second-generation
system), experience showed that an excessive number of
channels were excluded from women who had either very
large breasts, due to poor signal quality, or very small breasts,
due to limited optode contact. To minimize undersampling
effects, only data sets in which at least 60% of the optode
channels satisfied the CV-threshold criterion were used for
subsequent processing.
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2.D. Extraction of biometrics

Collected time series data were processed in two prin-
cipal steps. First, following the exclusion of excessively
noisy channels, a linear detrending operation was performed
and then 4D (three spatial and one temporal) image time
series were computed for various components of the Hb
signal for each breast, using a previously described algo-
rithm.13,25 Derived measures included individual [i.e., de-
oxyhemoglobin (deoxyHb) and oxyhemoglobin (oxyHb)]
and composite [i.e., total hemoglobin (totalHb = deoxyHb
+ oxyHb), hemoglobin oxygen extraction efficiency (O2effHb
= deoxyHb − oxyHb24), and hemoglobin oxygen saturation
(HbSat = 100*oxyHb/totalHb)] components of the Hb sig-
nal. That is, all of the commonly considered Hb-signal compo-
nents were examined, as prior studies have emphasized that
the sensitivity of optical tomography for breast cancer detec-
tion is dependent on which component is examined.18,20–23

Second, for each Hb-component image time series, various
subsequently described spatial, temporal, and spatiotemporal
indices were explored, both as unilateral scalar quantities and
as bilateral quantities where values from the two breasts were
compared to each other.

2.D.1. Unilateral breast metrics

In an effort to limit the size of the data space, we have
derived a set of scalar quantities from descriptive statistics
computed over the baseline time period, integrating first over
one domain (spatial or temporal) and then the other. Thus, a
4D image time series can be reduced to a 1D time series by
computing either the spatial mean (SM) or the spatial standard
deviation (SSD) across the image volume, at every time frame,

SM(t)=

r

x (r,t)
Nv

, SSD(t)=


r
[x (r,t)−SM(t)]2

Nv
, (1)

where the generic symbol x(r,t) is used to denote a function
of position and time, such as a time series of volumetric Hb-
concentration images, and Nv is the number of FEM mesh
nodes. Alternatively, the image time series can be reduced to a
single 3D image by computing either the temporal mean (TM)
or the temporal standard deviation (TSD) in each voxel, over
the baseline time interval,

TM(r)=

t

x (r,t)
Nt

, TSD(r)=


t
[x (r,t)−TM(r)]2

Nt
, (2)

where Nt is the number of baseline time frames. However,
owing to the normalization method used in image recovery
(i.e., for every measurement channel, individual data values
are referenced to the baseline-period temporal mean25), TM(r)
is identically zero. In contrast, TSD(r) is a nontrivial (e.g., see
Fig. 3) and diagnostically useful (see Sec. 3.B) quantity, and
its formulation simplifies to

TSD(r)=


t

x(r,t)2

Nt
. (3)

The SM and SSD time series can be further reduced to sca-
lar metrics by computing either the mean or standard deviation
over time, and the TSD image can be reduced to scalar metrics
by computing either the mean or standard deviation across the
image volume. While this would appear to net a total of six
numerical values, the temporal mean of SM(t) (TMSM) must
be equal to zero, since averaging is a commutative operation,
which guarantees that TMSM= SMTM, and TM(r)= 0. In all,
then, five nontrivial scalar parameters are extracted from the
image time series: the spatial mean of the temporal standard
deviation (SMTSD), spatial standard deviation of the temporal
standard deviation (SSDTSD), temporal mean of the spatial
standard deviation (TMSSD), temporal standard deviation of
the spatial mean (TSDSM), and temporal standard deviation
of the spatial standard deviation (TSDSSD). The formulas for
these quantities are

SMTSD=


r

TSD(r)
Nv

, (4)

SSDTSD=


r
[TSD(r)−SMTSD]2

Nv
, (5)

TMSSD=


t

SSD(t)
Nt

, (6)

TSDSM=


t
[SM(t)]2

Nt
, (7)

TSDSSD=


t
[SSD(t)−TMSSD]2

Nt
. (8)

The five metrics were calculated for each component of the
Hb signal (deoxyHb, oxyHb, totalHb, HbSat, and O2effHb),
for a total of 25 values for each breast for all subjects.

Mathematically, SMTSD and SSDTSD are the first two
moments of the TSD(r) distribution, while TMSSD and
TSDSSD are the first two moments of the SSD(t) distribution.
It should be noted that pairwise comparisons between the
parameters reveal instances of commutations applied to both
the operator and domain (SMTSD and TSDSM), or to the
operator only (TSDSM and TMSSD), or to the domain only
(SMTSD and TMSSD, SSDTSD, and TSDSSD). In light of the
noted differences in mathematical definitions, one motivation
for considering this group of quantities is the expectation
that they will be differently influenced by different aspects
of biological modulation (see Sec. 4 and the Appendix).

With the same goal of probing different modulatory
elements, we have examined three additional metrics, each
of which is a ratio of two of those defined in Eqs. (4)–(8),

CVSSD= 100
TSDSSD
TMSSD

, CVTSD= 100
SSDTSD
SMTSD

,

SCI=
SMTSD
TSDSM

. (9)

These were calculated for each of the five Hb-signal compo-
nents, yielding an additional 15 values for each breast for all
subjects. The first two quantities in Eq. (9) are the CV in the
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spatial and temporal domains, respectively; because it is a
scale-independent measure of variability, use of the CV can
aid in comparisons among data from multiple subjects if there
is a broad range of mean values. The last quantity in Eq. (9),
a ratio of two operator-and-domain commuted metrics, is an
index of coordination among different spatial locations within
a breast (SCI= spatial coordination index). The reason for this
is that TSD(r), and hence SMTSD, is independent of the phase
of the time-varying Hb signal in any of the image voxels, but the
amplitude of SM(t), of which TSDSM is a measure, definitely
is affected by phase shifts. Consequently, SCI is necessarily≥1,
with larger values implying more loss of coordination among
different locations within the image volume, and approaching
1 in the limit of perfectly synchronized temporal variability
throughout the breast volume (see the Appendix).

All metric values were binned in four of the subject cate-
gories indicated in Table I: “left-breast active cancer” (LC),
“right-breast active cancer” (RC), “benign breast pathology”
(BP), and “no breast pathology” (NP, healthy subjects). A
fifth category, “all noncancer” (NC), was subsequently formed
by combining data for the BP and NP groups. For tests of
discriminability between cancer and benign pathologies in
the same breast, data for subjects having diagnosed benign
pathologies restricted to one breast also were binned in “left-
breast benign” (LB) and “right-breast benign” (RB) subcate-
gories. Comparisons indicated in the upper half of Table I are
intended to evaluate the diagnosability of cancer in the absence
of prior knowledge, while the comparisons in the lower half are
intended to evaluate the distinguishability of malignant from
benign lesions. For all subsequently described analyses, data
for the first- and second-generation imager subjects were not
combined but were considered separately, owing to concerns
about the possibility of confounds resulting from the subject-
posture difference. Also, unequal-variance t-tests were applied
to the combinations of breast and subject category indicated
in Table I, to assess the diagnostic potential of each of the 40
metrics (8 formulations×5 Hb signal components) defined in
Eqs. (4)–(9), and to evaluate the same metrics’ potential to
distinguish breast cancer from benign breast pathologies.

T I. Subject/breast pairings considered, for unilateral tests of: breast-
cancer discovery in the absence of prior knowledge (upper half); specificity
for breast cancer in partial-knowledge cases (lower half). LC = left-breast ac-
tive cancer, RC = right-breast active cancer, BP = benign breast pathology,
and NP = no breast pathology, NC = all noncancer (= BP + NP), LB = left-
breast benign, RB = right-breast benign.

Breast-cancer subject category

LC RCNoncancer subject
category Left Right Left Right

NP
Left � �

Right � �

NC
Left � �

Right � �

BP
LB

Left �
Right �

RB
Left �

Right �

2.D.2. Bilateral breast metrics

Quantities representing interbreast differences between,
and interbreast ratios of, metric values were evaluated in
the expectation that such bilateral metrics will have lower
intersubject variances than the metric values for individual
breasts. Bilateral metrics that yield statistically significant
differences, when values for affected and unaffected groups
are compared, have potential to serve as biomarkers sensitive
to the presence of cancer. It deserves emphasis that these
comparisons do not invoke prior knowledge of whether or not
a subject has cancer, or of which breast is affected if cancer is
present (and do not need to employ specific information such
as metrics associated with a region of interest18). Rather, the
expectation is that metric values will be bilaterally similar in
unaffected women, while the presence of disease will produce
ratios that are either greater or less than one and differences that
are greater or less than zero. By adhering to a fixed convention
in calculating the differences (i.e., always left-breast minus
right-breast metric value) and ratios (i.e., always left-breast
divided by right-breast metric value), an indication of which
breast is affected is provided by the algebraic sign of the
difference or the magnitude of the ratio.

As with the analyses of unilateral breast metrics, data
obtained from the two instruments were treated separately
and were explored in accordance with the comparisons listed
in Table I for each of the 40 metrics.

2.D.3. ROC analysis

Results of the preceding tests for differences between group
means allow exclusion from further consideration of metrics
that do not have appreciably different distributions in cancer-
positive and cancer-negative subject groups. However, a
statistically significant group-mean difference is not sufficient
to guarantee that the associated metric will perform well
as a diagnostic indicator for individual subjects. For that
second level of characterization, ROC analyses were carried
out,26 using the “perfcurve” function of  7.11.0.584
(R2010b), upon the sets of individual-subject metric values
for affected and unaffected [healthy only (NP) or healthy
plus benign disease (NC)] groups. The diagnostic-accuracy
parameters resulting from these calculations were area-under-
curve (AUC), which is a convenient single-number index
of overall performance (AUC also can be interpreted as the
percentage of cases in which the metric correctly assigns two
subjects to the correct categories, for a pair consisting of one
selected at random from the each of the two groups being
compared), sensitivity (Sn), or the percentage of breast-cancer
subjects who are correctly categorized, and specificity (Sp),
or the percentage of noncancer subjects who are correctly
categorized. In general, Sn and Sp are functions of the metric
value chosen as the diagnostic threshold, with each parameter
tending to fall as the other increases; for results reported here,
the threshold that minimizes the total number of incorrect
classifications was used. Also, in light of the relatively small
numbers of subjects in some of the groups, which increases
the widths of the Sn and Sp confidence intervals, results are
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T II. Subject-group descriptive information.

Active breast cancer

Device Group-level parameter Left Right Benign breast pathology No breast pathology

n 11a 17b,c 19 19

First-generation imager
Age [yr, mean (SD)] 47.5 (12.3) 51 (11.9) 45.6 (7.6) 43.3 (9.1)

Tumor size [cm,
min–max (mean)]

0.8–7 (4.1) 0.8–11 (3.9) n/a n/a

n 12d 6e,f 23 22

Second-generation imager
Age 53.9 (9.5) 53.7 (14.1) 48.1 (10.7) 51.5 (11.7)

Tumor size 0.5–6 (2.8) 1–5 (2.7) n/a n/a

aIncludes nine cases of invasive ductal carcinoma (IDC), one of invasive mucinous carcinoma (IMuC), and one of metastatic breast cancer of unspecified type.
bIncludes one case where a recurrence of prior cancer was diagnosed six months after NIRS study; analysis of the NIRS data, placed her in the right-breast active cancer
category.
cIncludes 15 cases of IDC, 1 of invasive mammary carcinoma (IMaC), and 1 of occult breast carcinoma presenting as an axillary lymph-node adenocarcinoma and
right-breast hyperplasia.
dIncludes 10 cases of IDC, 1 of invasive lobular carcinoma (ILC), and one of IMaC.
eIncludes one equivocal case: subject had a right-breast lumpectomy two years prior to NIRS study, and subsequent radiological scans indicate a recurrence.
f Includes four cases of IDC, one of IMaC and one of IMuC.

reported in terms of the absolute numbers of true positives and
true negatives, along with subject-group sizes.

2.E. Subject groups

The study population for the first-generation instrument
was recruited from women who visited the Kings County Hos-
pital Center (Brooklyn, NY) breast clinic (66 subjects overall).
The study population for the second-generation instrument
was recruited from women who visited breast clinics at SUNY
Downstate Medical Center (Brooklyn, NY) and The Brooklyn
Hospital Center (63 subjects overall). Subject recruitment
protocols were approved by the institutional review board
(IRB) of each center (KCHC: HHC#01-343, DMC: IRB#99-
093, THBC: IRB#599) and informed consent was obtained
from every participant. In accordance with the terms of the
informed-consent document, subjects’ medical records were
examined to obtain information on age, BMI, breast-cancer
status (positive or negative); tumor type, stage, size, location;
and results of assays for estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2/neu), for the cancer-positive subjects and the presence
of benign breast pathologies, for the cancer-negative subjects.
The subjects were age- and BMI-matched, both between
the first- and second-generation imager groups and among
the active-cancer, benign breast pathology, and no breast
pathology categories within each group. Subject age, BMI,
and tumor-size information is summarized in Table II.

3. RESULTS
3.A. Resting state frequency response

A simple and informative means for characterizing dy-
namic phenomena is to explore its frequency structure.
Shown in Fig. 1 is a typical oxyHb amplitude spectrum,
obtained from one breast of a subject in the NP group, who
was examined while at rest. Three prominent features are

observed, which correspond to oscillations generated by the
principal elements of the vascular tree. The low frequency
response (∼0.02–0.10 Hz) is produced under control of
autonomic and autoregulatory factors and involves mainly
microvascular structures, especially arterioles. Oscillations
produced by movement of the diaphragm, which cause a
periodic systemic venous congestion, are seen at intermediate
frequencies (∼0.3 Hz). Oscillations originating from the
pulsatile cardiac activity have the highest frequency. Typically,
this last response occurs at ∼1 Hz, but owing to aliasing
produced by the limited sampling rate (1.8 Hz), it is shown
here as occurring in the range of 0.75–0.9 Hz.

Spectra shown in Fig. 2 are the group mean ±SD values
obtained when the amplitude spectrum for one breast is
subtracted from that for the corresponding contralateral breast,
for individuals known to have breast cancer (dark curve) and
those who do not (i.e., healthy individuals and those with
benign disease, light curve). Inspection reveals that the net

F. 1. Representative amplitude spectrum (logarithmic scale) computed
from the spatially averaged oxyHb resting-baseline time series for a healthy
breast (second-generation instrument). The expected physiological peaks and
relative amplitudes are seen.

Medical Physics, Vol. 42, No. 11, November 2015
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F. 2. Group-averaged (error bars =±1 standard deviation) intrasubject
differences between totalHb amplitude spectra for the two breasts. Spectra
were computed from the spatially averaged totalHb time series for subjects
with (dark curve) and without (light curve) breast cancer (second-generation
instrument). For the first group, interbreast differences were computed as
affected breast minus unaffected breast; for the second, as left breast minus
right breast.

value is essentially zero in the case of noncancer subjects but
is notably elevated in the vasomotor region for subjects with
breast cancer.

3.B. Spatial dependence of enhanced resting-state
modulation of the Hb signal

It is instructive to use the available tomographic image
information to explore the spatial dependence of the enhanced

vasomotor response observed in Fig. 2. We have encoded tem-
poral behavior within spatial maps by computing 3D images
that reveal the position-dependent temporal standard deviation
of the resting-state hemoglobin-signal response. Examples of
such images are shown in Fig. 3, in the form of mutually
orthogonal 2D transects for two women having tumors of
different sizes (top: 1 cm diameter; bottom: 4 cm diameter).
Also shown are the corresponding views for the unaffected
contralateral breast. The color scale reveals differences in the
amplitude of resting-state behavior. Inspection of the spatial
maps shows that the amplitude of the temporal dynamics is
notably elevated in the affected breast and that the region
exhibiting the enhanced amplitude extends well beyond the
expected border of the tumor.

To more fully characterize this behavior and to identify
simplified biomarkers that are sensitive to it, in Sec. 3.C we
report findings obtained from the different instrument systems
used to collect simultaneous bilateral measures applied to the
different subject groups.

3.C. Group-level enhanced modulation response

3.C.1. Unilateral metrics

To explore the three-domain information space described
in the Introduction, we began by computing the eight scalar
quantities [Eqs. (4)–(9)] for each of the five components of
the hemoglobin signal considered, for both breasts of subjects
in the LC, RC, and NC groups. Representative findings
(mean± SEM) obtained from examination of the HbSat image
time series, for subjects examined with the second-generation
instrument, are shown in Fig. 4. Note that the left (white)
and right (gray) bars in each pair represent results for the left

F. 3. Spatial maps of the TSD metric. Top: right-breast tumor (Grade-2 IDC, ER+), 1 cm, 4 o’clock; HbSat; second-generation imager; subject is 34 yo, BMI
29, size D. Bottom: left-breast tumor (Grade-3 IDC, ER+), 4 cm, 1 o’clock, HbSat; second-generation imager; subject is 50 yo, BMI 44, size C. Dotted black
circles superimposed on the spatial maps indicate approximate locations and sizes of the tumors.
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F. 4. Unilateral group means (error bars=±1 SEM) for the 8 bidomain metrics computed from HbSat image time series (second-generation imager), for both
the left (white bars) and right (gray bars) breast, for the NC, LC, and RC subject groups. (a) For the {SSDTSD, SMTSD, TMSSD, TSDSSD, and TSDSM} set of
metrics, the largest single-breast group mean overall was arbitrarily set to 100, and all other group means and all SEMs were rescaled to that unit. (b) The units
for the dimensionless metrics have not been rescaled; however, the displayed vertical-axis ranges have been chosen to optimize the within- and between-group
visual contrasts. Results of statistical analysis are reported in the text and Tables III (unpaired analysis) and V (paired analysis).

and right breasts, respectively. Results of statistical analyses
(unequal-variance t-tests) comparing the metric values shown
in Fig. 4 for affected and unaffected subject groups, for each
metric and all hemoglobin components, are given in Table III.
Note that tabulated numbers are p-values corresponding to
a weighted average of t-statistics for ipsilateral comparisons
of the affected breast in cancer subjects to the corresponding
breast of the unaffected subjects.

While there are many features identifiable in Fig. 4 (and in
corresponding results, not shown owing to space limitations,
for the other Hb-signal components), two findings stand out.

One is the substantial bilateral similarity of group-mean values
across the various metrics obtained for the NC subjects.
Examination of only the NP or BP fractions of the NC group’s
results yielded similar findings (not shown). Also, equivalent
treatment applied to other components of the Hb signal showed
that the left- and right-breast group-mean values are more
nearly equal still, with totalHb showing the smallest interbreast
differences. The other principal finding is that in most cases
(>90%), the presence of a tumor does not produce statistically
significant differences between the group-mean metric values
for the cancer and noncancer subjects (see Table III), but an
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T III. t-test p-values for comparison of single-breast metric values in the breast-cancer and noncancer subject
groups; second-generation—nCa= 18, nNonCa= 45, (first-generation—nCa= 28, nNonCa= 38) imager. Statistically
significant results are italicized.

SSDTSD SMTSD CVTSD TSDSSD TMSSD CVSSD TSDSM SCI

deoxyHb
0.18 0.12 0.24 0.55 0.15 0.063 0.59 0.34

(0.046) (0.11) (0.40) (0.27) (0.029) (0.36) (0.26) (0.69)

oxyHb
0.80 0.51 0.12 0.16 0.52 0.056 0.82 0.18

(0.079) (0.092) (0.19) (0.18) (0.027) (0.90) (0.38) (0.29)

totalHb
0.57 0.99 0.056 0.15 0.84 0.14 0.90 0.47

(0.024) (0.0042) (0.35) (0.090) (0.011) (0.23) (0.20) (0.50)
O2effHb 0.21 0.15 0.52 0.75 0.17 0.078 0.88 0.079
HbSat 0.15 0.11 0.39 0.20 0.12 0.37 0.42 0.57

unmistakable trend in the data is nevertheless evident. Namely,
we observe that in comparison to NC, the LC subjects have
larger differences between the left- and right-breast group
means in every case. A qualitatively similar trend is seen for
the RC subjects, but with the algebraic sign of the interbreast
difference reversed, in comparison to NC, for seven out of
eight of the quantities.

To gain a better understanding of factors that might be
affecting the discriminatory power of unilateral comparisons,
the primary data comprising the central tendencies shown in
Fig. 4 have been replotted as shown in Fig. 5(a) (corresponding
results for the other metrics are qualitative similar to the
representative TSDSSD results shown). This type of plot,
which highlights bilateral differences, immediately reveals the
reason for the overall negative discriminatory findings seen in
Fig. 4 and Table III: the range of metric values spanned by the
NC subjects [and by only the NP subset (not shown)] is large
and fully overlaps the ranges of values in the affected breasts
of the LC and RC subjects.

A closer examination of Fig. 5(a) reveals an important
difference between the subjects who do and do not have breast
cancer. The NC group is about evenly divided between cases
having the larger metric value in the left breast and cases
having it in the right. In marked contrast, in both the LC and RC

groups, all but one subject have the larger metric value in the
affected breast. This finding provides the insight that perform-
ing intrasubject, interbreast comparisons is the key to reducing
variance in the selective manner described in Sec. 3.C.2.

3.C.2. Bilateral metrics

As noted in the Introduction, it can be expected that metrics
of the type considered here will be affected by factors unrelated
to the presence of cancer (e.g., comorbidities, differences in
breast size). This consideration emphasizes the potential value
of using variance reduction techniques that serve to reveal
group differences that may otherwise be obscured. In order to
enhance intergroup differences, an adopted technique would
somehow need to have a selective effect, reducing variance
specific to the cancer/noncancer distinction to a smaller extent
than that arising from the other factors. The key to achieving
this goal is an appreciation that the expected influences of the
clinically irrelevant factors should be nearly the same in both
breasts for any selected subject, while the impact of unilateral
breast cancer should be strongly asymmetric. Then, a simple
means for producing the desired selectivity is to compute the
intrasubject, interbreast difference (or some equivalent) value
for each of the considered quantities.

F. 5. Individual-subject TSDSSD values derived from HbSat image time series (second-generation imager). “⃝” = individual-subject data values; “×” = group
mean value; and “+” = mean ±SEM. The largest individual data value overall was arbitrarily set to 100, and all other values were rescaled in proportion. “L”
= left breast, “R” = right breast, “NC” = noncancer subjects, “LC” = subjects having left-breast cancer, and “RC” = subjects having right-breast cancer.
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T IV. t-test p-values for comparison of bilateral ratios of metric values in the breast-cancer and noncancer
subject groups; second-generation—nCa= 18, nNonCa= 45, (first-generation—nCa= 28, nNonCa= 38) imager.
Composite t-scores computed the same way here as for the unilateral comparison case (Table III).

Metric
Hb signal
component SSDTSD SMTSD CVTSD TSDSSD TMSSD CVSSD TSDSM SCI

deoxyHb
0.0019 0.0015 0.44 0.0056 0.0017 0.32 0.014 0.0018
(0.024) (0.013) (0.014) (0.021) (0.026) (0.17) (0.51) (0.087)

oxyHb
0.0070 0.0042 0.33 0.058 0.0050 0.013 0.037 0.016
(0.010) (0.0031) (0.43) (0.016) (0.0043) (0.96) (0.14) (0.34)

totalHb
0.012 0.0053 0.47 0.21 0.0079 0.0097 0.040 0.23

(0.063) (0.0031) (0.38) (0.0018) (0.059) (0.14) (0.13) (0.29)
O2effHb 0.0028 0.0025 0.28 0.0037 0.0024 0.15 0.036 0.0079
HbSat 0.0015 0.0013 0.38 0.0021 0.0014 0.36 0.0063 0.0011

In Fig. 5(b), we show the left-over-right bilateral ratios
for the same subjects, metric, and Hb-signal component as
in Fig. 5(a). Inspection reveals that only one LC subject
has a ratio smaller than the mean value for the NC group,
while no RC subjects have ratios greater than the NC-group
mean. Qualitatively, similar results were obtained based on
interbreast differences values (not shown); overall, however,
the ratio was found to have marginally better breast-cancer
diagnostic ability than bilateral metric difference values.

To place the preceding observation on more quantitative
footing, we performed a second round of between-groups t-
tests, comparing bilateral-difference and -ratio metric values
for the affected group to those for the NC group. In contrast to
the Table III results, the p-values for the bilateral-ratio compar-
isons reported in Table IV show that there are significant or
highly significant differences for most combinations of metric
and Hb-signal component.

A more careful inspection of Table IV reveals that these
combinations can be divided into three principal groupings
based on their discriminatory power. Showing the most
consistent response across all hemoglobin components are the
metrics SSDTSD, SMTSD, and TMSSD. Next are the metrics
TSDSM, TSDSSD, and SCI, and those having the smallest
number of significant findings are the metrics CVTSD and

CVSSD. This empirical observation aligns closely with the
finding that the metrics in the first group are strongly correlated
with each other (r > 0.98, averaged over all Hb components),
those in the second group are less strongly correlated with
the first group and with each other (r = 0.63–0.85), and the
third group are the least strongly correlated with each other
and with the metrics in the first and second groups (r < 0.53).
Taken together, to some readers these findings may suggest a
form of codependence, and hence informational redundancy,
between the metrics with the best performance as diagnostic
indicators for breast cancer. However, the mathematical
analysis summarized in the Appendix shows that any such
codependence is not a trivial or inevitable consequence of
the metrics’ mathematical definitions, and this implies that it
must instead have a biological origin. Further, the analysis
provides a basis for determining which primitive elements of
spatiotemporal behaviors are most closely aligned with the
clinical performance.

Shown in Table V are results from ROC analysis applied
to the same data used to generate Table IV, reordered in
accordance with the preceding metric groupings. For each
group, the specific Hb components that have the best and
worst overall performance (i.e., highest and lowest AUCs,
respectively) are included, along with the overall average for

T V. ROC analysis: All breast-cancer subjects; second-generation instrument; nCa= 18, nNonCa= 45.

Metrics
Hb signal

componenta AUC (%) Sensitivity Specificity # FPs # FNs

SMTSD, SSDTSD, O2effHb 86.3–86.9 83.3–88.9 87.4–88.1 5.3–5.7 2–3
TMSSD totalHb 76.9–81.2 66.7–72.2 84.4–91.1 4–7 5–6

All (avg.) 83.5–84.9 80.0–83.3 85.3–86.8 5.9–6.6 3.3–4.0
TSDSM, TSDSSD, HbSat 76.5–85.1 77.8 74.8–80.7 8.7–11.3 4
SCI totalHb 61.4–73.5 55.6–72.2 60.7–74.8 11.3–17.7 5–8

All (avg.) 73.4–76.8 68.9–74.4 75.4–79.0 9.5–11.1 5.0–5.5
CVSSD, CVTSD oxyHb 58.5–74.0 55.6–77.8 64.4–72.6 12.3–16 4–8

deoxyHb 59.4–62.1 55.6–83.3 48.9–63.7 16.3–23 3–8
All (avg.) 59.7–66.9 57.8–73.3 64.9–68 14.4–15.8 4.8–7.6

Note: “# FPs” = number of false positives, “# FNs” = number of false negatives. These may have fractional values when
averaged over multiple Hb components or when left- and right-breast cancer results are pooled.
aThe individual Hb signal components included are the ones that have the best and worst overall performance for
breast-cancer diagnosis, as quantified by averaging AUC values over all the metrics specified in the first column.
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all Hb components. Inspection reveals that AUCs are highest
for O2effHb (86%), with similar values for sensitivity and
specificity across the first grouping and with mainly lower
performance for totalHb. A similar trend is seen for the second
grouping of metrics, with HbSat having the best performance.
Results obtained for metrics in the third grouping have a
more variable and generally poorer performance. A mainly
similar pattern of results was obtained from data collected
using the first-generation imager, with AUC, sensitivity, and
specificity values trending 3%–5% lower in most categories,
indicating that postural changes do not strongly affect clinical
performance.

Overall, we find that the diagnostic performance seen for
the first category of metrics appears quite promising, espe-
cially when considering that active participation on the part of
the subject is not required and that the measurement data can be
recorded while subjects are comfortably seated.7 We also note
that there is a positive correspondence between the degree of
intercorrelation among the metrics in each group and the diag-
nostic performance (i.e, range of AUC values) for that same
group. Owing to this correspondence, we subsequently refer
to these groups—initially defined on the basis of intermetric
correlations, without regard to diagnostic performance—as
the “excellent,” “good,” and “poor” categories.

The ranges shown for the diagnostic performance indices
in Table V were not substantially different when the ROC
analyses were performed by contrasting metric values for the
breast-cancer subjects with those for the NP subject group
(n = 22) instead of the NC group. This finding is indirect
evidence that the metrics considered here are highly specific
for breast cancer. For a more direct evaluation, we performed
additional ROC analyses contrasting the LC group with LB,
and RC with RB (see Table I). These comparisons do make use
of a certain amount of prior knowledge, namely, that some type
of pathology is present and the affected breast is known, thus
modeling a hypothetical clinical application wherein a clinical
breast exam or a structural imaging study (for example) detects
an abnormality but cannot determine whether it is cancer or
a benign lesion.12 Using second-generation instrument data
and combining results for left- and right-breast disease, the
overall number of false positives [i.e., benign disease (n= 16)
misdiagnosed as breast cancer] was 2 and the overall number
of false negatives [i.e., breast cancer (n = 18) misdiagnosed
as benign disease] was 2–3, for metrics in the excellent
performance category.

3.D. Dependence of metric response on tumor size

An unexpected finding suggested by results shown in
Fig. 3 is that the observed enhanced modulatory behaviors,
which are associated with the vasomotor response, are mainly
independent of tumor size. If substantiated, this finding
appears qualitatively different from previous NIRS-based
studies involving subjects with breast cancer, whose measures
are sensitive to the content of hemoglobin, a finding consistent
with enhanced angiogenesis.18,19

To explore this further, we have correlated tumor size
to each of the eight metrics across all five hemoglobin

components. Contrary to the results presented above, which
show that many combinations of metric and Hb component
are sensitive to the presence of a tumor, here we observe
just two instances (out of 40) where metric values have
a statistically significant correlation with tumor size (note
that 2/40 = 5%, suggesting that even the few statistically
significant correlations that were found may be spurious).
Having the largest correlation (r = 0.58) is the SCI left-over-
right ratio for HbSat. While this is statistically significant,
only 33% of the intersubject variance is accounted for by the
regressor. Additional evidence that the observed correlations
may be spurious comes from calculations in which we
correlated tumor size with metric values obtained from only
the affected breast (i.e., not from a bilateral comparison). In
this case, we observed that none of the metric-component
combinations were significantly correlated with tumor size.
Additionally, as a control the same analysis was applied
to the unaffected, contralateral breast. This analysis yielded
significant correlations for two of the forty combinations,
further indicating that the statistically significant correlations
between tumor size and affected-breast metric are likely
spurious.

To summarize, findings presented to this point demonstrate
that there are many bilateral spatiotemporal metrics, corre-
sponding to a range of components of the hemoglobin signal
which have notable diagnostic performance. Surprisingly,
however, these metrics are mainly uncorrelated with tumor
burden and are not strongly localized to the spatial limits of
the tumor.

3.E. Influence of tumor phenotype on scalar metric
values

Clinical experience shows that prognosis and preferred
treatments for breast cancer are functions of the tumor markers
present in a particular case. Therefore, while the preceding
demonstrations of diagnostic performance are encouraging,
the clinical applicability of the data analysis considered here
could be substantially greater if it could be shown to provide
information regarding the type of cancer present. However,
owing to the small numbers overall of breast-cancer subjects
enrolled in the study, we have no expectation that any trends
revealed will achieve statistical significance in a convincing
way, only that they may yield suggestive and intuitively
reasonable answers that can be further explored in future
studies involving larger populations.

Mean values of the relative percent differences between
interbreast metric ratios for subjects whose tumors do and do
not have the indicated biomarkers are presented in Tables VI
(ER-PR) and VII (HER2/neu), for the different components of
the Hb signal. As in our evaluation of the metrics’ diagnostic
performance, we have examined the marker effects on single-
breast measures and on the bilateral ratios. Findings obtained
from the latter analysis are included in Tables VI and VII.

Inspection of Table VI reveals a consistent directionality
in the difference between interbreast metric ratios of the
ER(+) and ER(−) subjects, for the metrics in the excellent
and poor diagnostic categories, and a mixed response for

Medical Physics, Vol. 42, No. 11, November 2015



6417 Graber et al.: Novel biomarkers for detection of breast cancer 6417

T VI. Average percent differencea between L/R ratio for ER(+) (n = 13)
and ER(−) (n = 5) subjects. The subset of the subject population considered
is all breast-cancer subjects imaged with the second-generation instrument.

Hb signal component Excellent Good Poor

deoxyHb −29.7 −12.5 21.1b

O2effHb −40.4 −26.0 6.9
oxyHb −25.2 −9.2 22.5c

HbSat −34.3 −18.5 12.7d

totalHb −4.8 5.1 20.3b

Average across components −26.9 −12.2 16.7

a100(xER(+)− xER(−))/[(xER(+)+ xER(−))/2], where x is the L/R ratio for a selected
metric.
bp < 0.02 for CVSSD.
cp < 0.004 for CVSSD.
dp ≤ 0.07 for CVSSD and CVTSD.

the good category. Statistical (t-test) analysis of individual
combinations of metric and Hb component showed that
significant differences were limited to metrics in the poor
category. A similar trend was observed for PR results, but
with smaller relative percent differences and with only two
of the individual metric-Hb combinations reaching statistical
significance (CVTSD-HbSat, p ≤ 0.05).

Inspection of Table VII reveals a grossly similar trend as
seen in Table VI, but notably with reversed directionality. Also
similar was the restriction of statistical significance to metrics
in the poor diagnostic category.

Inspection of results of individual-breast comparisons were
less consistent across the metric categories for the different
cellular biomarkers, with the exception of the ER-CVSSD
combination, where statistically significant (p < 0.02) relative
percent differences were obtained for all Hb components
except totalHb. The apparent sensitivity of Hb components
other than totalHb to marker status is consistent with the
pattern seen in the diagnostic-performance results, and with
a report by Brown et al., who observed that HbSat, but not
totalHb, was significantly different in tumor tissue than in
other tissue types.27

While it is tempting to regard the preceding findings
as informative, we are aware that the large numbers of
comparisons performed makes the analysis susceptible to
spurious findings. To control for this possibility, we have
applied the individual-breast comparison to metric values

T VII. Average percent difference between L/R ratio for HER2(+) (n
= 9) and HER2(−) (n = 9) subjects.

Hb signal component Excellent Good Poor

deoxyHb 21.9 7.4 −17.6a

O2effHb 23.6 11.2 −10.7b

oxyHb 12.5 2.1 −13.5
HbSat 26.6 11.5 −13.5b,c

totalHb 0.5 −5.8 −12.3
Average across components 17.0 5.3 −13.5

ap < 0.06 for both metrics.
bp ≤ 0.03 for CVSSD.
cp < 0.07 for CVTSD.

for the unaffected breast in tumor-bearing subjects. Results
of this analysis were inconclusive. Some spurious statisti-
cally significant differences were obtained, but these appear
more randomly distributed across the different diagnostic-
performance categories and are more limited in the number of
Hb components involved (primarily O2effHb).

4. DISCUSSION

Most previously reported approaches to exploring the
diagnostic potential of NIRS measures for detecting breast
cancer have sought to leverage the features of enhanced
angiogenesis that are common to most solid tumors.18,19

However, there are other elements of the tumor phenotype
that can serve as a basis for disease detection. One example
is the fact that on a macroscopic level solid tumors tend to
have increased stiffness compared to surrounding tissue.1,2

This finding forms the basis of tactile sensing as used during
a clinical breast exam.12 On a finer spatial scale are features
discernible using high-resolution imaging methods such as
MR,11 ultrasound,10 or x-ray mammography.28 Finer still are
features that occur on a cellular or molecular level, but
excepting the use of radiotracer methods, features closely
tied to the tumorigenic state have resisted detection using
noninvasive macroscopic sensing methods such as diffuse
optical tomography (DOT). On initial review, the findings
presented here present an explanatory challenge: how can a
tool having good sensitivity to the hemoglobin signal and
associated angiogenesis be found to detect cancer with high
accuracy, but in a manner that is not highly correlated with
tumor size or location? To be sure, careful benchmarking of
system performance7,13 rules out any concerns regarding the
technical performance of the developed imaging systems or
the developed reconstruction algorithms.25,29

4.A. Implications regarding the biological origin
of reported findings

Among the various features that have been recognized
as contributing to the tumorigenic state—including sustained
proliferative signaling, evasion of growth suppressors, resis-
tance to cell death, replicative immortality, induction of
angiogenesis, and activation of invasion and metastasis—
the establishment of a generalized inflammatory state is now
widely appreciated as a requirement for tumor development
and growth.5,30,31 Common to this process, and to many ele-
ments associated with the mentioned phenotypes, is a central
role played by nitric oxide production and its metabolites31 in
promoting and maintaining the cancerous state.30

Nitric oxide is produced under the control of three distinct
isoenzyme forms of nitric oxide synthase (NOS). NOS1 and
NOS3 are found in neural and endothelial tissues and are
thought to produce nitric oxide episodically.30 In contrast,
NOS2 is constitutively activated in cancer and is closely
associated with inflammatory processes.30 This understand-
ing, coupled with the fact that NO is a highly diffusible gas,
leads us to plausibly suggest that the initially unexpected
findings presented here are likely attributable to the actions

Medical Physics, Vol. 42, No. 11, November 2015



6418 Graber et al.: Novel biomarkers for detection of breast cancer 6418

of NO in sustaining a generalized inflammatory state and
an associated erythema. While the sensing tools used here
cannot confirm this suspicion, corroborating evidence from
prior studies involving dynamic infrared sensing, wherein time
series of thermographic measurements of the cancerous breast
were acquired, reinforces the plausibility of this conjecture.
We take particular note of a report by Button et al.,35

who observed a frequency response in the vasomotor region
substantially similar to that shown in Fig. 2. Also noteworthy
were the reported findings that when xenografts of excised
tumors were grown in rodents, treatment of these animals
with a specific inhibitor of NOS eliminated the enhanced
vasomotor response.35 Our interpretation, therefore, is that
the combination of good clinical performance with relatively
poor ability to localize a tumor and limited sensitivity to tumor
burden is consistent with well-known tendency of tumors to
produce such generalized inflammatory responses. The latter
is observable by dynamic optical tomography because an effect
of the inflammatory state is to produce an environment having
enhanced vasoreactivity.

4.B. Extending interpretability of clinical findings
by computational modeling of dynamic behavior

The reported performance of dynamic sensing methods
developed by our team,32–34,36 combined with a recognition
that a wealth of understanding of otherwise hidden rela-
tionships can be derived from accurate measures of such
systems,37 led us to wonder if the empirical measures explored
can be examined in ways that give us a more in-depth
understanding of the reported clinical findings. To pursue
this, we have modeled spatiotemporal behavior in a simplified
system and computed the same metric quantities as were
derived from the clinical data. A mathematical description
of the approach used to define relationships between primitive
elements of spatiotemporal behavior and the corresponding
metric responses is presented in the Appendix.

Simply described, our approach has been to calculate
response profiles for the various metrics under parameter
sweeps of the elements of spatiotemporal behavior, in the hope
that these profiles would contain trends that would allow us to
determine which combinations of primitive features best align
with the clinical findings. It is also appreciated that the process
of reducing high-dimensional information to scalar quantities,
which is the approach adopted for this report, might raise
concerns about information being overly compressed, thereby
blurring key features of the system under study. Were the
computational studies to show that the methods employed here
have the effect of obscuring key information, the conclusion
that those methods are not clinically viable would seemingly
be unavoidable.

We begin by noting that in a causal inspection of
Eqs. (4)–(9), it is not obvious what relationships exist between
the metrics and the elementary features of spatiotemporal
behavior. In the computational study, we explored a linear
model whose behaviors are determined by three independent
parameters: Average amplitude of hemodynamic fluctuations,
spatial heterogeneity and asymmetry of the amplitude fluctu-

ations, and degree of temporal coordination among different
parts of the medium (i.e., phase heterogeneity). Our aim was
to derive a first-order understanding of the importance of the
intrinsic behaviors and their influence on clinical performance,
in full knowledge that such comparisons are only approximate
owing to the simplicity of the model and the fact that no
details of true breast dynamics were explored. Nevertheless,
operating under the principle that useful models should be
as simple as possible but not simpler, we do note that all
of the principal dependencies and codependencies between
metric values and clinical responses apparently are entirely
consistent with similar trends identified in the modeling study
results (see Sec. 4.C and the Appendix).

4.C. Dependence of clinical performance on modeled
behavior and metric

Shown in Table VIII is a summary of clinical performance
for the various metrics as a function of the type of modeled
behavior. Clinical performance assignments were made using
the same criteria as were applied to the results in Tables IV
and V.

Inspection reveals that among the three metrics having
excellent performance (SMTSD, SSDTSD, and TMSSD), all
are influenced by the average amplitude. The latter two metrics
also exhibit sensitivity to amplitude heterogeneity (SSDTSD
and TMSSD) and phase heterogeneity (TMSSD). Evidence
that the influence of amplitude heterogeneity on clinical
performance is less than that of the average amplitude comes
from a comparison of the effectiveness of CVTSD (amplitude
heterogeneity only, poor performance) and SSDTSD (average
amplitude and amplitude heterogeneity, excellent perfor-
mance) as diagnostic indicators for breast cancer. Reinforcing
this assignment is the excellent performance of SMTSD,
which is sensitive to average amplitude only.

A similar comparison can be made to assess the importance
of phase heterogeneity. Measures sensitive to phase hetero-
geneity include all those for which the first mathematical
operation is applied to the spatial domain (TSDSSD, TMSSD,
CVSSD, TSDSM, and SCI). Of these, only the TMSSD metric

T VIII. Relation between the scalar metrics’ performance as diagnostic
indicators of breast cancer, and the parameters of the tissue dynamics model
that influence them.

Metric
Ability to distinguish LC/RC

subject groups from NC
Number of parameter

dependences

SSDTSD Excellent 2
SMTSD Excellent 1 (average amplitude)
CVTSD Poor 1 (amplitude

heterogeneity)
TSDSSD Good 3
TMSSD Excellent 3
CVSSD Poor 2
TSDSM Good 2
SCI Good 1 (phase

heterogeneity)
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exhibited clinical performance in the excellent category.
Having an assignment in the poor category was the CVSSD
metric, which includes sensitivities to heterogeneity both in
amplitude and in phase. Contrasting with this is performance
of the SCI metric (good category), for which the sensitivity
to medium dynamics is limited to phase heterogeneity only,
suggesting that sensitivity to amplitude heterogeneity does not
improve a metric’s clinical performance and may even degrade
it. Inspection of the remaining metrics that are sensitive to
phase heterogeneity (i.e., TSDSSD and TSDSM), and which
have clinical performance in the good category, identifies
that both include sensitivity to average amplitude. Thus, it
would seem that there is a consistent correlation between
observed clinical performance and different elementary forms
of modeled dynamic behaviors. Having the greatest impact
on clinical performance is sensitivity to average amplitude,
followed by sensitivity to phase heterogeneity and finally to
amplitude heterogeneity.

It is noteworthy that these findings may have implications
regarding the strategies used for data collection. For instance,
a simple consideration is the fact that DOT is a low-resolution
technique. It follows that it could prove difficult to access
useful discriminating information from measures that require
some degree of resolution of possible tumor-induced spatial
differences in amplitude dynamics. Also worth considering
is the experimental techniques required to reliably measure
phase heterogeneity. The instrumentation used here employs
a time-multiplexing approach to illumination, thereby limiting
sampling rates to ∼2 Hz. Clinical experience with measures of
hemodynamic phase delays (e.g., time delays between pulse
recordings in the foot compared to the neck) indicates that
these occur on a much faster time scale for any local tissue
type. An alternative approach to data collection would be to
employ a full frequency-encoding scheme, wherein all sources
are illuminated simultaneously but are encoded with different
modulation frequencies. While having a more limited dynamic
range compared to time-multiplexing schemes, this approach
is well suited for fast imaging (e.g., 100 Hz), which could
better support measures of phase heterogeneity.

Findings from the modeling studies would also appear to
yield additional information regarding features inherent to the
breast. For instance, as noted in the Appendix, values for
CVTSD obtained from the clinical studies are always greater
than 100% (see Fig. 4). Similar values were obtained from
the modeling study only in the case where the model medium
properties were nonuniform and asymmetric (NA), which is
a feature consistent with the known heterogeneity of breast
anatomy.

Turning to the other scalar metrics, we find information in
some of them that permits the drawing of inferences regarding
the relative magnitude of the tumor effect. For example,
the model computations suggest two possible causes for the
empirical finding that SSDTSD value is larger in the affected
breast: greater average amplitude or increased asymmetry in
the nonuniform amplitude distribution. However, the second
possibility is ruled out by the CVTSD result (Fig. 4), which
implies that amplitude heterogeneity is lower in affected
breasts. Additionally, since an increase in average amplitude

and decrease in amplitude asymmetry have opposing effects
on SSDTSD, the fact that the metric is seen to increase implies
that the magnitude of the first effect is sufficient to more than
overcome the second. In similar fashion, the observed increase
in TSDSM in the affected breast could be a consequence of
either greater average amplitude or lower phase heterogeneity,
but the second possibility is ruled out by the SCI result;
further, since the increases in average amplitude and in phase
heterogeneity have opposing effects on TSDSM, the fact that
the metric is seen to increase implies that the magnitude of the
first effect is sufficient to more than overcome the second.

4.D. Comparisons of results for different Hb-signal
components

As identified by the results presented in Tables III and IV,
evaluation of metric values as diagnostic indicators of breast
cancer considered all five components of the Hb signal (see
Sec. 2). In the following, we highlight findings that point to
differential information that may prove useful from evaluation
of these components. While the HbSat component yielded
the easily interpreted TSD maps (see Fig. 3), individual-
subject SSDTSD values (see Fig. 5) and group-mean metric
values (see Fig. 4) selected for display here, corresponding
results that are comparably striking were obtained for most
of the other components. However, the metrics derived from
totalHb image time series appeared, overall, to hold the lowest
discriminatory potential. This is supported by ROC findings in
Table V, which indicate that across nearly all of the tabulated
clinical indices, for the metrics in the excellent and good
categories totalHb had reduced performance compared to the
other hemoglobin components. A similar outcome is observed
in the t-test results in Table IV, showing that of the group
comparisons made, where totalHb has the greatest number of
nonsignificant findings, for either instruments.

4.E. Relevance of disease phenotype and signal
variance to instrumentation design

Development of useful diagnostic measures is guided
by an appreciation of factors that contribute to disease
discrimination, combined with adoption of methods that are
sensitive to these factors in a manner that minimizes signal
variance. Ideally, the measuring system deployed would be
one that is not limited by factors associated with system design
or signal quality, but only by intrinsic factors that discriminate
affected from nonaffected individuals. Experience has shown
that methods intended to explore macroscopic properties of
tissue, even those methods having high spatial resolution,
must be capable of distinguishing among multiple sources of
contrast in order to achieve good clinical performance. While
added contrast features can be discerned using NIRS based
on spectroscopic differences in the hemoglobin signal, in the
absence of prior knowledge,18,27 the low spatial resolution of
the method limits its clinical utility.

A well-established approach to improve on this situation is
to artificially enhance contrast by use of injectable agents.38

While this can be effective, its avoidance is often desirable. An
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alternative scheme is to consider ways to capture additional
contrast features, and the natural variability of the hemoglobin
signal makes consideration of dynamic measures an obvious
choice. This has the appeal of introducing an additional
contrast domain (i.e., temporal features), but the influence of
posture-dependent gravitational pooling of blood and details
of soft-tissue contact could potentially make such measures
problematic. Indeed, as seen from our analyses of individual-
breast data, extraction of simplified dynamic metrics may not
be useful. However, in this report, we have shown that disease-
independent sources of variance can be effectively canceled by
considering measures obtained from a simultaneously bilateral
measure. To emphasize this point and to document that these
features are weakly dependent on the details of the data-
collection process, we have intentionally not combined data
from the different measuring systems. This overall similarity
of findings emphasizes that even gross changes in hemoglobin
content arising from postural shifts, with concomitant changes
in signal attenuation, do not obscure the capacity to observe
distinguishing dynamic responses.

Returning to intrinsic contrast features of cancer, we
believe, as noted above, that the existence of a generalized
inflammatory state is the likely origin of the temporal features
identified. Because these rhythms are not observable using
static imaging methods,18,19 and are likely obscured when
methods intended to provoke responses are applied,14,22,23

it is not overly surprising that the phenomenology reported
here has previously gone unrecognized when using the NIRS
method. It is less clear at this time if metrics sensitive to this
behavior are also associated with the clinical biomarkers used
to guide treatment decisions. Nevertheless, because NO is
known to modulate a host of cellular mechanisms modified
by the tumorigenic state,30,31 including these factors,39,40

their further consideration appears warranted. Further, the
general understanding that NO is a key factor in sustaining
and promoting the tumor state makes the finding of high
discriminatory power between breast cancer and benign breast
pathologies particularly encouraging.

Finally, we point out that that if our observation that the
phenomenology considered in this report is broadly dispersed
in the affected breast holds up in further studies, it would imply
that use of simplified instrumentation having notably lower
sensor density than used here should prove equally suitable
for breast-cancer diagnosis.
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APPENDIX: NUMERICAL EVALUATION OF
BIDOMAIN METRIC RESPONSE TO INTRINSIC
SPATIOTEMPORAL BEHAVIORS
1. Specification of model parameters

The data format of each modeled image time series is an
Nt×Nv array, where Nt is the number of image time frames and
Nv is the number of voxels [see Eqs. (1) and (2)]. The term
“voxel” is used here for consistency with the description in
Sec. 2.D, but the model does not actually include any particular
spatial structure. Modeling of spatial structure is superfluous,
because such information is lost when spatial means and
standard deviations are computed. In order to mirror subject-
data format, here we used Nt = 500, with a sampling rate of
2 Hz, and Nv = 1000. These quantities were selected because
they have the same order of magnitude as their experimental
counterparts, and results of the model computations are not
sensitively dependent on the particular values chosen for Nt,
Nv, or the sampling rate.

In the place of experimental data, the model time series
in each voxel (i.e., each column of the Nt × Nv data array)
was a pure sinusoid having an AC amplitude in the range
of 0–2, zero DC offset, and a frequency of ∼0.1 Hz. (The
exact value, π/32≈ 0.0982 Hz, by design is incommensurable
with the sampling frequency, which guarantees that different
function values are sampled in each cycle.) The column-
specific parameters were the amplitude and phase of the
sinusoid. The spatial distributions of amplitude considered
were (see Fig. 6) as follows:

1. Constant (C): The AC amplitude (c)was 0.5, 1, or 2 in all
columns of the data array. (Three sets of computations.)

2. Uniformly varying (U): The AC amplitude ranged
linearly from 1− k to 1+ k, with k = 0.1, 0.2, . . . , 0.9, 1.
Thus, the spatial mean amplitude was 1 in every case.
(Ten sets of computations.)

3. Nonuniform but symmetric (NS): The AC amplitude
ranged linearly from 0 to 1− k in columns 1 through
Nv/2, and from 1+k to 2 in columns (Nv/2)+1 through
Nv, with k = 0.1, 0.2, . . . , 0.9, 1. Thus, the spatial mean
amplitude was 1 in every case. (Ten sets of computa-
tions.)

4. Nonuniform and asymmetric (NA): The AC amplitude
ranged linearly from 0 to 0.5 in columns 1 through
3Nv/4, and from 2.5 to 4 in columns (3Nv/4)+1 through
Nv. Thus, the spatial mean amplitude was 1. (One set of
computations.)

In the U, NS, and NA cases, the smallest amplitude was
assigned to column 1, the second smallest to column 2, etc.
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F. 6. Graphical illustration of the four types of sinusoidal-rhythm ampli-
tude modeled: “C” = constant; “U” = uniformly varying; “NS” = nonuni-
formly but symmetrically varying; “NA” = nonuniformly and asymmetrically
varying. In each of the four cases depicted, the average value of the amplitude
across all voxels is unity.

In each run, the Nv phase offsets ranged linearly from 0 to m
degrees, with m= 0,1, . . . , 359, 360 (361 sets of computations).
Thus, the model considers spatial heterogeneity in two
medium properties (amplitude and phase) simultaneously,
which raises the question of whether their effects interact in
producing the ultimately computed metric values. To evaluate
this, the following procedure was adopted. First, the phase
shifts were randomly assigned to the columns of the data
array, in order to maximize the independence the amplitude-
and phase-heterogeneity effects. Next, the Nt × Nv array
of sinusoidal-function values corresponding to the assigned
amplitudes and phases was generated, and metric values for
the SSDTSD, SMTSD, CVTSD, TSDSSD, TMSSD, CVSSD,
TSDSM, and SCI metrics were computed using Eqs. (4)–(9).
The proceeding steps of randomly assigning phase shifts,
generating the data array, and computing the scalar metrics
was performed 100 times, for each modeled distribution
of amplitudes, thereby allowing us to explicitly compute
relevant parameters (e.g., mean, minimum, and maximum)
of the distributions of metric values that each combination of
amplitude and phase heterogeneities can produce.

While it is possible to include more elaborate and real-
istic model parameters (e.g., more than one frequency,
nonlinear amplitude, and phase distributions), as described
subsequently, results obtained from the simplified model
qualitatively reproduce the clinically relevant trends seen
in the experimental data. Our expectation—borne out by
computational results—that a simple one-frequency model
would suffice as an approximation for hemodynamic fluctu-
ations followed from the experimental data showing that the
most significant difference between affected and unaffected
breasts occurs in relatively narrow vasomotor-frequency
band (see Fig. 2). Computational results also show that
the type of amplitude distribution (e.g., NA vs NS) is

T IX. Dependence of the eight scalar metrics on the three model pa-
rameters. A checkmark in a table cell indicates that the model parameter in
the corresponding column influences the numerical value of the metric in the
corresponding row.

Model-parameter dependence

Metric
Average

amplitude
Amplitude

heterogeneity
Phase

heterogeneity
First dimension

considered

SSDTSD � �
TemporalSMTSD �

CVTSD �

TSDSSD � � �
TMSSD � � �
CVSSD � � Spatial
TSDSM � �
SCI �

more important than the quantitative details (e.g., k = 0.1
vs k = 0.9) within a class, implying that use of nonlinear
amplitude models in place of the linear trends shown in
Fig. 6 also would have a relatively small impact.

2. Codependence of metric values on simplified
dynamics

A first-order understanding of the influence of model
parameters on the scalar metrics is indicated by check marks
in Table IX. Here, we simply identify if a metric is sensitive
to the variations modeled as per Fig. 6. Not explicitly shown
is the additional finding that only trivial variations were found
in the values of all metrics, across the sets of 100 randomized
assignments of phase shifts to voxels, indicating that details of
fine structure within the medium are unimportant in terms of
their influence on metric values. Also included in the table
is a division of the metrics into two primary subgroups,
temporal and spatial. A common property for the temporal
subgroup is that the initial step in generating the bidomain
metric is computation of the TSD, separately for each voxel,
while for the spatial subgroup, the initial step is computation
of the SM or SSD, separately for each time frame. Phase
differences among the voxels are irrelevant in the first category,
so it was expected that these metrics would have no phase-
heterogeneity dependence. In contrast, phase differences do
affect the particular set of sinusoidal-function values that
are present at a given time frame, and consequently, they
have an impact on the spatial mean and standard deviation.
Accordingly, all five metrics in the second category have
phase-heterogeneity dependences.

In Table X, we expand on Table IX results, to include
information about the manner in which the metrics vary as
the parameter values (i.e., c, k, m) are increased. In every
case where a dependence on the average amplitude exists,
it takes the form of direct proportionality, as examination of
Eqs. (1)–(8) had led us to expect. The absence of amplitude
dependence in the other cases follows directly, as it cancels
out when the ratio of two metrics having the same amplitude
dependence is computed [Eq. (9)].
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T X. Functional forms of the scalar-metric dependences on the model parameters.

Model-parameter dependence

Metric Average amplitude Amplitude heterogeneity Phase heterogeneity

SSDTSD Linear Monotonic increase
SMTSD Linear
CVTSD Monotonic increase
TSDSSD Linear Multiphasic Nonlinear, multiphasic
TMSSD Linear Monotonic increase Nonlinear, monotonic increase
CVSSD Multiphasic Nonlinear, multiphasic
TSDSM Linear Nonlinear, monotonic decrease
SCI Nonlinear, monotonic increase

The average amplitude and phase heterogeneity properties
of the model are each governed by a single parameter (c and
m, respectively). Therefore, the corresponding dependences
can be categorized as either linear or nonlinear in Table X.
In contrast, there are two dimensions to the amplitude
heterogeneity properties, the qualitative C→ U→ NS→ NA
progression (Fig. 6) and the quantitative sweep across values of
k within the U and NS cases. In the “amplitude heterogeneity”
column of Table X, the response described as “monotonic
increase” is for fixed values of c and m, the metric value
increases as the fluctuations becomes qualitatively more
heterogeneous, NA > NS > U > C; within the U and NS cases,
the metric value increases monotonically with increasing k,
for fixed values of c and m.

Selected model-computation results are shown in Figure 7.
These illustrate the dependences on amplitude heterogeneity
and phase heterogeneity that are reported in Table X. The
parameter m is plotted on the horizontal axis. As the largest
phase shift between different voxels increases, we would

expect to see an increase in SSD on average, but the temporal
variability of the increasing spatial variability would concom-
itantly decrease. Thus, it is not surprising that TMSSD [Fig.
7(a)] is a monotonically increasing function of m, while the
dependence of TSDSSD [Fig. 7(b)] is more complex but
ultimately decreases to a value near zero. It is seen that TMSSD
and CVTSD [Fig. 7(d)] monotonically increase with increas-
ing k. In addition, the transitions from U to NS, and from NS
to NA, are associated with larger-magnitude increases in the
values of both metrics (not shown). The NA case is the only
one for which we obtain CVTSD > 100%, and since values of
CVTSD in excess of 100% are obtained from the experimental
data for all subject groups (see Fig. 4), we can conclude that the
spatial distribution of hemodynamic fluctuations in the breast
is nonuniform and asymmetric, a finding consistent with the
known heterogeneity in tissue composition of the breast.

Model-computation results also aid in interpreting the
experimental findings that CVSSD < CVTSD for all groups
and Hb signal components, and that CVSSD is never as

F. 7. Combined dependence of the (a) TMSSD, (b) TSDSSD, (c) CVSSD and (d) CVTSD metrics on amplitude and phase heterogeneity of the model medium,
for the C (i.e., k = 0) and U (i.e., k > 0) amplitude-distribution cases. The average value of the AC amplitude is 1 in all cases. Each plotted curve is the average
across the 100 random assignments of phase shifts to the voxels. For the metrics that are not explicitly shown here owing to space limitations: the SSDTSD plot
is qualitatively the same as CVTSD (only difference is the y-axis unit); SMTSD is a single zero-slope straight line; the shape of the TSDSM curve (which has
no k-dependence) is similar to the TMSSD curve for k = 0, reflected about m = 180; and SCI is a single nonlinear curve (no k-dependence) that is equal to 1 at
m = 0 and increases without bound as m approaches 360.
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large as 50% (e.g., CVSSD values derived from totalHb
are approximately twice as large as the HbSat-based result
in Fig. 4). The observations are consistent with Fig. 7(c)
model result, which shows that the upper limit for CVSSD
is approximately 50%. The same upper limit is found in the
NS and NA cases and agrees with analytical calculations
that give 50

(π2−8)/2 ≈ 48.3% as the largest possible
value.
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