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ABSTRACT

Motivation: Today, the base code of DNA is mostly determined

through sequencing by synthesis as provided by the Illumina sequen-

cers. Although highly accurate, resulting reads are short, making their

analyses challenging. Recently, a new technology, single molecule

real-time (SMRT) sequencing, was developed that could address

these challenges, as it generates reads of several thousand bases.

But, their broad application has been hampered by a high error rate.

Therefore, hybrid approaches that use high-quality short reads to cor-

rect erroneous SMRT long reads have been developed. Still, current

implementations have great demands on hardware, work only in well-

defined computing infrastructures and reject a substantial amount of

reads. This limits their usability considerably, especially in the case of

large sequencing projects.

Results: Here we present proovread, a hybrid correction pipeline for

SMRT reads, which can be flexibly adapted on existing hardware and

infrastructurefromalaptoptoahigh-performancecomputingcluster.On

genomic and transcriptomic test cases covering Escherichia coli,

Arabidopsis thaliana and human, proovread achieved accuracies up to

99.9% and outperformed the existing hybrid correction programs.

Furthermore, proovread-corrected sequences were longer and the

throughput was higher. Thus, proovread combines the most accurate

correctionresultswithanexcellentadaptabilitytotheavailablehardware.

Itwill therefore increase the applicabilityand value ofSMRTsequencing.

Availability and implementation: proovread is available at the follow-

ing URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de

Contact: frank.foerster@biozentrum.uni-wuerzburg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Looking back just a decade, sequencing a genome was a time-
consuming and expensive endeavor. The emergence of second-

generation sequencers and their sequencing by synthesis have
changed this drastically, thereby revolutionizing molecular biol-

ogy. Today, a single run of a HiSeq2500 can generate as much
as 600Gb high-quality output data, which covers a human

genome 200�. Unfortunately, this new technology came with a

drawback. Compared with the traditional Sanger sequencing,

resulting reads are short (150bp). This became a major challenge

for the assembly, especially in the case of large repetitive gen-

omes. Accordingly, a plenitude of short read assemblers has been

developed, e.g. Allpath-LG (Gnerre et al., 2011), the Celera

Assembler (Miller et al., 2008; Myers et al., 2000) and

SOAPdenovo (Li et al., 2010). Still, repeats longer than the

short reads (SRs) can not be resolved, and therefore, the

genome can not be reconstructed in these regions (Gnerre

et al., 2011). For the assembly of repetitive genomes, a combin-

ation of short and long insert libraries and additional fosmid

sequencing are therefore recommended (Gnerre et al., 2011).
In 2009, however, a new long read (LR) sequencing technol-

ogy emerged: single-molecule real-time (SMRT) sequencing.

Here, the incorporation of nucleotides in a DNA molecule is

recorded during synthesis for several thousand single template

strands simultaneously (Eid et al., 2009). With the latest chem-

istry, this approach delivers reads44kb, enabling the assembly

of larger repeat structures (Roberts et al., 2013). Additionally,

amplification can be omitted. Since 2011, SMRT-based sequen-

cing is commercially available from Pacific Biosciences of

California. Their third-generation sequencer, PacBio RS II,

generates to date up to 400Mb per sequencing run.

Still, the advantages of third-generation sequencing come at a

price. The accuracy of its LRs falls way behind those of short

second-generation reads. Although current Illumina instruments

offer a sequencing accuracy of 99% (Dohm et al., 2008), PacBio

RS II achieves only 80–85% (Ono et al., 2013; Ross et al., 2013).

Furthermore, the error model of both technologies differs.

Although Illumina reads mainly contain miscalled bases with

increasing frequency toward read ends, SMRT generates primar-

ily insertions (10%) and deletions (5%) in a random pattern

(Ross et al., 2013). Because SMRT uses circular templates,

accuracy can be increased for shorter sequences (51kb). By

sequencing each position multiple times, a circular consensus

sequencing with an accuracy of 99% can be generated.

However, this approach substantially decreases read length

(Travers et al., 2010), erasing one of the major advantages of

SMRT sequencing. In addition to this technical approach, two

different methods for in silico correction of SMRT reads have

been developed. (i) The hierarchical genome-assembly process

(HGAP) uses shorter SMRT reads contained within longer

reads to generate pre-assemblies and to calculate consensus se-

quences (Chin et al., 2013). (ii) PacBioToCA (Koren et al., 2012)

and LSC (Au et al., 2012) use Illumina SRs in a hybrid approach*To whom correspondence should be addressed.
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to correct SMRT reads. These approaches result in higher qual-

ity LRs. Nevertheless, both approaches also have limitations.

In the case of HGAP, a coverage of 80� to 100� has been rec-

ommended (Chin et al., 2013). This might not be an issue when

targeting smaller, e.g. bacterial, genomes, but for larger, espe-

cially eukaryotic, genomes this would imply sequencing several

hundred or thousands SMRT cells. Obviously, this increases the

costs of the genome project substantially.

For a hybrid correction, as implemented by PacBioToCA and

LSC, millions of SR to LR alignments have to be computed and

processed. As these alignments have to tolerate error rates up

to 20%, this can be a formidable computational challenge. These

computational demands are usually met using massive parallel-

ization on high-performance computers (HPCs) or computer

grids, providing dozens or hundreds of computer nodes.

Accordingly, LSC and PacBioToCA are designed to run on

HPCs. PacBioToCA also works on computer clusters providing

Sun grid engine (SGE) as a queuing system. Still, both require a

large amount of memory during the correction process of large

genomes. This can become a considerable limitation, as comput-

ing nodes in a grid are typically equipped only with limited

memory. A second point that can determine the success of a

genome project is the throughput of the correction method, i.e.

the percentage of the bases in corrected reads that can be used in

the assembly. The lower the throughput, the more material needs

to be sequenced in the first place to achieve sufficient coverage

for assembly after correction. As an example, PacBioToCA lost

440% when correcting sequences from Escherichia coli (Koren

et al., 2012), which is a considerable loss of data. Ultimately, we

expect that with the increasing use of SMRT sequencing, more

genomes and transcriptomes with unusual features will be

sequenced. Thus, a correction pipeline developed today should

be flexible enough to be easily adopted to these new use cases.

Although LSC was developed mainly for the correction of

(human) transcriptomic data, PacBioToCA can handle different

datasets, but is part of the Celera WGS pipeline and requires the

installation of the complete package. Distributed computing is

restricted to the now commercial SGE.

These limitations motivated us to implement a new SMRT

sequencing correction pipeline. The goal was high flexibility

such that the pipeline can (i) run on standard computers as

well as computer grids and (ii) can be easily adapted to different

use cases. Obviously, these objectives should not be at the cost of

accuracy, length of corrected reads or throughput.

2 IMPLEMENTATION

2.1 Mapping—sensitive and trusted hybrid alignments

Because of the high rate and distinctive nature of SMRT sequen-

cing errors, calculating hybrid alignments is challenging.

Mapping of SRs with common alignment models and mapping

programs either results in no or at best spurious alignments. For

proovread, we thus devised a hybrid alignment scoring scheme

based on the following assumptions: (i) The expected error rates

for SMRT sequencing are�10% for insertions and up to 5% for

deletions (Ono et al., 2013; Ross et al., 2013). Thus, the costs for

gaps in the LR, which correspond to deletions, are about twice as

high as for gaps in the SR, which represent insertion. (ii)

Substitutions are comparatively rare (1%). This is reflected by

a mismatch penalty of at least 10 times the cost of SR gaps.

(iii) The distribution of SMRT sequencing errors is random.

Hence, contrasting to biological scenarios, continuous insertions

or deletions are less likely, resulting in higher costs for gap ex-

tension than for gap opening.

The implementation of the theoretical model strongly depends

on the used mapping software. As default, proovread uses

SHRiMP2 (David et al., 2011) for mapping. Its versatile interface

allowed us to completely implement the hybrid scoring model

with the following parameters: insertions are the most frequent

errors and are penalized as gap open with –1. Deletions occur

about half as often and are thus penalized with –2. Extensions

for insertions and deletions are scored with –3 and –4, respect-

ively. Mismatches are at least 10 times as rare, resulting in a

penalty of –11 (Supplementary Table S1). All results presented

here have been generated using these settings with SHRiMP2

version 2.2.3.
Additionally, proovread is able to directly digest mapping data

provided in SAM format (Li et al., 2009), leaving the mapping

procedure entirely up to the user. As an alternative to SHRiMP2,

Bowtie2 (Langmead and Salzberg, 2012) is supported as an ex-

perimental feature. However, corrections using Bowtie2 lagged

behind owing to a limited set of parameters regarding scoring

and sensitivity. LR and SR data can be provided in either

FASTA or FASTQ format. Usage of trimmed (e.g. sickle

https://github.com/najoshi/sickle) or corrected SRs [e.g. Quake

(Kelley et al., 2010)] is recommended as it increases correction

accuracy.
To distinguish valid from spurious alignments, the obtained

mapping results require further evaluation. In general, the

number of reported alignments differs strongly between different

regions of the reference sequences. Repetitive regions tend to

collect a vast amount of SRs contrary to non-repetitive regions

with a high local error rate, which might not trigger alignment

computation at all. In addition, the alignment score distribution

reported by the mapping program fluctuates along the references

with the varying amount of errors. We therefore assess length

normalized scores in a localized context. For this purpose, LRs

are internally represented by a consecutive series of small bins.

Each SR mapping is allocated to a bin by the position of its

center. The size of the bins is a trade-off based on two consid-

erations: ideally, the range for local context comprises a single

site and all used SRs are of identical length. Only then, all align-

ments of a single bin will contain the exact same amount of

reference errors and carry unambiguously comparable scores.

However, with median SR lengths ranging from 75 to 150bp

at an operating coverage of 50�, the rough estimate for a

valid alignment is only about one for every other site. At a bin

size of 20bp, we gather a sufficient amount of alignments per

bin for comparison while maintaining a local context for

proper score assessment for our E.coli dataset (Supplementary

Figs S6–S8).

Only the highest scoring alignments of each bin, not the over-

all highest scoring alignments, up to the specified coverage cutoff

are considered for the next step—the calculation of the consensus

sequence. The default coverage cutoff, in congruence with a rec-

ommended SR coverage of 450�, is 40. It is dynamically
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adjusted according to the current SR sampling rate as described

in Section 2.4.

2.2 Consensus call with quality computation and chimera

detection

To compute the consensus, a matrix with one column per nu-

cleotide is composed for each LR. This matrix is filled with SR

bases according to the alignment information obtained from the

mapper (Fig. 1). Empty cells represent insertions on the LR;

multiple nucleotides within one cell indicate deletions. The gap

favoring scoring scheme, which is needed to accurately model

SMRT sequencing errors, is prone to incorrectly introduce

gaps close to the end of an alignment. Thus, it is crucial that

alignments with gaps close to their ends are trimmed during

matrix initialization. The consensus is computed by a majority

vote in each column. If no SR bases are available, the original

LR sequence is kept. The support of the called base is used as

confidence criterion and converted to a phred mimicking quality

score (Supplementary Equation S2, Supplementary Table S2).

More than 1% of raw SMRT single pass reads are chimeric

(Fichot and Norman, 2013). The majority of these reads emerges

through ‘misligation’ of LRs during SMRT cell library construc-

tion. The location of the fusion within the chimeric read is

defined as chimeric break point. Here, adjacent sequences

derive from different locations of the sequenced reference.

Thus, SRs only align to one side of the break point with high

identity. The second part of the alignment is enriched for gaps

and mismatches. In combination with a score threshold align-

ments of reads largely overlapping break points are highly un-

likely. However, the sensitive mapping parameters facilitate

break point overlapping read ends. Therefore, break points are

hard to localize considering only per base coverage. For detec-

tion of possible break points, proovread therefore considers the

per bin coverage generated during the consensus call in the fin-

ishing correction cycle. The bin coverage is obtained by comput-

ing the total number of bases of all reads assigned to one bin.

Only reads centered close to a break point contribute to the

coverage of the according bin, whereas partially break point

overlapping reads do not. Hence, in contrast to per base cover-

age, local decreases in bin coverage serve as strong indicators for

break points. By default, an occurrence of two to five consecutive

bins with 520% of the specified coverage cutoff triggers

advanced break point verification. For longer stretches of low

coverage bins, chimera detection becomes obsolete. These

stretches presuppose low overall per base coverage leading to

quality-based trimming regardless of the result of the chimera

detection. We analyze the error pattern in the alignments over-

lapping with the break point using an entropy-based approach

(Fig. 2). For that, all alignments located within four bins up- and

downstream of the low coverage bins are considered and divided

into two populations: reads placed upstream of the center of the

low coverage region and reads placed downstream, respectively.

From these alignments, one overall and two flank-specific con-

sensus matrices are generated. For each column of each matrix, a

Shannon entropy (Supplementary Equation S1) value is com-

puted, resulting in three values per site: entropy of upstream

reads (HU), entropy of downstream reads (HD) and total entropy

(HT). For comparison of flank-specific entropy and overall en-

tropy, the difference ("H) of the overall entropy (HT) and the

larger value of the flank-specific entropies (HU and HD) are

computed. At a true break point, an accumulation of positive

"H values distinguishes contradicting signals on both side from

random noise or generic low coverage. proovread determines a

chimera score for a break point location by dividing the number

of positive scoring "H values by the total number of signal con-

taining columns. Chimera coordinates and scores are stored to a

chimera annotation file and subsequently used during trimming.

By default, a chimera break point is confirmed at a minimum

score of 0.01.

2.3 Quality and chimera trimming

The reads obtained from the consensus step are considered un-

trimmed corrected LRs. These reads are returned in FASTQ

format, with consensus phred scores ASCII encoded in the qual-

ity line. These data comprise high-accuracy regions as well as

uncorrected regions and unprocessed chimeras. Using a win-

dow-based quality filter, we identify and trim low-quality regions

Fig. 1. Generic work flow of the proovread correction pipeline. Box 1:

Simplified representation of the correction-by-short-read-consensus ap-

proach; short reads (dark green bars) are mapped onto an erroneous

and chimeric (yellow X) long read (blue bar); black strokes indicate

sequencing errors and non-matching alignment positions. Regions with

an unusually high amount of errors prevent short read mappings. Base

call qualities are represented below the long read (light green curve).

During consensus generation, the majority of errors are removed and

possible chimeric break points are identified. New qualities scores are

inferred from coverage and the composition of the consensus at each

position. Processed reads and chimera annotations are written to files.

Box 2: The resulting reads are trimmed using a quality cutoff and the chi-

mera annotations generating proovread’s primary output: high-accuracy

long reads
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from these reads. Chimeric reads are cut according to annota-

tions. The trimming procedure can easily be rerun on the

untrimmed corrected reads to adjust strictness according to the

users needs.

2.4 Iterative correction

To entirely cover a set of erroneous LR with SR alignments, the

level of sensitivity has to match the regions with the locally high-

est error rates, even though most regions exhibit much lower

rates. Mapping at the required level of sensitivity, especially on

large-scale data, is computationally demanding and time con-

suming. Therefore, proovread provides an iterative procedure

for mapping and correcting with successively increasing sensitiv-

ity (Fig. 3). It consists of three pre-correction and one finishing

cycle. During pre-corrections, only subsets of the SRs are used,

by default 20, 30 and 50%, respectively. These subsets are

generated through systematic sampling such that samples from
successive cycles complement each other.
In the first cycle, the SR subset is mapped at a moderate level

of sensitivity and thus at high speed. Subsequently, LRs are pre-
corrected and regions with sufficient SR support, by default re-

gions with a minimum per base coverage of five, are identified
and masked. As a result, the effective search space is substan-

tially reduced before the next cycles. As masking is limited,
unmasked edges of pre-corrected regions can act as seeds for

mappings during the next cycle, facilitating extensions of
masked regions. The process is repeated in cycle two and three,

with larger and complementary SR subsamples at increased sen-
sitivity. We tuned parameters such that on average480% of the

reference is masked after the first two cycles. Consequently, map-
ping at highest sensitivity during cycle three is limited to remain-

ing error-enriched islands. Finally, the entire SR set is mapped at
high specificity to the unmasked pre-corrected LRs to merge and

refine all previously performed corrections. The time benefit of
this iterative approach far out-weights the computational over-

head generated by repeated mapping and correction. In summa-
tion, proovread combines high sensitivity with low run time.

2.5 Configuration and customization

proovread is highly transparent and flexible with regard to par-
ameter settings and tuning. It comprises a comprehensive op-

tional configuration file that allows tracing and modification of
the parameters down to the core algorithms (Supplementary

Listing 5). The settings include scoring schemes, binning, mask-
ing, iteration procedure and post-processing. The default setup is

optimized for genomic data. During the initial pre-correction
cycles, for example, only subsamples of the provided SRs are

used. For data with uniform coverage distribution, this optimiza-
tion significantly reduces run time without any loss in overall

correction efficiency. However, on data with uneven coverage
distribution, e.g. derived from RNA-Seq experiments, the setup

can be improved. To sufficiently cover low abundance tran-
scripts, increasing the subsample ratios is required. Such data-

specific adjustments can easily be achieved using a modified
configuration file (Supplementary Listing 5). Similarly, with ap-

propriate parameter settings, proovread can be tuned to correct
data with entirely different characteristics, e.g. obtained from

newly emerging LR sequencing technologies.

2.6 Scalability and parallelization

The advantages of SMRT LR sequencing render the technology

useful for a variety of sequencing projects, ranging from specific
studies on microbial genomes, viruses and plastids to large-scale

sequencing of eukaryotic genomes. The varying amount of data
demands high flexibility in scalability and parallelization of the

processing software. proovread provides several optimizations for
this purpose. By design, LRs are corrected independently from

each other and as a consequence, instances of proovread can
operate on packages of LR data at adaptable size without affect-

ing correction results (Supplementary Fig. S1). The memory
footprint of the pipeline increases linearly with the amount of

supplied LR bases (Supplementary Fig. S2). The amount of SR
data, however, does not affect memory consumption, as our ap-

proach does not require the generation of SR indexes or kmer

Fig. 2. Detection of chimera break points. Box 1: Mapping of short reads

(short light blue and green bars) onto pre-corrected long read (blue bar)

containing a chimeric break point (yellow X); black strokes indicate non-

matching alignment positions. While not detectable by per-base coverage

(gray curve), break point candidate sites (c1, c2) can be inferred from

decreases in bin coverage (green curve, red arrows). Reads overlapping

candidate sites from the right hand side (dark green bars) and reads

overlapping from the left hand side (light green bars) are considered

for further classification of each individual site. Box 2: Entropy profiles

derived from the short read alignment matrix at the two candidate sites.

Each position comprises four entropy values: HT calculated from the

entire read set (gray bar), HU for the reads placed upstream (dark

green bar), HD for the reads placed downstream (light green bar) and

"H (red bar). "H is the difference of HT and the greater value of HU and

HD. An accumulation of positive "H values (yellow arrows) is observed

at true chimera locations

3007

proovread

In order t
tiliz
&percnt;
&percnt;
prior to 
-
more than 
,
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu392/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu392/-/DC1
-
of 
-
-
In order t
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu392/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu392/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu392/-/DC1


spectra. Therefore, by tuning the package size, the memory re-

quirements of proovread can easily be adjusted to meet available

hardware, regardless of the scale of the project. Thus, proovread

can run efficiently on high-memory multi-core machines as

well as distributed cluster architectures with nodes of limited

capabilities or even desktop PCs. Queuing engines like SGE

(commercially available from http://www.univa.com/products/

grid-engine.php) or Slurm (Jette et al., 2002) can be used to

distribute individual jobs. Additionally, the number and size of

temporary files are strongly reduced. The SR subsamples are

generated on-the-fly from the user-supplied input data.

Systematic sampling is realized with the program SeqChunker,

which is included in proovread. SeqChunker splits FASTA/

FASTQ files into a user-defined number of chunks of similar

size. Using simple arithmetics, e.g. return only the first chunk

from a block of three chunks, different and in particular com-

plementary read sets can be generated. A high efficiency is

accomplished through low-level copy processes for chunk core

regions, while actual parsing is limited to chunk boundaries,

where exact record offsets are determined. The output of

SeqChunker is directly fed to the mapper rendering storage of

subsample files obsolete. The primary output of the mapper is

also redirected and parsed directly. We determine location, score

and offset information of each alignment and use this informa-

tion to populate an alignment index. In the index structure, align-

ments are assigned to bins and ranked by score. Only records up

to the given coverage cutoff are kept for each bin. An alignment

will only be written to disk if the according bin has not been

completely filled or if it outscores at least one other alignment in
the bin. In the latter case, the record of the alignment ranked last
will be deleted from the index. This way, while in the beginning

almost all alignments will be stored to file, the further the map-
ping progresses, the fewer unnecessary alignments will have to be

stored. The maximum size of the index structure is determined by
the number of records per bin and the total number of bins,
which is directly dependent on chunk size. After completion of

the mapping process, the index is used to extract all relevant
alignments and generate a sorted alignment file without having

to run a computationally more expensive sort process on an
actual file. These optimizations decrease the required disk
space as well as the read and write operations several fold.

3 MATERIALS AND METHODS

3.1 Datasets and preparation

All LRs used with correction software are filtered subreads derived from

PacBio’s SMRT-Portal analysis suite, with adapters trimmed and reads

split accordingly. Here, we give an overview of the test datasets; more

detailed information is provided in the Supplementary Material

(Supplementary Table S3). The genomic LR sequences were obtained

from the PacBio DevNet (http://www.pacb.com/devnet/).

As bacterial dataset, E.coli genomic sequences (available from PacBio

DevNet as ‘E.coli K12 MG1655 Resequencing’) of �100Mb and an N50

of 4082bp were analyzed. These data were also used as benchmark by

Koren et al. (2012). For the correction, a subsample of a 100bp Illumina

library (SRA ERX002508) was used. The reference was the K12 strain of

E.coli (Assembly GCA_000005845.1).

As first eukaryotic genomic dataset, �126Mb of Arabidopsis thaliana

(available from PacBio DevNet as ‘Arabidopsis P5C3’; N50 8109bp) were

corrected with 100bp Illumina sequences (SRA SRX158552). The

TAIR10 assembly was used as reference (Assembly GCA_000001735.1).

The second genomic dataset was 393Mb from a human sequencing

project (available from PacBio DevNet as ‘H. sapiens 10� Sequence

Coverage with PacBio data’; N50 9938bp). These sequences were cor-

rected with SRs sampled for a 50� coverage from the 1000 genomes

project (SRA SRX246904, SRX246905, SRX246906, SRX246907,

SRX247361 and SRX247362) leading to a 50� coverage. The reference

sequence was the human hg19 assembly (Assembly GCA_000001405.12).

The applicability of proovread for the correction of transcriptomic data

was tested with the human brain transcriptome set used by Au et al.

(2012) (available from http://www.stanford.edu/�kinfai/human_cerebel

lum_PacBioLR.zip). It contained 138Mb RNA-seq LRs with a N50 of

972bp. SRs from the human Map 2.0 project (SRA ERX011200 and

ERX011186) were used for correction. The human hg19 assembly was

used as reference (Assembly GCA_000001405.12).

Before correction all SRs were quality trimmed using sickle (https://

github.com/najoshi/sickle). The normalization of the SRs for the human

genome was achieved using the normalize-by-median.py script of the

khmer package (Brown et al., 2012).

3.2 Correction programs and parameters

We evaluated the correction efficiency of proovread (v1.01) in comparison

with the existing pipelines PacBioToCA (v7.0) and LSC (v.0.3.1). The

majority of the corrections were performed on a HPC offering 32 CPU

cores and 192GB memory. The correction of the genomic human dataset

was performed in a computer grid offering single nodes with 4 CPU cores

and 8GBmemory. The queuing system Slurm was used to distribute jobs.

The results were assessed in terms of correction accuracy, total through-

put, N50, run time and required memory. The required memory and

CPU time were monitored for each correction run by a custom script.

Fig. 3. Iterative correction by short read consensus. Short reads (dark

green bars) are mapped onto an erroneous long read (blue bar) in four

iterations. During pre-correction cycles (c1–c3) subreads are mapped with

increasing sensitivity and with complementary subsamples of SR (Pie

charts: 20, 30 and 50%). After each cycle a consensus is generated.

Sufficiently covered regions are masked before the next iteration, redu-

cing effective reference size for computationally more expensive mappings

at increased sensitivity. In the final iteration (cf, 100%), all available short

read data are mapped onto unmasked, pre-corrected long reads at high

specificity, resulting in a high-accuracy consensus with trusted qualities

and chimera annotations
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LSC and PacBioToCA were run with 32 threads. proovread was run in

eight independent processes using four mapping threads. The upper

bounds for memory requirements were estimated by summing up the

eight most memory intensive subtasks.

3.3 Quality assessment procedure

The quality of the correction results was assessed by an evaluation script

(available on request from the authors). During the assessment the cor-

rected LRs were remapped onto the reference sequence by GMAP (Wu

and Watanabe, 2005). All LR sequences without a global alignment were

realigned using exonerate v2.2.0 (Slater and Birney, 2005). Genomic LRs

were aligned using the affine:bestfit model to assure global alignments to

the reference. Exonerate does not offer global alignment with intron

modeling; therefore, transcriptomic LRs were aligned with the model

est2genome and reduced gap costs to maximize the length of the local

hits. All LR nucleotides without an alignment were considered as erro-

neous positions. Only reads with a unique mapping were used for the

accuracy estimation. Reads were classified as chimeric by GMAP. Reads

without an initial GMAP alignment were not considered for the accuracy

assessment. The proportions of these ambiguous read placements for all

corrections were low, with the exception of the A.thaliana correction with

up to 17% for LSC (Supplementary Table S4). The overall throughput

and the N50 values for each correction method were calculated for the

complete sequence set returned by the programs, respectively, regardless

of their mapping result.

3.4 Estimation of the required SR coverage

The SR coverage has a major effect on mapping run time and correction

efficiency. We empirically determined the optimal SR coverage for proov-

read using the E.coli dataset. We selected random subsets of the SRs

yielding an expected coverage of 10�, 20�, 35�, 50�, 75�, 100� and

200�, with larger sets including the preceding smaller set. The correction

result of the 50� set was only slightly improved by increasing the expected

coverage (Supplementary Fig. S3 and S4). Indeed, the memory consump-

tion was saturated by a higher expected coverage (Supplementary Fig. S5).

Therefore, we used a 50� as a good trade-off between run time and

accuracy, which is in agreement with Koren et al. (2012).

4 RESULTS

Today, the major application of the PacBio RS II is the sequen-
cing of bacterial genomes. Therefore, we used an E.coli dataset as
first test case (Table 1). Mapping of the corrected reads onto the

E.coli reference genome revealed accuracies of 99.98% for proov-
read, followed by 99.93% (PacBioToCA) and 88.79% (LSC).

LSC correction resulted in a N50 of 4158bp, which was higher

than in the uncorrected reads, as LSC returns only LRs with SR

mapping and omitted other LRs. Therefore, the starting N50

for LSC was in fact 4450bp. Proovread-corrected reads had an

N50 of 2147 bp and PacBioToCA of 1639bp. In matters of

throughput, proovread recovered 81% of the input, whereas

LSC and PacBioToCA returned 76 and 73%, respectively. The

required run time was shortest for PacBioToCA (2.6h), while

proovread took 7� longer, and LSC was most time-consuming

(25� of PacBioToCA). The memory consumption was in the

same range for LSC and proovread (18.4 and 19.6GB), whereas

PacBioToCA required more than twice as much (44GB). This

differs from the originally published 2.1GB (Koren et al., 2012),

as here PacBioToCA ran multi-threaded.
With their outstanding length, SMRT sequencing reads will be

of increasing use for the sequencing of eukaryotic genomes. To

evaluate the performance of proovread on this type of data, we

used the comparably small genome of A.thaliana as a second test

case (Table 1). For this dataset, correction with LSC exceeded

the maximum available memory (192GB) and therefore did not

finish. proovread and PacBioToCA achieved a high correction

accuracy of 98.48 and 97.44%, respectively. Starting with an

N50 of 8109 bp in the raw reads, proovread returned an N50 of

2714 bp and PacBioToCA of 1528bp. The throughput was 79%

for proovread and 46% for PacBioToCA. The latter required

a run time of 481h with proovread 8.7� longer. Concerning

the memory consumption, proovread required 43.6GB and

PacBioToCA 27.5GB.

To analyze the influence of the size and the complexity of the

sequenced genome on the correction result, we used the human

genome as third test case (Table 1). For run time reasons, we

corrected this set on a cluster infrastructure. Unfortunately, the

available grid provided only Slurm as queuing system, whereas

PacBioToCA is implemented only for SGE. Furthermore, and

typically for larger grids, each node offers only four CPU cores

and 8GBmemory. Both do not fulfill the hardware requirements

of LSC and a stand-alone PacBioToCA correction. Therefore,

only the performance of proovread was analyzed for this LR

dataset. Here, we examined two different SR datasets: first, a

50� coverage SR sample and second, a digitally normalized ver-

sion of these data. The normalization process required 37GB

memory and took 49h. The correction accuracy for the non-

normalized and the normalized SR set was 98.9 and 99.1%,

with an N50 of 2219 and 1327bp, respectively. The throughput

Table 1. Benchmark correction results for proovread, PacBioToCA and LSC: Ec—Escherichia coli, At—Arabidopsis thaliana, Hsg—Homo sapiens

genome, Hst—Homo sapiens transcriptome

Program Accuracy (%) N50 (bp) Throughput (%) Run time (h or d) Memory (GB)

Ec At Hsg Hst Ec At Hsg Hst Ec At Hsg Hst Ec At Hsg Hst Ec At Hsg Hst

Uncorrected 4082 8109 9938 1234

proovread def. 99.98 98.48 98.90 99.87 2147 2714 2219 821 81 79 88 48 19.3h 173d 2288d 84h 19.6 43.6 40.1 8.1

proovread norm. 99.10 1327 80 1009d 33.6

proovread adapt. 99.88 730 70 282h 9.9

PacBioToCA 99.93 97.44 98.67 1639 1528 193 73 46 29 2.6h 20d 49h 44.0 27.5 45.4

LSC 88.79 95.43 4158 908 76 60 66.2h 137h 18.4 18.4
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was 88.4% for the complete SR set and 79.5% for the normal-
ized dataset. The total run time was shorter for the normalized
set (1009 days versus 2288 days) and the required memory was

similar for both cases (33.6 and 29.3GB).
In addition to genomics studies, SMRT sequencing is fre-

quently used for transcriptome analyses. With its LRs, chances

are high that a whole transcript is sequenced in a single read,
thereby avoiding the assembly process. To evaluate the applic-
ability of proovread for this type of data, we used human brain

transcriptomic data as a final test case (Table 1). This dataset was
previously used to assess the performance of LSC (Au et al.,
2012), although here we used a more recent version of the pro-

gram (0.3.1). proovread was run with two different parameter
settings: (i) the default settings and (ii) a modified set tailored-
made for transcriptomic data (see Section 2). Indeed, the

correction accuracy was highest with the default and modified
proovread settings (99.87 and 99.88%). PacBioToCA and LSC

performed worse (98.67 and 95.43%). Starting with an N50
of 972 bp, LSC returned the highest N50 (908 bp) followed by
default proovread (821bp), modified proovread (730 bp) and

PacBioToCA (193bp). Modified proovread resulted in the high-
est throughput (69.5% of input data), followed by LSC (59.6%),
proovreadwith default settings (47.5%) and PacBioToCA (29%).

The shortest run time was required by PacBioToCA (49.1h).
LSC took 1.35� longer, while standard proovread ran 1.71�
longer. Modified proovread required the longest run time

(5.75�). In contrast, proovread needed 510GB memory (8.1
and 9.9GB for default and modified settings), while LSC
needed almost twice as much (18.4GB) and PacBioToCA

needed most memory (45.4GB).

5 DISCUSSION

proovread is designed to correct erroneous LRs sequenced by
SMRT with high-quality SR data as generated by Illumina se-

quencers. Our benchmarks revealed that proovread is well suited
for the correction of microbial and eukaryotic as well as genomic
and transcriptomic data.

Arguably, the most prominent characteristic of a correction
pipeline is the accuracy of the corrected reads. With accuracies
of499% in almost all test cases, proovread and PacBioToCA

clearly outperformed LSC. The latter achieved only590% for
genomic and 95% for transcriptomic reads, as LSC omits trim-
ming of corrected reads, which results in reads that are only

partially corrected. Obviously, the overall accuracy of these
reads will be low. When comparing accuracies, it has to be

taken into account that all corrected reads that could not be
mapped onto the reference or were identified as chimeric were
classified as ambiguous and not considered. In general, their

amount was small. Only for the A.thaliana set, it exceeds 6.5%
for all programs, as here the reference and the sequenced strain
differ (Supplementary Table S4). Still, if these reads were

included, the accuracy of all programs would decrease. This
effect would be smallest on proovread, as it generated fewer of
these ambiguous reads than PacBioToCA and LSC.

Still, accuracy is only one criterion for the evaluation of an LR
correction pipeline. A key advantage of SMRT sequencing is the
length of the resulting reads. Therefore, the correction process

shortens the reads as few as possible. When comparing the N50

of the corrected reads, LSC resulted in the longest reads. This
does not come as a surprise taking into account that LSC does
not trim corrected reads (see above). Still, we think that trimming

is an important feature, as it not only avoids the inclusion of
poorly corrected regions in the following analyses but also en-
ables the correction of chimeric reads. Therefore, both, proovread

and PacBioToCA, trim corrected reads. Still the N50 of proov-
read-corrected reads was in all test cases considerably higher than
for PacBioToCA. To give the user maximum flexibility, proov-

read also reports the untrimmed corrected reads. Furthermore,
the trimming step is independent of the correction, thereby
enabling the user to easily optimize the trimming parameters

for the given dataset.
Finally, during the correction process, regions and reads can

be rejected, decreasing the throughput of the pipeline. This factor

might be neglectable if initially a high coverage of the sequenced
material was provided. In the case of larger, e.g. eukaryotic,
genomes, this is usually too expensive, resulting in lower cover-

age. Here, a decrease in throughput could have a strong impact
on the further steps of the projects, especially the assembly.
In the worst case, costly re-sequencing might be needed. Thus,

minimizing the rejection of reads is an important objective of a
correction pipeline. proovread corrected in almost all cases �80%
of the input data, while LSC and PacBioToCA generated dra-

matically smaller throughput. In the case of the Homo sapiens
transcriptome and the A.thaliana genome PacBioToCA omitted
�50% of the LRs. Thus,41.6� raw reads would be needed for

the same amount of corrected reads. Taken together, proovread is
able to correct larger percentages with higher accuracy, leading
to longer reads than previous tools.

Apart from read length and accuracy, in practice particularly
the horizontal coverage of the reference is of high importance.
SMRT sequencing has little to no bias toward nucleotide com-

position (Loomis et al., 2013; Shin et al., 2013). In contrast,
especially with early chemistry, Illumina had various issues
with bias-free sequencing of GC-rich molecules (Aird et al.,

2011). As a consequence, SR data for hybrid correction has to
be chosen with care. Any biases in the SRs are to some extent
transferred onto the LRs, thus, impairing correction quality and

potentially eliminating specific SMRT sequencing advantages.
A general issue of the consensus correction method is the po-

tential loss of single nucleotide variants. The haplotype of the

corrected LRs is determined by the SR dataset. Nevertheless,
Carneiro et al. (2012) describe the recovery of the original vari-
ants using the uncorrected LRs given a sufficient coverage.

When designing proovread it was one goal to achieve a max-
imum of independence from the existing computer infrastructure.
Therefore, the correction can be performed in a single process,

which requires a maximum of memory, or can be split into
smaller chunks, each needing less memory. In addition, the
amount of SRs is unlimited, as proovread does not require an

indexing of the SR data. This allows the parallel execution of
independent proovread processes on computers with limited
memory and CPU configuration. Indeed, the memory footprint

of a single proovread process is smaller in comparison to the
other programs. If the available memory is not sufficient, the
package size can be lowered to fit the available memory.

Admittedly, this increases the run time of proovread. Still, we
think that this can be overcome by clusters of comparably
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cheap machines. Here, each machine corrects only a fraction of

the reads. Contrarily, LSC requires large memory and does not

benefit from running in a grid infrastructure. PacBioToCA

allows the parallel execution in a grid system, but is restricted

to the SGE queuing system. Moreover, it requires up to 48GB

memory on a local computer, which requires large server sys-

tems. Thus, proovread does not dictate the architecture of the

computer system.
This idea of flexibility is also encoded in the correction process

itself. This starts with the mapping of the reads. Currently, we

support SHRiMP2 as default mapper and Bowtie2 as experimen-

tal option. As we can not foresee the development of new map-

pers, proovread can also work directly on user-provided mapping

files. Next, the proovread iterative correction is highly configur-

able. A user can modify the number of iterations and thereby

decrease the overall run time by performing fewer iterations.

Obviously, this might affect the correction accuracy and there-

fore has to be considered carefully. Finally, the correction and

the filtering steps are independent from each other. Without fil-

tering, the maximum of the input read length can be preserved.

In contrast with a strict filtering, only highly accurate positions

will be returned. Furthermore, this separation enables repeating

the filtering step without rerunning the time-consuming

correction.
The idea to correct errors in LRs from SMRT sequencing with

Illumina SRs has been implemented before by LSC and

PacBioToCA. But, both have strong demands on hardware as

well as software infrastructure. If either can not be met, correc-

tion can not be performed. This will make following analyses like

an assembly challenging if possible at all. Contrarily, proovread

can be easily adapted to the available resources. It handles the

correction of an E.coli genome on a laptop as well as of a human

genome on a HPC cluster. This in-built flexibility also enables

the adaptation to and optimization for different datasets as gen-

erated in genomic and transcriptomic projects. Finally, correc-

tion with proovread delivered more, more accurate and longer

reads. Thus, proovread is well suited for the correction of LRs

irrespective of the target of sequencing and regardless of the

computational resources.
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