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ABSTRACT

Motivation: Riboswitches are short sequences of messenger RNA

that can change their structural conformation to regulate the expres-

sion of adjacent genes. Computational prediction of putative ribos-

witches can provide direction to molecular biologists studying

riboswitch-mediated gene expression.

Results: The Denison Riboswitch Detector (DRD) is a new computa-

tional tool with a Web interface that can quickly identify putative ribos-

witches in DNA sequences on the scale of bacterial genomes.

Riboswitch descriptions are easily modifiable and new ones are

easily created. The underlying algorithm converts the problem to a

‘heaviest path’ problem on a multipartite graph, which is then solved

using efficient dynamic programming. We show that DRD can achieve

�88–99% sensitivity and 499.99% specificity on 13 riboswitch

families.

Availability and implementation: DRD is available at http://drd.deni-

son.edu.

Contact: havill@denison.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The regulation of gene expression is a critical process that dic-

tates the ability of cells to function properly, to establish cellular

identity, and to respond to changes in environmental conditions.

Gene regulation is manifested in a variety of ways, ranging from

the action of transcriptional activators and repressors through

cis-acting regulatory binding sites, DNA accessibility via chro-

matin structure, and localization of DNA within the cellular/

nuclear confines. In addition to these mechanisms, RNA has

surfaced as a player in gene regulation (Mondal and Kanduri,

2013). Specific forms of RNA, such as microRNAs, small inter-

fering RNAs and many others, have been identified and charac-

terized as important components of gene regulation.
One specific manner by which RNA molecules serve as regu-

lators of gene expression is in the form of riboswitches.

Riboswitches are short sequences (�50–250nt in length) located

in the non-coding portions of specific messenger RNAs

(mRNAs) that regulate the expression of the coding sequences

contained within the mRNA (Miranda-Rios, 2007; Montange

and Batey, 2008). They function via their ability to fold into

distinct secondary structures that influence the ability of the

mRNA to be transcribed, processed or translated.

Riboswitches consist of two specific components: an aptamer

region that binds to a specific organic molecule, often some

type of metabolite; and an expression platform that produces a

change in structural conformation as a result of binding to the

aptamer (Winkler and Breaker, 2003). The aptamer region is

generally a highly conserved sequence, capable of binding to a

number of organic molecules with high specificity (Nahvi et al.,

2007). Binding to the aptamer triggers changes in the intramo-

lecular base pairing within the expression platform, leading to

changes in secondary and tertiary structure of the RNA. The

change in conformation in turn influences the ability of the

mRNA to be expressed in a variety of different ways, depending

on the specific riboswitch. The activation of some riboswitches

results in premature termination of transcription, ending synthe-

sis of the mRNA before the coding region. Others act by directly

blocking translation of the mRNA by restricting access to the

ribosomal binding site (Nudler and Mironov, 2004). In eukary-

otes, riboswitch folding may also influence expression via regu-

lation of mRNA splicing.
There are currently about 20 known families of riboswitches

that bind to a variety of nucleobases, amino acids, metal ions and

other organic compounds (Batey, 2012). Many of the more ex-

tensively studied riboswitches serve as part of a feedback regu-

latory system for genes that participate in cellular metabolism

(Miranda-Rios, 2007). The metabolites that bind to the aptamer

serve as indicators of the relative activity of specific metabolic

pathways, and upon binding, influence expression of genes that

participate in the pathway. For example, certain genes involved

in the synthesis of vitamin B1 (thiamin) are regulated by a ribos-

witch that binds thiamin pyrophosphate (TPP), the biologically

active form of thiamin. TPP binds to a conserved RNA sequence

known as a THI-box, which represses transcription of genes pos-

sessing this sequence in the 50 untranslated region. The THI-box

is a particularly intriguing example of a riboswitch, as it is found

in a wide range of bacteria, archaea and eukaryotes and func-

tions in a variety of contexts. The TPP riboswitch is the only

known eukaryotic riboswitch identified to date (Bocobza and

Aharoni, 2008).
Given the importance of riboswitches in gene regulation in the

context of whole-genome regulation, methods to identify such

sequences are needed. A variety of efforts have been previously*To whom correspondence should be addressed.
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undertaken to develop bioinformatics tools to predict the pres-
ence of riboswitches in RNA sequences (Bengert and Dandekar,
2004; Chang et al., 2009, 2013; Freyhult et al., 2007; Veksler-

Lublinsky et al., 2007). Most programs that have been developed
operate on the principle of sequence alignment to identify con-
served sequences in previously identified riboswitches, coupled

with RNA structural folding algorithms. Programs that are cur-
rently available are generally limited to the identification of a
specific subset of known riboswitch types, and are only able to

search modest sized sequence inputs. To date, few programs have
been developed to take advantage of the abundance of completed
full genome sequences.

To address the need for riboswitch prediction on the whole-
genome scale, we have developed a new computational tool with
a Web interface that can identify putative riboswitches in DNA

sequences, called the Denison Riboswitch Detector (DRD).
DRD can quickly (typically51min) process complete bacterial

genomes and achieve �90% sensitivity and almost 100% speci-
ficity. DRD’s description of a riboswitch is simple and easily
modifiable, based on the highly conserved motifs found in all

known riboswitches. To identify an optimal sequence of short
motifs, DRD transforms the search into a path-finding problem
on a directed multipartite graph, which is then solved by an

efficient dynamic programming algorithm. DRD can be accessed
at http://drd.denison.edu. Researchers interested in using the
program as a stand-alone tool may also contact the first author.

2 RELATED RESEARCH

There are three primary approaches currently used to detect
riboswitches. The first approach compares conserved stem-loop
features in the secondary structure, determined by an algorithm

like mFold (Zuker, 2000). For example, RiboSW (Chang et al.,
2009) and RegRNA (Chang et al., 2013) focus on the character-
istic secondary structures of 12 different riboswitches.

Riboswitch Finder (Bengert and Dandekar, 2004) searches for
the characteristic secondary structure of purine riboswitches.
RNAMotif (Macke et al., 2001) defines a general descriptor lan-

guage, allowing one to search for any desired structure.
The second approach takes advantage of the fact that the

aptamer regions of riboswitches are highly conserved for the

metabolite that they bind to. Thus, it is possible to recognize
motif sequences that are specific to a certain family of ribos-
witches. To detect a riboswitch, the input is first scanned for

the motif sequence(s), and then the optimal secondary structure
is predicted. If the predicted structure matches the known struc-

ture of the riboswitch, it may be considered a putative ribos-
witch. This approach is also incorporated into Riboswitch
Finder (Bengert and Dandekar, 2004) and the unpublished

SequenceSniffer algorithm (Sudarsan et al., 2003). Motif search
is used exclusively by RibEx (Abreu-Goodger and Merino,
2005), which also searches for translational attenuators.

The third, more recent, approach is to characterize a ribos-
witch family using a probabilistic model. Singh, et al. (2009)
consider using profile hidden Markov models and Infernal

(Nawrocki et al., 2009), upon which Rfam (Gardner et al.,
2011) is based, uses a covariance model. RiboSW (Chang
et al., 2009) also uses HMMER (Eddy, 1998) after it performs

a search for conserved structural characteristics.

Our technique primarily falls into the second category.

DRD is designed to be fast, working quickly on entire bacterial

genomes, with conveniently modifiable definition files.

Although this approach sacrifices some of the accuracy of

the more comprehensive probabilistic models, it still achieves

�90% specificity, compared with Rfam, in our comprehensive

tests.

3 METHODS

Here we will give an overview of our algorithm, followed by a more

detailed description and a discussion of its implementation.

3.1 The DRD algorithm

To detect instances of a particular riboswitch with n known motifs in a

long DNA sequence, we first break the sequence and its reverse comple-

ment into short overlapping segments of a few hundred nucleotides each.

We assume that at most one riboswitch can occur in each segment. In

each segment, we identify all matches for each of the n motifs. If at least

one match is found for each motif, we then find the highest scoring se-

quence of matches in the segment that conforms to given ordering and

spacing requirements. This step is accomplished by transforming the

problem into a heaviest path problem on an n-partite graph, and using

an efficient dynamic programming algorithm to find the best path. (This

is described in detail in Section 3.2.) If such a path exists and its weight

exceeds a given threshold, we then fold the corresponding putative ribos-

witch using mFold (Zuker, 2000). Finally, we align the resulting Vienna

(dot-bracket) string, with motifs inserted to guide alignment, with a given

consensus Vienna string. If the number of identities in this alignment

exceeds another given threshold, we display the result with a graphical

representation of its secondary structure.

DRD accepts the following parameters describing a riboswitch:

� a maximum length of the riboswitch M;

� a segment length l and segment overlap length p �M;

� n motifs m1;m2; . . . ;mn (may contain degenerate symbols);

� minimum motif identity scores (By ‘identity score’, we mean the

number of nucleotide matches in a local alignment between a

motif and a portion of the query sequence with the same length.

An indel subtracts one from the score in the local alignment algo-

rithm but is not counted in the final motif identity score.)

�1; �2; . . . ; �n, where �i is the score corresponding to motif mi;

� maximum inter-motif distances D0;D1;D2; . . . ;Dn, where Di,

i=1; 2; . . . ; n� 1, is the maximum distance between motifs mi and

mi+1, andD0 andDn are distances on the 50 side of the first motif and

the 30 side of the last motif, respectively, that are used to define the 50

and 30 boundaries of a reported riboswitch;

� minimum inter-motif distances d1; d2; . . . ; dn�1, where di,

i=1; 2; . . . ; n� 1, is the minimum distance between motifs mi and

mi+1;

� minimum total motif identity score S1 �
Xn

i=1
�i;

� consensus secondary structure representations F and F0 (in Vienna

notation), where F is the consensus secondary structure, and F0 is the

consensus secondary structure with motifs inserted in their appropri-

ate locations; and

� minimum total Vienna identity score S2.

DRD begins by cutting the input sequence and its reverse complement

into short segments of l (� 700–1000) nucleotides that overlap each other

in p (� 200) nucleotides. The overlap length should exceed the expected
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maximum length of the riboswitch. For each segment, our approach

consists of the following steps:

(1) Use the Smith–Waterman local alignment algorithm to locate, for

each specified motif mi, all matches with identity score at least �i.

Indels subtract one from the alignment score. For the jth discovered

match for motif mi, record both its starting position bi;j and its

identity score si;j � �i. If not all motifs are found, abort and con-

tinue with the next segment.

(2) Construct a directed n-partite graph G=ðV;AÞ in which each layer

i contains a node vi;j for each match to motif mi found in the

previous step. Connect a node vi;j in layer i to a node vi+1;k in

layer i+1 if bi+1;k4bi;j and jmij+di � bi+1;k � bi;j � Di. Each

node is given a weight equal to the associated motif’s Smith–

Waterman identity score.

(3) Find the maximum weight path hv1;j1 ; v2;j2 ; . . . ; vn;jn i from a node

in Layer 1 to a node in Layer n, using a dynamic programming

algorithm described below. If no such path exists, abort and con-

tinue with the next segment. Otherwise, this path corresponds to a

subsequence containing matches to all the motifs, and its weightXn

i=1
si;ji is the sum of the identify scores of the correspond-

ing motifs. If
Xn

i=1
si;ji � S1, consider the subsequence be-

tween positions b1;j1 �D0 and bn;jn+jmnj+Dn to be a

putative riboswitch. Otherwise, abort and continue with the next

segment.

(4) Optionally, check whether the putative riboswitch discovered in

the previous step overlaps with any sufficiently long open read-

ing frames (ORFs). If so, abort and continue with the next

segment.

(5) Fold the putative riboswitch using the mFold algorithm (Zuker,

2000) and convert it to a Vienna string in dot-bracket notation.

(6) Insert the discovered motifs into the Vienna string at their correct

locations and perform a global alignment of the resulting Vienna

string and the modified consensus string F0. If the resulting identity

score is at least S2, output the sequence as a putative riboswitch.

(7) Also, for informational purposes only, perform a global alignment

of the unmodified Vienna strings, convert the Vienna representa-

tions of both the putative and consensus riboswitches to shape

notation (Giegerich et al., 2004; Lorenz et al., 2008), and perform

a global alignment of the two shape strings.

3.2 Heaviest path problem

We will illustrate the heaviest path problem described in Steps 2–3 with a

small example. Consider a search for a short fictitious riboswitch with

only three conserved motifs m1=AAAA, m2=CCCC, and m3=TTTT;

threshold identify scores �1=�2=�3=3; and minimum and maximum

distances d1=d2=d3=2 and D1=D2=D3=20. Suppose our current

segment is the following, with matches for each motif underlined

(single for AAAA, double for CCCC and triple for TTTT). (There are

more overlapping matches, but we will ignore them here.)

GAAGCAACAGCGTTTCACCCCTGCAAAAGAGAGATAAGCCTC

GGTCCCGGATATATGTATTCGAGAAGTTTTACCCATAG

With these matches, we construct the directed tripartite graph below.

In the first layer are vertices representing matches for motif AAAA, in

the second layer are matches for motif CCCC and in the third layer

are matches for motif TTTT. Each vertex is connected to all vertices

in the next layer corresponding to motifs between distance 2 and 20 down-

stream.

We now wish to find a path connecting a vertex in Layer 1 with a vertex

in Layer 3 with the maximum total vertex weight. The unique maximum

weight path in this case is shown with dashed lines. This path corresponds

to the subsequence indicated below with the chosen motifs still under-

lined.

GAAGCAACAGCGTTTCACCCCTGC

AAAAGAGAGATAAGCCTCGGTCCCGGATATATGTATTCGAGAAGTTTT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ACCCATAG

The heaviest path problem is solved using a dynamic programming

algorithm based on the following recurrence. LetHi;j denote the weight of

the heaviest path from a node in Layer 1 to node vi;j in Layer i. Then we

can define Hi;j recursively as follows:

Hi;j=

si;j if i=1

1 if @ ðvi�1;k; vi;jÞ 2 A

max
ðvi�1;k; vi;jÞ2A

Hi�1;k+si;j
� �

otherwise

8>>><
>>>:

Then, we ultimately want the heaviest path, satisfying

H�=max
j

Hn;j:

The associated dynamic programming algorithm has time complexity

�ðnm2Þ, where m is the maximum number of matches for a motif.

3.3 Implementation as a Web tool

We implemented DRD as a multithreaded C++ program for the Linux

operating system and placed it behind a PHPWeb interface, shown in the

top half of Figure 1. The interface allows one to input a query sequence in

FASTA format and choose one or more query riboswitch types. Each

riboswitch is represented by a text definition file containing the param-

eters outlined in Section 3.1. Clicking on the name of the riboswitch

displays the corresponding file. One may also supply their own definition

file (or a modified version of one of the given files) by selecting the ‘Other’

option. Finally, one may opt to have the program disregard any motifs

that overlap ORFs (by checking ‘ORF Search?’). An ORF is defined to

be a sequence of codons that starts with the start codon ATG and ends

with one of three stop codons (TAA, TAG, TGA), with no stop codons in

between. Only ORFs containing at least the number of codons given by

the user in the ‘Minimum ORF Length’ box (120 by default) impact the

search.

The format of the description file is straightforward; one example is

shown in Figure 2. Line 1 contains the values of l and p. Line 2 contains

n, the number of motifs, followed by a motif mi and its minimum identity

score �i on each of the following n lines. After the motifs (on Line 8 in

the example in Fig. 2), are the maximum inter-motif distances

D0;D1;D2; . . . ;Dn. These are followed on the next line by the minimum

inter-motif distances d1; d2; . . . ; dn�1. On the next line are the values of

S1, S2 and M. Finally, we have the Vienna string for the consensus sec-

ondary structure and the same Vienna string with motifs inserted.
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When Submit is pressed, work begins and a results window, describing

the progress so far, appears for each selected riboswitch. The pages

will refresh every 3 s, leading ultimately to the final results, like those in

Figure 1, listed in the order of motif identity score, then Vienna identity

score. In our tests, matches to previously annotated riboswitches were

virtually always displayed on top. Clicking on a result sets up a BLAST

query. Below the alignments and scores, optimal and suboptimal second-

ary structures computed by mFold are displayed with the Rfam consen-

sus image.

4 RESULTS

We tested DRD on 13 riboswitch families, using definition files

derived from multiple sequence alignments of the families’ Rfam-

designated seed sequences. These definition files may be viewed

in Supplementary Table S1 or in the Web interface by clicking on

the riboswitch name. For each riboswitch, we performed two

types of tests. First, to obtain robust sensitivity results for each

riboswitch family, we tested DRD on all known riboswitch

Fig. 1. The Web interface of DRD (above) and a sample result (below)
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sequences predicted for each family in the Rfam database at

http://rfam.xfam.org. The sensitivity, or true-positive rate

(TPR), is TP/(TP+FN), where TP is the number of true-positive

findings, and FN is the number of false-negative findings.

Second, to measure the corresponding false-positive rate (FPR)

for each family in genome-scale sequences, we randomly selected

a small number of Rfam-predicted riboswitch sequences and

tested DRD on the set of GenBank sequence records in which

they are contained. The false-positive rate is 1-specificity; speci-

ficity is defined to be TN/(TN+FP), where TN is the number of

true-negative findings, and FP is the number of false-positive

findings. We discuss each of these tests in detail below.

4.1 Sensitivity

We used a specialized front-end program to test how well DRD

detects Rfam-predicted riboswitches in isolation. The number

of sequences assigned to a family in Rfam ranges from 356

(SAM-II) to 11 197 (TPP). For each riboswitch family, we set

S1=0 in the definition file to ascertain the sensitivity over the full

range of possible S1 values. The results, displayed in Figure 3 and

Table 1, show that, with the exception of the cobalamin ribos-

witch, we get a sensitivity of �90% or better for each riboswitch

family when S1 is set to be �95% of the maximum possible motif

identify score. The data in the left half of Table 1 show the

detailed sensitivity results for the default values of S1 in DRD.

Higher values of S1 allow for too little deviation from the given

motifs, and therefore, the sensitivity drops off quickly. Sensitivity

for the cobalamin riboswitch on the full set of 9056 Rfam

sequences reaches a maximum of �83%. However, sensitivity

for the smaller set of 430 seed sequences easily exceeds 90%.

Looking at the multiple sequence alignment for the full set of

cobalamin riboswitch sequences reveals much less consensus

than the seed sequences, especially at the 50 end.

We find that, upon closer inspection, when DRD fails to iden-

tify an Rfam-predicted riboswitch, it is commonly due to

missing one or two identities in one or two motifs. By reducing

individual minimum motif identity scores �i and the value of S1,

we can easily generate higher sensitivity values. However, we also

found that this will result in much lower specificity values when

DRD is applied to genome-scale input files. We discuss these

results next.

4.2 Specificity

To contextualize these sensitivity results, we would ideally com-

pute corresponding specificity values for every GenBank

sequence record containing an Rfam-predicted riboswitch.

Because this is infeasible, we instead estimated sensitivity by ran-

domly selecting a small set of Rfam-predicted sequences from

each riboswitch family and running DRD on their corresponding

GenBank sequence records. For each family, we selected records

that covered at least five organisms and totaled at least 12 million

nt. In the case of three riboswitch families—flavin mononucleo-

tide (FMN), purine and TPP—we conducted tests on a larger set

of 30 GenBank records. To derive specificity values over a range

of S1 values, we set S1 to be three less than the maximum possible

identity score for each family.
Because DRD searches for a riboswitch in each segment, we

considered each segment to be an individual trial. If a segment

contained a riboswitch that has been annotated in either Rfam or

GenBank, it was considered a true positive when DRD detected

the riboswitch and a false negative otherwise. If a segment did

not contain an annotated riboswitch, it was considered to be

a false positive when DRD detected a riboswitch and a true

negative otherwise. We note that this may not be a perfect clas-

sification because either (i) a segment may actually contain a

previously unannotated riboswitch or (ii) two overlapping seg-

ments may both contain the same annotated riboswitch, but

DRD will report only one hit. In the first case, the reported

specificity may be too low. In the second case, the reported spe-

cificity will be too high. However, because the number of anno-

tated riboswitches is so small relative to the number of segments,

these errors are negligible.
Our results, displayed in Figure 4 and Table 1, show that

DRD achieves very high specificity while generally maintaining

Fig. 3. Sensitivity values for each riboswitch family over a range of S1
values. To display the results on a common x-axis, S1 values are normal-

ized by the maximum possible motif identity score for each family. The

filled circle on each curve marks the value of S1 in that riboswitch’s

default definition file

Fig. 2. The TPP riboswitch definition file, with the last two lines

truncated
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sensitivity at least 90%. The data in the right half of Table 1

show the detailed specificity results for the default values of S1 in

DRD. The raw data for these experiments can be found in

Supplementary Tables S2–S14.

4.3 Other observations

While we found that the default ORF threshold length (120

codons) worked well for a variety of inputs, we also found

that, in some cases, especially with cobalamin and ykkC-yxkD,

it was necessary to increase the ORF threshold to locate a ribos-

witch reported by Rfam. Some examples of this are annotated in

Supplementary Tables S2–S14. In many cases, increasing the

ORF threshold did not introduce many more false-positive re-

sults, but in a very few cases it did.
Because DRD defines the ends of its reported riboswitches

with respect to distances on either side of the first and last

motif (D0 and Dn, respectively), the accuracy of these predicted

positions is better when there are defined motifs close to the 50

and 30 ends. Because this is true in almost all of the tested

families, the bounds reported by DRD are very close to those

in Rfam. One exception is the cobalamin riboswitch. While a

multiple sequence alignment of the cobalamin seed sequences

predicts a well-conserved short GGT motif near the 50 end, we

eliminated this motif from our definition file because it resulted

in an even lower hit rate for the full set of sequences. (An inspec-

tion of the multiple sequence alignment for the full set of se-

quences reveals significantly more variability than the seed

sequences and no clear consensus on the 50 end.) The leaves

the first motif 40–50 bases from the 50 end, resulting in more

variability in the predicted 50 boundary.
To detect glycine riboswitches, which tend to appear as

two similar structures in tandem, DRD must have contiguous

segments overlap significantly. Therefore, in our definition

files, we set each segment length to be 150, with a 140bp over-

lap, resulting in a 150bp ‘window’ that shifts down by 10bp

in each iteration. This significantly slows the search, but

it still completes within a few minutes on genome-scale

sequences.

Table 1. Sensitivity and 1� specificity when S1 is the default value

Family Sensitivity tests Specificity tests Default S1/

Maximum

Seed Full

Name Rfam ID Number of

sequences

Sensitivity Number of

sequences

Sensitivity Number of

nucleotides

Number of

segments

1� Specificity

Cobalamin RF00174 430 0.93 9056 0.72 26 954544 67 385 0.000178 33 / 35

FMN RF00050 144 0.97 4516 0.89 78 082630 173 519 0.000161 41 / 43

glmS RF00234 18 0.94 842 0.93 12 042233 30 104 0.000266 27 / 29

Glycine RF00504 44 0.93 6875 0.93 27 624292 2762 348 0.000001 26 / 28

Lysine RF00168 47 0.96 2422 0.96 22 451184 52 213 0.000038 50 / 53

preQ1 RF00522 41 0.95 894 0.98 13 487486 23 256 0.000086 21 / 24

Purine RF00167 133 0.96 2427 0.94 80 376637 146 145 0.000363 34 / 37

SAM-I RF00162 433 0.89 4757 0.91 13 752571 28 651 0.000140 40 / 42

SAM-II RF00521 40 1.00 356 0.92 18 875429 49 672 0.000000 31 / 33

SAM-IV RF00634 40 0.98 468 0.93 26 737655 53 476 0.000056 45 / 47

TPP RF00059 115 0.89 11 197 0.88 62 623450 125 251 0.000453 27 / 30

ykkC-yxkD RF00442 109 0.99 741 0.94 18 698253 38 955 0.000077 27 / 29

yybP-ykoY RF00080 17 1.00 1882 0.99 23 704402 49 385 0.000162 30 / 32

Note: The last column contains the default S1 values, relative to the maximum motif identities.

Fig. 4. The receiver-operator characteristic curve for each riboswitch

family correlating sensitivity values from Section 4.1 to 1� specificity

on a representative sample of GenBank sequence records. The filled

circle on each curve marks the value of S1 in that riboswitch’s default

definition file
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Riboswitches are most commonly found in bacterial genomes,

but the TPP riboswitch has also been identified in eukaryota and

archaea. Therefore, in the TPP riboswitch specificity tests, we

included three archaeal organisms from the Thermoplasma

genus and two eukaryotic organisms [Arabidopsis thaliana

and Glycine max (soybean)]. The results on this small sample

were comparable with those on bacterial genomes. (See

Supplementary Table S12.)

4.4 Comparison with existing tools

Table 2 compares the functionality of DRD with some other

recently developed riboswitch search tools discussed in Section

2. As discussed previously, DRD is able to scan genome-scale

files for riboswitches, whereas other tools have relatively con-

straining input size limits. Like RiboSW (Chang et al., 2009),

DRD also allows a user to define new riboswitch definition

files, but the format of DRD’s files is significantly more

straightforward.

We compared the sensitivities of DRD and RiboSW (Chang

et al., 2009) on all riboswitch families but SAM-IV, which

RiboSW does not consider. For the purine riboswitch, we also

compared the sensitivities of DRD and Riboswitch finder

(Bengert and Dandekar, 2004). We chose to omit RibEx because

a similar comparison with RiboSW was already undertaken by

Chang et al. (2009).

For these comparisons, we randomly selected up to 50 Rfam

seed sequences for each family. If the number of seed sequences

was550, we used the entire seed set. We chose to test on this

reduced set because of RiboSW’s size constraints and computa-

tion times. The results, summarized in Table 3, show that DRD’s

sensitivity at least rivals that of RiboSW for all riboswitch

families, and significantly exceeds it in four cases (glycine,

TPP, ykkC-yxkD and yybP-ykoY) (For TPP and ykkC-yxkD,

we used the most favorable results for RiboSW over four

random sets to validate these more significant differences.).

Over all sequences, RiboSW achieves sensitivity of 0.85, whereas

DRD achieves sensitivity of 0.95. Overall, there were 12 instances

in which RiboSW detected a riboswitch that was not detected by

DRD, and 64 instances in which the opposite was true. Complete

results can be found in Supplementary Tables S15–S26.
Because of the input size constraint and the different way in

which RiboSW searches a sequence, it was not possible to com-

pute comparable specificity values for RiboSW. Such a compari-

son was omitted by Chang et al. (2009) as well.
In conducting this comparison, we found the response time of

RiboSW to be mostly comparable with that of DRD on inputs

with similar sizes (but searches for a single cobalamin riboswitch

sometimes took up to a few minutes). RiboSW’s limited input

size prevented comparisons on larger inputs.

5 CONCLUSIONS

We have designed a new Web-based tool for identifying putative

riboswitches on a whole-genome scale. To efficiently identify

high-quality strings of short conserved motifs, DRD transforms

the problem into a heaviest path problem on a directed multi-

partite graph and solves the transformed problem with an effi-

cient dynamic programming algorithm. We have shown that this

technique is both fast and can achieve relatively high sensitivity

and specificity.
There are several directions that could be pursued in the future

to improve DRD. First, we could enhance our motif model to

Table 3. Test results illustrating the relative sensitivity (TPR) of each tool

Family Riboswitch finder RiboSW DRD

Name Number of sequences Number of hits TPR Number of hits TPR Number of hits TPR

Cobalamin 50 – – 44 0.88 46 0.92

FMN 50 – – 48 0.96 49 0.98

glmS 18 – – 16 0.89 17 0.94

Glycine 44 – – 24 0.55 41 0.93

Lysine 47 – – 45 0.96 45 0.96

preQ1 41 – – 36 0.88 39 0.95

Purine 50 48 0.96 47 0.94 48 0.96

SAM-I 50 – – 45 0.90 44 0.88

SAM-II 40 – – 37 0.93 40 1.00

TPP 50 – – 32 0.64 45 0.90

ykkC-yxkD 50 – – 42 0.84 49 0.98

yybP-ykoY 17 – – 13 0.76 17 1.00

Totals 507 – – 429 0.85 480 0.95

Table 2. A basic comparison of the main features of each tool

Feature Riboswitch

finder

RibEx RiboSW DRD

Maximum input length 3Mb 40kb 10kb none

Number of riboswitches 1 �17 12 13

New user definitions No No Yes Yes
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include site-specific characterizations of motifs, akin to a profile

hidden Markov model, with a likely increase in computation

time. Second, we could consider replacing our somewhat crude

method for secondary structure in comparison with an alterna-

tive method, such as that used by Macke et al. (2001).
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