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ABSTRACT

Motivation: A rapid progression of esophageal squamous cell carcin-

oma (ESCC) causes a high mortality rate because of the propensity for

metastasis driven by genetic and epigenetic alterations. The identifi-

cation of prognostic biomarkers would help prevent or control meta-

static progression. Expression analyses have been used to find such

markers, but do not always validate in separate cohorts. Epigenetic

marks, such as DNA methylation, are a potential source of more

reliable and stable biomarkers. Importantly, the integration of both

expression and epigenetic alterations is more likely to identify relevant

biomarkers.

Results: We present a new analysis framework, using ESCC progres-

sion-associated gene regulatory network (GRNescc), to identify differ-

entially methylated CpG sites prognostic of ESCC progression. From

the CpG loci differentially methylated in 50 tumor–normal pairs, we

selected 44 CpG loci most highly associated with survival and located

in the promoters of genes more likely to belong to GRNescc. Using an

independent ESCC cohort, we confirmed that 8/10 of CpG loci in the

promoter of GRNescc genes significantly correlated with patient

survival. In contrast, 0/10 CpG loci in the promoter genes outside

the GRNescc were correlated with patient survival. We further charac-

terized the GRNescc network topology and observed that the genes

with methylated CpG loci associated with survival deviated from the

center of mass and were less likely to be hubs in the GRNescc. We

postulate that our analysis framework improves the identification of

bona fide prognostic biomarkers from DNA methylation studies, espe-

cially with partial genome coverage.
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1 INTRODUCTION

Recently, systematic biological approaches to study cancer have

provided unprecedented views of molecular changes in many can-

cers. For example, the mutagenesis within a network of general

human cancer signaling genes (Cui et al., 2007) and the protein

expression within a protein–protein interaction network (Ostlund

et al., 2010) have led to the discovery of subnetworks involving

cancer-related genes. The combination of protein–protein net-

works with gene expression microarray datasets has also been

used to distinguish metastatic from non-metastatic tumor samples

(Chuang et al., 2007; Garcia et al., 2012) or to identify biomarkers

correlated with patient survival (Li et al., 2012). More recently,

Sun and Wang (2013) used a genetic network as a reference to

estimate the penalty score of a conditional logistic regression

model and applied it on a matched tumor–normal analysis of

DNA methylation array data to identify a list of candidate

CpG sites associated with hepatocellular cancer development.

Kim et al. (2012) attempted to integrate more biological resources

like the epigenomic, transcriptomic and protein interactome data

to identify glioblastoma prognostic biomarkers using gene expres-

sion and DNA methylation-based networks. Although DNA

methylation can be used as a powerful and promising prognostic

indicator alone (Laird, 2003), none of the aforementioned net-

work-based studies, integrating DNA methylation, gene expres-

sion or protein expression information performed experimental

validation of the identified biomarkers. This can be because of the

large number of candidate biomarkers within networks, making

their validation and use in the clinic more difficult.

Affecting 4450000 patients annually, esophageal carcinoma

with squamous cell carcinoma (ESCC) as the predominant histo-

logical subtype worldwide is the sixth leading cause of cancer-

related mortality, with 4400000 deaths per year (Pennathur

et al., 2013; van Hagen et al., 2012). Late presentation with

already existing lymph node metastasis (LNM) followed

by rapid progression explains the poor outcome of the disease

(Bollschweiler et al., 2006). Metastasis requires certain steps like

primary tumor initialization and proliferation, blood vessel/

lymphatic channel intravasation, cell arrest and extravasation
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and proliferation at secondary target sites/organs (Hunter et al.,
2008). Metastasis can arise from tumor cells that have undergone

phenotypic changes called epithelial-to-mesenchymal transition

(EMT), gaining plasticity and circulating and seeding ability.

There is no observable change in DNA methylation during the

transforming growth factor beta-mediated EMT in AML12

mouse hepatocyte (McDonald et al., 2011). But such DNA

methylation is able to be involved in gene regulation during

the EMT of prostate cell line, EP156T (Ke et al., 2010).

Identifying epigenetic alterations occurring during ESCC pro-
gression is therefore not only essential for a detailed understand-

ing of the molecular biology underlying the disease progression

but also to improve clinical prognosis and develop more sophis-

ticated treatment strategies.
Until now, only few genomic regions, such as the retrotrans-

poson-related long interspersed element 1 (Iwagami et al., 2013)

or the gene regulatory elements, showing methylation alterations

have been identified as possible biomarkers for LNM and/or pa-

tient survival in ESCC. Of the gene annotation-based studies,

hyper-methylation at CpG islands (CGIs) in the vicinities of

PAX6 (paired box 6) and RN7SKP211 (RNA, 7SK small nuclear

pseudogene 211) were significantly associated with LNM and dis-
ease-free survival in96patients (Gyobu et al., 2011).Hyper-methy-

lated CGIs located within UCHL1 (ubiquitin carboxyl-terminal

esteraseL1) (Mandelker et al., 2005), FHIT (fragile histidine triad)

(Lee et al., 2006), GRIN2B (glutamate receptor, ionotropic,

N-methyl D-aspartate 2B) (Kim et al., 2007) and GADD45G

(growth arrest and DNA-damage-inducible, gamma) (Guo et al.,

2013) promoter regions were associated with poor survival.

However, these studies only validated CpG sites in a small set of

candidate genes, therefore limiting the scope of the findings. A
more comprehensive analysis is likely to reveal new DNAmethy-

lation as biomarkers associated with LNM and survival.

In this study, we use a new comprehensive approach to effi-
ciently identify and validate DNA methylation sites as putative

prognostic biomarkers of ESCC progression. We propose an in-

tuitive framework, and demonstrate its ability to identify CpG

sites of prognostic value. The framework leverages an ESCC pro-

gression-associated gene regulatory network (GRNescc) to iden-

tify methylated sites with significant prognostic value. By taking

into account differentially methylated CpG sites whose corres-

ponding gene promoters are ranked, the ranked CpG sites are

purified/selected via a top-k precision test in network.We validate
the results on a selection of 20 CpG loci in a separate cohort of

ESCC patients and demonstrate that this framework is capable of

identifying novel sites of DNA methylation with prognostic

impact that had not been discovered by previous approaches.

2 METHODS

2.1 Patients and biopsy specimens

This study was verified and qualified by the institutional review board of

National Cheng Kung University Hospital from May 1, 2010 to July 31,

2011 under contract number ‘HR-99-021’. The ethics committee specific-

ally waived the need for informed consent forms because the data were

publicly obtained from an observational study and analyzed anonym-

ously. We enrolled 100 ESCC patients admitted to the Cancer Center

and Pathology department, National Cheng Kung University Hospital

(N=80) and the Cancer Center, China Medical University Hospital

(N=20). Primary ESCC specimens and matched normal tissues, located

410cm from the primary site, were collected through surgical resection.

Pathologic examination of the resected surgical specimens was performed

following a standardized protocol, and the specimens were classified

according to the sixth edition of the UICC TNM (Union for

International Cancer Control, TNM Classification of Malignant

Tumours) system and the WHO classification. Although surgically re-

sected tumor tissue and corresponding normal tissue samples were col-

lected from two separate hospitals, the samples were processed by the

same laboratory, using the same protocol, therefore limiting potential

batch effects. Follow-up of enrolled patients was performed at 6 months

interval, with the last follow-up performed at least 12 months and up to

104 months after diagnosis for living patients. The enrolled patients were

randomly split between screening (50 patients) and validation (50 pa-

tients) cohorts. The general clinicopathological characteristics of the en-

rolled patients are shown in Supplementary Table S1.

2.2 Construction of an ESCC-related gene regulatory

network

We built a general gene regulatory network (GRNg) using three publicly

available networks: Pathway Commons (11/2011 version; Cerami et al.,

2011), BioGRID 3.1.79 (Stark et al., 2006) and KEGG (Kyoto

Encyclopedia of Genes and Genomes) (09/2011 version; Ogata et al.,

1999). The consolidated network features 1 294 769 gene regulations

(edges) and 12 803 genes (nodes). In this study, we focused more on

direct gene regulations because the DNA methylation is a major epigen-

etic event that blocks binding of transcription factors to promoters of

target genes, or modifies chromatin structure, which in turn blocks tran-

scription factor binding (Suzuki and Bird, 2008). Therefore, only inter-

actions derived from transcriptional regulation were considered,

excluding protein–protein and protein compound interactions. We then

generated GRNescc. We selected 186 genes by curating the literature and

identified genes whose expression pattern is associated with ESCC pro-

gression (Supplementary Table S2) before January 2012. The progression

refers to the cancer metastasis, proliferation, arrest, invasion and patient

survival. We excluded genes showing differential expression between

tumor and normal but that could not be associated with ESCC progres-

sion. We then generated the GRNescc as a subnetwork of GRNg using the

following steps: (i) Initiate an empty distance matrix with a length equal

to the number of literature-curated genes, (186� 186), (ii) calculate the

shortest distance between each pair of genes projected on GRNg using the

Dijkstra’s algorithm and (iii) calculate the shortest paths of each pair of

genes on GRNescc using a breadth-first search algorithm. The resulting

GRNescc contained 1013 604 interactions between 4636 genes. A non-

ESCC progression-associated gene regulatory network (GRNg-escc) was

also derived from the complement of GRNescc in GRNg. More precisely,

after generating the GRNescc via the above three steps, every gene (node)

of GRNescc and its connected gene–gene regulations (edges) in GRNg

were removed from GRNg. We therefore called the rest part GRNg-escc

as a negative control used in this study.

2.3 Generation and analysis of DNA methylation

microarray data

2.3.1 Microarray data generation The genomic DNA from primary

ESCC and normal esophagus specimen was extracted using proteinase

K digestion and phenol–chloroform extraction. One microgram of DNA

was then converted using bisulfite following the directions from the

EpiTect Bisulfite kit (Qiagen, Duesseldorf, Germany), converting

unmethylated cytosines to uracil and then to thymidine in the subsequent

PCR step. We used the Illumina’s GoldenGate Methylation Assay

Cancer Panel I (1505 CpG dinucleotides located in the promoter of

807 genes; Illumina, San Diego, CA, USA) following the
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manufacturer’s instructions. The data are available at the NCBI/GEO

database (GSE51287).

2.3.2 Microarray data analysis The ratio of fluorescent signals was

computed from the two alleles beta= (max(M, 0))/(jUj+ jMj+100),

where U is the green fluorescent signal (Cy3) from an unmethylated

allele and M is the red signal (Cy5) from a methylated allele, generated

by the Illumina’s proprietary software (BeadStudio). The beta-value re-

flects the methylation level of each CpG site (Bibikova et al., 2006), and

their distribution is shown in Supplementary Figure S1A. To allow fur-

ther statistical analyses able to be applicable to these values across dif-

ferent samples, the beta-values were then normalized using the function

of normalize.loess implemented in Bioconductor affy package with four

parameters including epsilon (0.01), log.it (F), span (0.4) and maxit (5).

Then we kept all normalized values positive by adding an absolute (the

minimum value). Their distribution is shown in Supplementary Figure

S1B. We identified significantly differentially methylated CpG sites

between tumor and normal using a two-tailed Student’s t-test

(P50.05). CpG loci had a significant increase (respectively decrease)

in methylation when methylation is increased by N-fold or greater

(respectively –N-fold) in the tumor compared with normal, with N cor-

responding to the median of absolute fold changes between tumor and

normal.

2.3.3 Identification of CpG sites associated with progression We

constructed a contingency table for each significantly different CpG site,

counting the number of patients with or without LNM and for which the

probe significantly increased or decreased methylation CpG. This table

can be used to analyze the relationships between two categorical

variables: methylation change in tumor (increase/decrease) and metastasis

status (N0/N1). We then calculated, for each CpG site, the following

six correlation metrics for each CpG site: PhiCoefficient (Cramer,

1946), OddsRatio (Edwards, 1963), PiatetskyShapiroMeasure (Piatetsky-

Shapiro, 1991), LiftMeasure (Tuff�ery, 2011), AddedValue (Sahar and

Mansour, 1999) and KlosgenMeasure (Kl€osgen, 1992). The detailed equa-

tions are given as Supplementary Method S1. For each of these metrics, a

positive value indicates a positive correlation between the direction of the

methylation change and the LNM status, at each CpG site. This resulted

in the identification of 130 progression-associated CpG sites.

2.3.4 Identification of CpG sites associated with survival The last

follow-up of enrolled patients was performed at least 12 months after

diagnosis for living patients. The first group (‘Good’ survival) included

patients who were still alive after 12 months following tumor resection

and the second group (‘Bad’ survival) consisted of patients who died

within 12 months post-resection. Coincidentally, the two groups have

the identical number of patients. As a consequence, a perfect classifier

would separate the cohort into two groups of equal size. For this reason,

we imposed the comparisons with groups of patients of equal size, and

grouped them according to the methylation change of the tested CpG: we

ranked patients according to their fold methylation change [FC=log2
(tumor/normal)] of the probe, and automatically selected the FC thresh-

old (FCt) leading to an equal number of patients with FC5–FCt

(decreased-methylation) and FC4FCt (increased-methylation). The as-

sociation with survival was determined by preforming a logrank-test.

2.4 Network analysis

The top-k precision (TP) is an ubiquitous correlation metric (Fagin et al.,

2003). To test whether the top-ranked CpG sites are prevalent in a net-

work, the measurement is given by the following two equations.

E GRN;Gið Þ=f1; Gi2GRN
0; Gi=2GRN

where GRN represents the processed network, and Gi represents the cur-

rently indexed gene promoter probe containing a CpG site within a list of

ranked CpG sites.

TP GRN; kð Þ=½
Xk

8x2 Gi2GRNand i�kf g

ð
EðGRN; xÞ

k
Þ� � 100%

2.5 Pyrosequencing validation and survival analysis

The bisulfite-converted DNA was pyrosequenced using the PyroMark

Q24 (Qiagen). We designed specific pyrosequencing primer and PCR

primer using the specialized software (PyroMark Assay Design 2.0) to

target the CpG sites in the promoter region of selected gene

(Supplementary Table S3). Bisulfite-modified DNA was dissolved in

20�l H2O, and 1ml of DNA template was used for PCR amplification.

Hot-start PCR was performed with PyroMark PCR Kit (Qiagen), and

pyrosequencing was carried out according to the manufacturer’s protocol

(Qiagen). The target CpG sites were evaluated by converting the resulting

pyrograms to numerical values for peak heights. The percentage of

methylation was calculated as the mean of all CpG analyzed (Vaissiere

et al., 2009). We finally performed a survival analysis by using these

methylation percentages to validate the screening cohort-derived candi-

date probes containing CpG sites.

2.6 Quantitative RT-PCR

For the mRNA quantifications, we performed SYBR Green and

TaqMan
VR

Gene Expression Assay (Life Technologies Corporation)

qRT-PCR methods to detect mRNAs in the same validation cohort. If

genes were not suitable for the primer design of SYBR Green qRT-PCR,

we alternatively performed the TaqMan
VR

method using its commercial

primers (Supplementary Table S4). We analyzed the results using the

cycle threshold method (Ct). Only strong signals with high expressions

(Ct535) were used for a further correlation analysis with promoter

methylation.

3 RESULTS AND DISCUSSION

3.1 Overall framework and ESCC network construction

Cancer metastatic progression may be associated with multiple

gene regulatory changes, some of them mediated by aberrant

promoter CpG methylation. To identify the CpG probes where

methylation is the most associated with disease progression, we

propose the following framework comprising five different steps.

(i) We construct a disease-specific gene regulatory network.

This is done by extracting the minimal path subnetwork contain-

ing genes important for the disease progression, as identified

through manually curated references (Fig. 1 panel I). The

complement of this subnetwork in the global network is

extracted and used as a negative control (see also Section 2.2).

(ii) We identify cancer-specific CpG methylation events (Fig. 1

panel II), then (iii) we select CpG sites where methylation change

is the most associated with progression (Fig. 1 panel III). (iv)

We then rank these candidate CpG sites by the association of

the methylation change with patient’s survival (Fig. 1 panel IV),

and finally (v) we use the disease-specific network to select the

top candidate CpG sites associated with disease progression and

patient’s survival (Fig. 1 panel V). Applying this approach

to ESCC progression, we first built a GRNg using publicly

available networks (Section 2). This GRNg features 1 294 769

gene regulations (edges) and 12 803 genes (nodes). We then

extracted the minimal-path subnetwork featuring 186 genes
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associated with ESCC progression (Section 2 and Supplementary

Table S2). This GRNescc contains 1 013604 interactions between

4 636 genes. Finally, we derived a non-ESCC-associated

gene regulatory network (GRNg-escc) from the complement

of GRNescc in GRNg. A Gene Ontology (GO) analysis

(Dennis et al., 2003) revealed that the genes in GRNescc

were enriched in biological processes such as chemotaxis, cell

adhesion, cell migration and angiogenesis, compared with

the GRNg-escc (Fig. 2). These processes are important for metas-

tasis and cancer progression. This observation indicates that

the genes in GRNescc are related to cancer progression, extending

our initial gene list and likely accounting for unsuspected

regulatory patterns important for disease progression and

metastasis.

3.2 Identification of candidate CpG sites associated with

ESCC progression

Using a microarray, we measured the methylation status of 1505
CpG sites located in the promoter of 807 cancer-related genes in
50 ESCC tumors and matched normal esophageal tissue. We

identified 309 differentially methylated sites between tumor and
normal (t-test nominal P50.05), of which 108 and 201 had
decreased and increased methylation in the tumor, respectively.

We then determined which CpG sites were associated with cancer
progression, e.g. lymph node metastasis, in our cohort. Using a

compendium of six correlation metrics, we looked for CpG site
with significant changes in methylation in the tumor of meta-
static patients (LNM classification N1). Using this approach, we

were able to identify 130 CpG sites in the promoter of 109 genes,
which are associated with ESCC lymph node metastasis. To
characterize these sites and extract a specific ESCC progression

epigenetic signature, we further analyzed them using the global
regulatory network.

3.3 Network-based selection of Candidate CpG sites

associated with survival

To increase our confidence in the biological significance of the

CpG sites identified above, we calculated their association with
patient survival. Using a dynamic classification of patients with
increased and decreased CpG methylations to compare groups of

the same size (section 2.3.4), we ranked the 130 CpG sites by
decreasing association of their methylation status and patient
survival (log-rank test P-value). To further select the CpG sites

where methylation status is the most likely to be associated with

Fig. 1. Schematic overview of data processing steps. (I) Development of literature-guided gene regulatory networks. The circles and arrows represent the

regulatory genes and regulations, respectively. (II) Identification of differentially methylated CpG sites associated with ESCC. (III) Selection of

differentially methylated CpG sites associated with ESCC progression. (IV) Ranking of CpG sites based on the association with patient survival.

(V) Selection of the ranked CpG sites using a network-based approach. (VI) Validation of network-selected top-ranked CpG sites in a new patient

cohort. The circles indicate increased methylation (upward diagonal), decreased methylation (downward diagonal) in the tumor or literature curated

(filled)

Fig. 2. Enrichment analysis of biological processes GO terms for

the three different GRNs studied. P-value as a function of GO terms

3057

Network-based analysis identifies ESCC progression biomarkers

Methods
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu433/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu433/-/DC1
ESCC progression-associated gene regulatory network (
)
,
g
o
to 
1.8
,
cancer 
-value
6 
In order 
1.9
which 


disease progression, we examined the genes associated with them

and how well they map to the GRNescc network. We noticed that

the top-ranked genes were prominent in the GRNescc network,

compared with random (Top-k precision, Fig. 3A). In contrast,

the top-ranked genes were depleted in the GRNg-escc network

compared with random (Fig. 3B). This observation therefore

suggests that our methodology enriches for CpG sites located

in the promoters of genes important for progression and

survival.
To further distinguish the relative importance of increase and

decrease in methylation at the CpG sites in the promoter of the

genes in the networks, we split the ranked list of 130 CpG sites in

equal size bins of decreasing association with survival (Fig. 3C).

There was no significant bias between increased and decreased

methylation at CpG in the promoters of these genes, indicating

that both repression and activation of genes in the network may

contribute to ESCC progression.
We finally selected 44 best candidate CpG sites (Fig. 3A –

arrow) for further analysis (Supplementary Table S5). Of the

44 CpG sites, 22 were located in the promoters of genes belong-

ing to GRNescc (referred to as In-CpG sites) and 22 where in

promoters of genes outside GRNescc (referred to as Out-CpG

sites). This enrichment of CpG with changing methylation

is significantly different from what can be expected by chance

(�2 test P50.0001). Moreover, only 5 of the 22 In-CpGs and

none of the 11 Out-CpGs were located in the promoters of the

186 genes that seeded the GRNescc network, suggesting that the

In-CpG methylation changes were likely to be associated with

progression and close to the 186 genes in network. To confirm

this possibility, we compared the average distance between the

186 seed genes and the genes whose promoters have CpG methy-

lation changes associated with progression. Of the 22 Out-CpG

sites, 11 were located in the promoters of genes belonging to

GRNg-escc (referred to as Out-CpGg-escc sites), and 11 were in

the promoters of genes not represented in the GRNg network.

The genes with In-CpG were significantly closer to a seed gene

than the genes with Out-CpGg-escc (average distance of 2.7 versus

3.2, t-test P-value51E-30). The average distance of genes with

In-CpG to a seed gene is in fact similar to the average distance

of the seed genes between themselves (2.7 versus 2.6, t-test

P-value=3.6E-09). This suggests that network approach en-

ables the identification of CpG methylation changes in the pro-

moter of genes not previously associated with progression and,

therefore, increases the number of potential prognostic bio-

markers that can be tested. Moreover, although both inside

and outside the GRNescc had the identical number (22) of

genes, the 22 genes in GRNescc were originally from top-

ranked genes (Fig. 3A and B and Supplementary Table S5—

the median rank of In-CpG sites versus the median rank of

Out-CpG sites=18 versus 27). The 22 In-CpG sites in genes

from GRNescc are therefore more likely to have a methylation

status associated with ESCC metastatic progression and are

good candidates to test their prognostic value.

3.4 Validation of the findings

To validate the association between these candidate CpG sites

methylation and survival (Fig. 1 panel VI), we decided to meas-

ure the association in a new cohort (validation cohort) of 50

patients with ESCC and matched normal esophageal tissues.

We were able to design specific primers for 10 In-CpGs as well

as 10 control Out-CpGs (Section 2 and Supplementary Table

S3).
We first checked the validity of the methodology by determin-

ing the methylation level of these 20 CpG sites in the screening

cohort (N=50 patients). This analysis showed that the methy-

lation level determined by pyrosequencing was highly correlated

with the one obtained from the microarray (Supplementary Fig.

S2; r=0.78), therefore demonstrating the technical validity of

the approach. We then examined the methylation of these 20

CpGs in the validation cohort (N=50 patients). We first noticed

that, the methylation change is significant in 12/20 CpG

(P510–4), either through increased (N=7) or decreased methy-

lation (N=5) in the tumor. Additionally, the methylation

changes of 8/10 In-CpGs and 0/10 Out-CpG were associated

with patient survival (Table 1—log-rank test P50.05). Of eight

validated In-CpGs, only one is located in the promoter of a seed

gene (MAPK4, Supplementary Table S2), suggesting the

increased sensitivity provided by the network approach. To fur-

ther confirm the association between methylation changes and

survival, we performed a Cox regression analysis using SPSS v17

on the methylation changes in addition to other clinical variable

(Supplementary Table S6). We calculated the hazard ratio (HR)

of cancer death risk of variables including promoter methylation

Fig. 3. Characterization of genes in GRNs ranked by association with

survival. (A) Top-k precision as a function of gene rank for GRNescc. The

arrow points to the greatest rank where the precision is above random

control (k=44). (B) Top-k precision as a function of gene rank for

GRNg-escc. (C) Relative proportion of CpGs with decreasing and increas-

ing methylation from decreasing rank bins. Each bin contains 18 genes.

Increase: methylation increased in tumor; Decrease: methylation

decreased in tumor
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change, TNM stage, local LNM status, distant metastases status,

age and drinking status. This analysis showed that methylation

changes at five of eight validated In-CpGs and distant metastasis

were associated with a significantly increased risk (HR41)

or decreased risk (HR51) of cancer-related death, and three

In-CpGs showed a borderline significance, while none of the

methylation changes at Out-CpGs (negative control group) was

associated with the risk of cancer-related death. A multivariate

analysis further showed that 5/8 validated In-CpGs remain sig-

nificant association with prognosis even after accounting for the

presence of distant metastasis.
The validation results (Table 1), including the methylation

changes between tumor and normal tissues and the direction of

survival associations, of all of the eight validated CpGs were

consistent with the results in the screening cohort

(Supplementary Table S7 and Supplementary Fig. S3). These

results suggest that, despite the limitation of the cohort size to

identify significant methylation changes in the tumors, the net-

work-based framework was able to enrich for CpG sites signifi-

cantly associated with survival.
Promoter CpG methylation usually results in transcriptional

repression. In Supplementary Figure S4, we measured the expres-

sion changes between normal esophagus and ESCC for six genes

with strong reliable signals (Section 2) in the GRNescc and whose

promoters contain CpG associated with survival. We can identify

trends for negative correlation for four increased methylation

CpGs or positive correlation for two decreased methylation

CpGs at least 10 patients in the validation cohort. Referring to

previous literature, a hyper-methylated CpG island located

5300bp upstream from the transcriptional start site of PAX6

was found to date as the only biomarker to be associated with

LNM (Gyobu et al., 2011). However, the authors claimed that

although this CpG island was unlikely to be associated with re-

pression of PAX6, it was quantified in four ESCC cell lines in

three of which PAX6 was expressed in spite of CpG island

methylation. Their results suggested that the methylation status

would not always correlate with gene expression. Therefore, in

agreement with this study, our results indicate that methylation

changes at selected CpG sites can be good prognostic markers

even in absence of a clear effect on transcriptional regulation.
A role for inflammation in tumorigenesis is emerging.

Inflammatory responses play pivotal roles at tumor progression

including tumor initiation, promotion, invasion and metastasis.

Tumors are frequently surrounded by an inflammatory micro-

environment rich in cytokines, chemokines and immune cells in-

filtration, which promote malignant cellular growth. These

factors are produced by the tumor cells or its surrounding tissue

and contribute to malignant progression (Grivennikov et al.,

2010). Interestingly, we also validated several genes associated

with inflammation. For example, CCL3 is a cytokine in the

TNF inflammation pathway (Wang et al., 2013), and JAK3 is

predominantly expressed in immune cells and transduces a signal

in response to its activation via tyrosine phosphorylation by

interleukin receptors (Krejsgaard et al., 2011). Different cyto-

kines can either promote or inhibit tumor development and pro-

gression (Lin and Karin, 2007). Previous studies indicated that

Table 1. Pyrosequencing-based validation of methylated In-CpG and Out-CpG sites

CpGs Distance from

TSS

Gene Fold change

(P-valuea)

Association with

survival P-valueb
Survival correlation

directionc

In-CpG +64 JAK3 1.8 (50.0001***) 0.033* –

In-CpG –1,121 PAX6 1.3 (0.314) 0.041* –

In-CpG –115 CFTR 1.3 (0.047*) 0.188 NA

In-CpG –516 E2F5 1.6 (50.0001***) 0.024* –

In-CpG –272 CD81 1.1 (0.921) 0.031* –

In-CpG +53 CCL3 –1.4 (50.0001***) 0.015* +

In-CpG –8 CSF3R –1.1 (0.429*) 0.154 NA

In-CpG –804 INS –1.2 (50.0001***) 0.040* –

In-CpG +273 MAPK4 –1.2 (50.0001***) 0.001** –

In-CpG –456 PGR –1.4 (50.0001***) 0.023* +

Out-CpG –38 SLC5A8 2.0 (0.008*) 0.153 NA

Out-CpG +26 PENK 2.0 (50.0001***) 0.079 NA

Out-CpG –546 HS3ST2 1.9 (50.0001***) 0.323 NA

Out-CpG +3 KCNK4 1.7 (50.0001***) 0.091 NA

Out-CpG –299 SEZ6L 1.3 (0.142) 0.252 NA

Out-CpG –22 ZIM2 1.2 (50.0001***) 0.206 NA

Out-CpG –455 ADCYAP1 2.7 (50.0001***) 0.536 NA

Out-CpG –1,394 PI3 –1.1 (0.248) 0.245 NA

Out-CpG +340 SFTPA1 –1.4 (50.0001***) 0.400 NA

Out-CpG –721 TRPM5 –1.1 (0.023*) 0.324 NA

Note: TSS, transcription start site; NA, not applicable; Fold change, pyrosequencing values between matched ESCC and normal adjacent tissue.
aP-value of t-test.
bP-value of log-rank test.
cThe direction of correlation was considered as ‘+’ (respectively ‘–’) when the methylation increase in tumor led to a good (respectively poor) survival

rate. *P50.05; **P50.001; ***P50.0001.
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interleukin 6 (IL-6), a pro-inflammatory cytokine that mediates

chronic inflammation, may play an import role in inflammation-

driven oral carcinogenesis. Notably, Jacqueline and associates

recently found that IL-6 induces hyper-methylation and gene

silencing mediated by DNMTs (mammalian DNA methyltrans-

ferases) (Gasche et al., 2011). In this study, the changes of global

DNA methylation and gene-specific promoter methylation pat-

terns by IL-6 treatment in oral cancer cells were examined. The

increased promoter methylation changes were identified in sev-

eral tumor suppressor genes, including CHFR, GATA5 and

PAX6 (Gasche et al., 2011). Of these, we confirmed PAX6

with increased methylation in ESCC. Together, the role of in-

flammation in relation of promoter methylation of PAX6, CCL3

and JAK3 in ESCC tumor microenvironment is worthy of fur-

ther investigation.

3.5 GRNescc network topology

In an effort to understand better the importance of the network

in identifying significant associations with cancer progression

and survival, we characterized further the network topology.

Previous studies have shown that the network topology of cer-

tain genes might have functional implications in a cell. For ex-

ample, an enrichment of genes having lethal knockout

phenotypes possessed a high-degree (hub) property in a

Saccharomyces cerivisiae gene co-expression network (Carter

et al., 2004). Therefore, it is plausible that the CpG methylation

changes of promoters of genes in GRNescc might have certain

interesting distributions. We examined whether the gene pro-

moters contain differentially methylated CpG possessed specific

characteristics in the GRNescc network. We ranked these genes

based on their decreasing association with patient survival. We

noticed that both the barycenter score (White and Smyth, 2003)

and the closeness centrality (Opsahl et al., 2010) showed a nega-
tive correlation with significance (Fig 4A and B). This observa-

tion suggests that the genes associated with survival tend to

deviate from the center of mass of the GRNescc and to be

more located at the periphery of the network. This is similar to

a recent work that age-associated epigenetic drift occurs prefer-

entially in genes that occupy peripheral network positions (West

et al., 2013). In another analysis shown in Figure 4C and D,

the significance for survival was negatively correlated with the

Hyperlink-Induced Topic Search (HITS) hub and the HITS au-

thority (Kleinberg, 1999). Derived for algorithms used to rate

web pages based on topic significance, this observation again

suggests that the ESCC progression genes are not the most con-

nected nodes but rather stem away from them.

4 CONCLUSIONS

In this study, we proposed a new framework that uses literature-

guided GRN to enhance the results and interpretation of DNA

methylation microarray experiments. Specifically, the framework

helps prioritize differentially methylated genes for their impact

on cancer progression and survival. We validated the results in

an independent cohort and confirmed that the selected CpG sites

were significantly associated with patient survival, even in ab-

sence of a direct correlation with the gene expression. Eight of

10 validated CpG sites significantly correlated with patient sur-

vival. These were located in the promoters of JAK3, PAX6, E2F5

and CD81 (increased methylation), and in the promoters of

CCL3, INS, MAPK4 and PGR (decreased methylation).

Interestingly, the position of the survival-associated genes in
the GRNescc network significantly deviated from the center of

mass. We postulate that the topology of progression-associated

network could help identify progression-associated genes before

any data collection. Our results demonstrate that the use of regu-

latory networks and prior expression studies can help identify

bona fide DNA-methylation prognostic biomarkers. Although

our focus is the identification of biomarkers for a clinical use

via a methodological innovation, the functional exploration of

these biomarkers is also worthy of further investigation.
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