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ABSTRACT

Motivation: Boolean network models are suitable to simulate GRNs in

the absence of detailed kinetic information. However, reducing the

biological reality implies making assumptions on how genes interact

(interaction rules) and how their state is updated during the simulation

(update scheme). The exact choice of the assumptions largely deter-

mines the outcome of the simulations. In most cases, however, the

biologically correct assumptions are unknown. An ideal simulation

thus implies testing different rules and schemes to determine those

that best capture an observed biological phenomenon. This is not

trivial because most current methods to simulate Boolean network

models of GRNs and to compute their attractors impose specific as-

sumptions that cannot be easily altered, as they are built into the

system.

Results: To allow for a more flexible simulation framework, we de-

veloped ASP-G. We show the correctness of ASP-G in simulating

Boolean network models and obtaining attractors under different

assumptions by successfully recapitulating the detection of attractors

of previously published studies. We also provide an example of how

performing simulation of network models under different settings help

determine the assumptions under which a certain conclusion holds.

The main added value of ASP-G is in its modularity and declarativity,

making it more flexible and less error-prone than traditional

approaches. The declarative nature of ASP-G comes at the expense

of being slower than the more dedicated systems but still achieves a

good efficiency with respect to computational time.

Availability and implementation: The source code of ASP-G is avail-

able at http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_

Information_Musthofa_2014/asp-g.zip.

Contact: Kathleen.Marchal@UGent.be or Martine.DeCock@UGent.be

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Gene Regulatory Networks (GRNs) consist of genes, proteins and

other regulatory molecules that undergo complex and dynamic

interactions, which drive gene expression, and ultimately, com-

plex cellular behavior. To be able to understand and predict this

behavior, various mathematical models have been developed that

describe the dynamics of these GRNs. Different model formal-

isms have been used, as reviewed in De Jong (2002). One of the

earliest models to describe GRNs are Boolean network models

(Kauffman 1993). Boolean network models are attractive be-

cause of their simplicity (Shmulevich et al., 2002): by reducing

the complexity of GRNs to qualitative logical models, Boolean

network models are able to cope with the largely incomplete

kinetic information of biological networks. Despite their highly

simplified representation of biological reality, Boolean network

models were shown to still grasp the important dynamic proper-

ties of GRNs, such as the networks’ attractors. An attractor

represents a stable set of states toward which the transiently

changing gene expression values converge to. Evolving toward

an attractor thus corresponds to reaching a specific developmen-

tal stage (cell types, development stages of cells, etc.) or func-

tional mode (De Jong and Page, 2008; Kauffman, 1993), and the

analysis of attractors in a regulatory network thus hints toward

the functional modes of the regulatory network (De Jong and

Page, 2008).

Current knowledge regarding GRNs is generally incomplete

(Rottger et al., 2012). Comparing simulated with observed at-

tractors (states, e.g. developmental stages) of a certain network

model can thus aid in evaluating existing network models and/or

predict missing information in the current knowledge. For in-

stance, Mendoza and Alvarez-Buylla (1998); Mendoza et al.

(1999) and more recently, Espinosa-Soto et al. (2004) and

Sanchez-Corrales et al. (2010) studied flower development in

Arabidopsis thaliana using Boolean network models of which

the network attractors corresponded to stable gene expression

levels during the different stages of flower development. These

models helped predicting mutant phenotypes and the existence of

a yet uncharacterized gene involved in the transition from the*To whom correspondence should be addressed.
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non-flowering to the flowering state. Davidich and Bornholdt
(2008) and Li et al. (2004) used a Boolean network model and
its steady states to describe the different stages in yeast cell cycle,

where the stages of the cycle correspond to the strong attractors
of the network. Kaufman et al. (1985) explained the various
states of the immune system with Boolean network models and

Albert and Othmer (2003); Gonz�alez et al. (2008) and S�anchez
and Thieffry (2001) used Boolean network models and their
attractors to describe the cellular development of Drosophila

melanogaster.
Key to simulating GRNs with Boolean network models is the

choice of the proper assumptions. These assumptions refer to the

activation rules and update scheme. Activation rules determine
the way the activation state of each gene depends on the activa-
tion states of its interactors in the previous transition step.

The update scheme determines how these activation states are
updated, i.e. either synchronously or asynchronously. The exact
choice of these assumptions largely determines the number and

characteristics of the attractors. As in most cases, the true bio-
logical activation rules and update scheme are not known, one
should be able to easily test different activation rules and

schemes, as this allows to have an idea on the conditions
under which the simulated network model would be able to cap-
ture an observed biological phenomenon (boundary conditions).

Several computational tools have been developed to perform
the computation of attractors in Boolean network models. Garg
et al. (2007) developed genYsis, which uses techniques involving

binary decision diagrams (BDD) to compute attractors. Arellano
et al. (2011) used techniques based on Temporal Logic model
checking in Antelope. Ay et al. (2009) used state space pruning

and randomized state space traversal methods to improve the
scalability of the attractor computation. Dubrova and
Teslenko (2011) used a Boolean Satisfiability (SAT) solver, typ-

ically used for combinatorial modeling and problem solving, to
compute attractors of GRNs and obtained a better computa-
tional time and space efficiency compared with the BDD-based

approach. More recently, Zheng et al. (2013) developed geneFatt

based on the reduced-order BDD (ROBDD) data structure,
which further improves the efficiency of the attractor

computation.
Most of the aforementioned systems to simulate Boolean net-

work models in principle can perform simulations with different

assumptions. However, changing these assumptions would
require tedious modifications on these systems. For instance,
using the SAT approach (Dubrova and Teslenko, 2011), mod-

ifying the structure of the network and the updating rules would
require updating the truth tables in the cnet format.
To allow for a more flexible simulation framework, we de-

veloped ASP-G, which makes use of the declarative program-
ming paradigm Answer Set Programming (ASP; Lifschitz, 2008).
The declarative nature of ASP allows one to specify and modify

the domain-specific logic (here the definition of the network
interactions, activation rules and update schemes) required to
represent and solve the computational problem at hand (here

dynamical modeling and attractor calculation) in an intuitive
and modular way (Eiter et al., 2009). To illustrate the flexibility
of our approach, we applied it to calculate attractors of previ-

ously published Boolean network models of GRNs of different
sizes and complexity, and different simulation assumptions. By

trying to mimic previous results under diverse settings, we can
show that the main advantage of our approach consists of

making the modeling more flexible and less error-prone, and
therefore helps delineate the boundary conditions under which

the biological conclusions based on simulations of Boolean net-
work models are valid. At the same time, we also show that, with

the use of fast and efficient ASP solvers, the computational effi-
ciency of our method is in the same range as that of the most

efficient dedicated methods for the simulation of Boolean net-
work models and the calculation of their attractors.

2 METHODS AND MODELS

2.1 Boolean network modeling of GRNs

In our work, we adopt the definition of Boolean networks as described in

Kauffman (1993): a Boolean network model consists of network elements

(nodes, here representing structural and regulatory genes/proteins), which

can either be active (ON) or inactive (OFF), and interactions between

these elements (edges, which represent the directed regulatory interactions

between the genes). We define two types of regulatory interactions be-

tween interacting nodes, i.e. activation (upregulation) and inhibition

(downregulation). The activation state of a certain node at a certain

time step is determined by a logical function of the activation states at

the previous time step of its interactors (where the interactors of a node

are defined as the incoming edges of a certain network node).

Formally, a Boolean network model G(V, F) is defined by a set of

nodes V=fx1; . . . ; xng and a list of Boolean functions F=ðf1; . . . ; fnÞ.

Each xi 2 f0; 1g; i=1; . . . ; n is a binary variable and its value at time

t+1 can be determined by the values of some other nodes xj1ðiÞ; xj2ðiÞ; . . .

; xjki ðiÞ at time t by means of a Boolean function fi 2 F. That is, there are

ki nodes assigned to xi that determine its state. The activation state of

every node xi changes over time according to

xiðt+1Þ=fi xj1 ið Þ tð Þ; xj2 ið Þ tð Þ; . . . ; xjki ið Þ tð Þ
� �

A state s of a Boolean network is an assignment of f0; 1g to each node xi.

Its successor state is the state resulting of applying fi to each node xi. The

dynamics of the network consists of transitions between network states.

An example of a Boolean network is given in Figure 1. This network has

three nodes, denoted by x1, x2 and x3, and interactions between these

nodes, represented by the edges. The dynamics of the network can be

described using a state-transition graph (STG) as given in the

Supplementary Figure S1.

Attractors in a Boolean network model are defined as in Ay et al.

(2009) and Garg et al. (2007).

DEFINITION 1. Let S be a set of states of a Boolean network model. S is an

attractor if and only if the following conditions are satisfied:

(1) The set of the successor states of all the states in S is equal to S.

(2) For each si 2 S, once it is visited, the probability of revisiting si in a

finite number of state transitions is equal to 1.

2.2 Representing Boolean network models of GRNs and

computing their attractors using ASP

ASP-G framework

Our framework for modeling GRNs and computing attractors, called

ASP-G, uses ASP. ASP is a declarative programming paradigm

(Lifschitz, 2008), which is typically used to solve combinatorial search

problems (Eiter et al., 2009). The architecture of ASP-G is shown in

Figure 2. ASP-G consists of four main modules/parts of the system: the

network description, the update scheme, the activation rules and the
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attractor computation algorithm. The following describes each of these

modules:

Network description module

This module contains the description of the structure of the network,

encoded in a set of facts provided by the user. Because of the declarative

nature of ASP, such a description can be written succinctly in an intuitive

format. For example, the following set of facts is used to describe the

network depicted in Figure 1:

geneðx1Þ: geneðx2Þ: geneðx3Þ:

activatesðx1; x1Þ: activatesðx1; x2Þ: activatesðx1; x3Þ:

activatesðx2; x1Þ: activatesðx2; x3Þ: inhibitsðx3;x1Þ:

activatesðx3; x2Þ: inhibitsðx3; x3Þ:

To compare the declarative specification of the network with the more

classically used SAT notation (Dubrova and Teslenko, 2011), we give the

network specification corresponding to the Boolean network depicted in

Figure 1 in cnet format, as follows:

.n 1 3 1 2 3 .n 2 2 1 3 .n 3 3 1 2 3

––1 0 1- 1 ––1 0

1-0 1 -1 1 1-0 1

-10 1 00 0 -10 1

000 0 000 0

Each gene in the network is written with its label, e.g. .n 1 for node x1,

followed by the number of regulators and then their labels, e.g. (3 1 2 3).

Next, a truth table follows that determines the behavior of the network

(e.g. - -1 0 in the truth table for x1 means that whenever x3 is active then

x1 will be inhibited irrespective of the values of x1 and x2).

Activation rules

This module determines the activation rules used to update the activation

state of each gene at each transition step, based on the intended assump-

tion by the user. We implemented two frequently used activation rules:

(1) A gene will be active in a subsequent time step t+1 if at time step

t at least one active interactor is an activator and no active inter-

actors that act as inhibitors are present.

(2) A gene will be active in a subsequent time step t+1 if there are

more active activators than active inhibitors among its interactors

at time step t.

In ASP-G this first type of activation rule is encoded as follows:

r+1 : activeðX;TÞ  A40; I=0;#actðX;A;T� 1Þ;

#inhðX; I;T� 1Þ; geneðXÞ;

T40:

r+2 : inhibitedðX;TÞ  not activeðX;TÞ; geneðXÞ;

T40:

The second type of activation rule is encoded as follows:

r�1 : activeðX;TÞ  A� I40; #actðX;A;T� 1Þ;

#inhðX; I;T� 1Þ; geneðXÞ;

T40:

r�2 : inhibitedðX;TÞ  I� A � 0;#actðX;A;T� 1Þ;

#inhðX; I;T� 1Þ; geneðXÞ;

T40:

To illustrate the flexibility of ASP to express nearly any possible acti-

vation rule, we implemented more specific type of rules in which the

activation of a certain gene is expressed as a free-form gene-specific

Boolean function of all the interactors of that gene, such as the one

used in Gonz�alez et al. (2008) and Sanchez-Corrales et al. (2010). For

example, the activation rule of a gene G1might be expressed as a Boolean

function of the form:

G1=G1and ðnotG2ornotG3Þ

where G2 and G3 are two other genes involved in the network. In this

case, G1 has a self-activating interaction, while G2 and G3 act as inhibi-

tors for G1. To accommodate such an activation rule in ASP-G, we first

convert the Boolean function into a disjunctive normal form. For ex-

ample, the activation rule given above is rewritten into the following:

G1=G1and not G2

G1=G1and not G3

and then encoded in ASP as follows:

activeðG1;TÞ  T40; activeðG1;T� 1Þ;

inhibitedðG2;T� 1Þ

activeðG1;TÞ  T40; activeðG1;T� 1Þ;

inhibitedðG3;T� 1Þ

Update scheme

Two update schemes were adopted in ASP-G: synchronous and asyn-

chronous updates. In the synchronous update scheme, we assume that all

genes in the network are updated simultaneously per evaluated time step.

This implies that the transitions between the network states are determin-

istic, i.e. for every state visited over time, only one possible successor state

exists. In the asynchronous update, no assumptions of synchronicity

Fig. 2. Architecture of ASP-G

Fig. 1. A Boolean network model with three genes. Edges with arrowed

tips are activating interactions and edges with blunt tips are repressing

(inhibiting) links
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are made, and genes may be updated at different time steps. Therefore,

transitions are non-deterministic: there may be several possible next states

after a certain transition. As illustrated in the Supplementary Figures S1

and S2, an asynchronous update scheme can result in a drastically dif-

ferent STG and can lead to different attractors.

Both the synchronous and the asynchronous updating were imple-

mented in ASP-G. For the synchronous update scheme, we use the fol-

lowing rules to generate initial activation states of the genes:

activeðX; 0Þ  geneðXÞ; not inhibitedðX; 0Þ:

inhibitedðX; 0Þ  geneðXÞ; not activeðX; 0Þ:

We then use the following rules (in relation with the activation rules

described previously) to determine the activation state of each gene at

each time step t:

activeðX; tÞ  activeðX; t� 1Þ; not inhibitedðX; tÞ:

inhibitedðX; tÞ  inhibitedðX; t� 1Þ; not activeðX; tÞ:

For the asynchronous update scheme, we need to add the following

rules, in addition to the previously described rules:

changedðX;TÞ  activeðX;TÞ; inhibitedðX;T� 1Þ;

geneðXÞ;T40:

changedðX;TÞ  inhibitedðX;TÞ; activeðX;T� 1Þ;

geneðXÞ;T40:

 #changedðN;X;TÞ;N � 2;

geneðXÞ;T40:

To obtain a better performance in the asynchronous case, we apply the

STG reduction technique, as explained in the Supplementary Figure S2.

Computing the attractors

The attractor computation in ASP-G is performed by Algorithm 1, which

is based on the algorithm by Dubrova and Teslenko (2011). The main

idea used in Algorithm 1 is to identify attractors by looking at identical

states in transition paths of certain lengths in the STG of the network.

Because there are exponentially many possible states in an STG (in rela-

tion to the number of nodes in the network), explicit enumeration of all

the states in an STG is unfeasible for larger networks. ASP-G avoids this

explicit enumeration by implicitly simulating the dynamics of the net-

work. Furthermore, once a state is identified as part of an attractor, it

can be removed from the STG to prune the search space. An illustration

on how the algorithm works is given in Supplementary Figure S4. Path

generation and state removal are being done using ASP rules and ASP

constraints, respectively, as shown in Supplementary Figure S5. To fur-

ther increase the efficiency of the computation, we use the incremental

ASP approach described in Gebser et al. (2008) and the clasp solver from

the Potassco ASP suite (Gebser et al., 2011b).

Algorithm 1 Algorithm to compute attractors in ASP-G

1: {P is the ASP program with the rules of the network}

2: k= n

3: attractor_is_found=False

4: attractors=�

5: while ASP finds a path of length k as an answer set in P do

6: {s=hs1; s2; . . . ; ski is the path found}

7: for j=k� 1 to 1 do

8: if sj= sk then

9: attractors=attractors[fhsj+1; . . . ; skig
10: attractor_is_found=True

11: {The attractors already found are forbidden in P}

12: for s in fsk; :::; sj+1g do

13: {The states are added as constraints for the next path}

14: P=P[f activeðX1;TÞ; inhibitedðX2;TÞ; . . . jXi 2 sg

15: end for

16: break

17: end if

18: end for

19: if attractor_is_found then

20: attractor_is_found=False

21: else

22: k=2 � k

23: end if

24: end while

25: return attractors

3 RESULTS

3.1 ASP-G: a novel framework for the simulation and

attractor computation of GRNs with Boolean network

models

Simulating Boolean network models implies that activation rules
have to be defined to decide how a gene is activated by its inter-

actors. The exact choice of the assumptions largely determines

the outcome and the number and characteristics of the attractors.
Supplementary Figures S1–S3 show that, for example, Boolean

network in Figure 1, the choices of activation rules and update

scheme can result in a different network behavior and thus dif-
ferent sets of attractors. As it is often not known in advance

which assumptions best match the biological reality of the mod-

eled GRN, testing different assumptions is advisable.
To have a generic framework that allows testing different as-

sumptions, ASP-G implements three different activation rules:
the first one adopted by Ay et al. (2009); Davidich and

Bornholdt (2008) and Li et al. (2004)in which a gene is con-

sidered to be activated if the majority of its active incoming
interactors (interactors that are themselves active) have an acti-

vating role. Otherwise, the gene will become inactive. This is

referred to as the r� rule in ASP-G. A second one adopted by
Garg et al. (2007) and Pedicini et al. (2010) assumes that a gene is

activated only when there is at least one active activator among

its active incoming interactors and no inhibitor. This is referred
to as the r+ rule in ASP-G. In addition, we implemented a third

more detailed activation rule in which the activation for each

gene is expressed as a free-form Boolean function of its activators
and inhibitors. These types of rules better grasp the complexity of

true biological interactions and include more detailed informa-

tion on the specifics of the interactions. It was used, for instance,
in Albert and Othmer (2003); Gonz�alez et al. (2008) and

Sanchez-Corrales et al. (2010).
Related to the update scheme, a choice has to be made be-

tween updating the network elements simultaneously (synchron-

ously) versus at different points (asynchronously). Earlier work
by Kauffman (1993) and Thomas (1973) assumed synchronicity

in their modeling, mainly because of computational efficiency

reasons. However, the assumption of synchronicity was chal-
lenged in Harvey and Bossomaier (1997) and Thomas (1991),

who argued that, for many biological systems, assuming an asyn-

chronous update scheme is more realistic. Subsequent work on
Boolean network models (Ay et al., 2009; Garg et al., 2007, 2008;

Gonz�alez et al., 2008 and Naldi et al., 2007) mainly applied

asynchronous update schemes. Therefore, in ASP-G we
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implemented both the synchronous and the asynchronous

update scheme.

3.2 Simulation results

To test the correctness of ASP-G in simulating Boolean network

models and computing attractors, we applied ASP-G on previ-

ously published Boolean network models of GRNs and com-

pared the obtained attractors with the originally published

ones. Like any other formalism to find attractors in Boolean

network models, ASP-G detects exhaustively all attractors of

the network. Therefore, a correct result corresponds to an

exact match in the attractor set identified by ASP-G and that

present in the reference publications.
First, we tested ASP-G on the relatively small GRNs involved

in budding and fission yeast cell cycle analyzed in Ay et al.

(2009); Davidich and Bornholdt (2008) and Li et al. (2004), as

well as on the network model of the GRN from the T-helper (Th)

cell differentiation described in Garg et al. (2007). We used the

activation rules and update schemes that were also applied in the

original studies, except for the dataset of Garg et al. (2007), in

which we applied also the synchronous update scheme in add-

ition to the originally applied asynchronous one (Table 1).
As expected for each of these results, the attractors found by

ASP-G match exactly the ones found by the reference papers

(data not shown). The table also shows that ASP-G performs

relatively fast for these small networks. We also observe that the

attractors in the synchronous case often coincide with those in

the asynchronous case. This is because of the fact that simple

attractors (i.e. attractors that have only one state) are more com-

monly found, and that they are shared between synchronous and

asynchronous update schemes. Only for the fission yeast cell

network under the r* activation rules there is a difference in

the number of synchronous attractors (13) and asynchronous

attractors (15). The fact that there are more attractors in the

asynchronous case might seem counter-intuitive, as the reduced

STG used to calculate these attractors contains at most as many

nodes as the synchronous STG, and often less. However, the

original STG for the asynchronous case typically contains

more edges than in the synchronous case, and these additional

edges can account for more attractors.

To show the flexibility of ASP-G in expressing different types

of activation rules, we also encoded the Boolean network model

of the GRN involved in A.thaliana flower development originally

described in Sanchez-Corrales et al. (2010), with our ASP-G

framework. This network model consists of 13 genes and uses

gene-specific update rules as described in Section 2.2 Activation

rules. As in the original publication, we applied a synchronous

update scheme. ASP-G correctly recapitulated all 10 attractors of

the network as described in the original paper Sanchez-Corrales

et al. (2010). The computation took only 0.479 s.
To test ASP-G on a larger network, we use the network data

from the Th cell differentiation described by Pedicini et al.

(2010). The purpose of the study was to find evidence supporting

(or contradicting) the traditional view that the genes involved in

the regulation of the two types of Th cells, Th1 and Th2, have

counter-regulatory interaction. Similar to what has been done in

Pedicini et al. (2010), we first computed the attractors of the

original network in the presence of all genes and then searched

for attractors in different single-gene knockout networks in silico

to test the effect of knocking out intracellular genes toward the

attractors of the network. To show the added value of using

different simulation assumptions, we also performed the compu-

tations using an asynchronous update mechanism, as opposed to

only synchronous update scheme, as performed by Pedicini et al.

(2010). The results are presented in the Supplementary Table S6.
In terms of computational efficiency, the result shows that

ASP-G is able to perform relatively well for the moderately

sized Th cell network. For the asynchronous case, attractor com-

putation required 0.6 s on average. For the synchronous case

where more attractors were found, the computation times took

71.9 s on average. When applying the synchronous update

scheme as used in Pedicini et al. (2010), ASP-G reproduced the

four attractors: Th0, Th1, Th2 and ThX, as in the original paper.

However, when trying to reproduce the attractors in the gene

knockout setting, we found discrepancies with the results re-

ported by Pedicini et al. (2010). These discrepancies were

caused by mistakes in the SAT-based truth table used in the

original publication. Supplementary Table S6 shows the cor-

rected results for completeness. Note that these mistakes do

not affect the biological conclusions made in the original publi-

cation. However, it illustrates that specifying larger networks

with rather complicated behavior becomes cumbersome and

error-prone in paradigms like SAT, whereas this is much less

the case for a declarative approach such as ASP-G.

Table 1. ASP-G results and running times for common GRNs found in the literature

Network Reference Genes Attractors Update mechanism Activation rules Time

Yeast cell cycle Li et al. (2004) 11 7 Synchronous r* 1.507

Ay et al. (2009) 11 7 Asynchronous r* 0.134

Fission Yeast Davidich and Bornholdt (2008) 10 13 Synchronous r* 1.653

Ay et al. (2009) 10 15 Asynchronous r* 0.371

Th cell differentiation – 23 3 Synchronous r+ 0.270

Garg et al. (2007) 23 3 Asynchronous r+ 0.206

Note. Network: describes the original network model. Genes: number of genes present in the network; Attractors: number of detected attractors; Update mechanism:

synchrounous versus asynchrounous updating was used as described in the methods section; Activation rules: r* activation rules indicates that a gene becomes active when it

has more active activating interactors than active inhibiting ones, whereas the r+ activation rules indicate that a gene becomes active if it has at least one active activating gene

and no inhibiting ones. Time: running time on a Dell Latitude D820 notebook.
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The existence of the ThX attractor and the observed pattern of
gene activities in the attractors of the knockout networks caused
the authors of Pedicini et al. (2010) to conclude that the active

genes in Th1 and Th2 cells do not play counter-regulatory roles
with each other, contrary to what is traditionally believed.
However, when using the asynchronous update scheme, we

noted that the attractor ThX is no longer obtained. A similar
pattern occurs for the knockout networks, where the use of the
asynchronous update scheme drastically changes the set of

detected attractors compared with those detected using a syn-
chronous update scheme: the number of attractors found with
the asynchronous update scheme for the knockout networks

ranges only between 2 and 5, whereas the number of attractors
found in the synchronous case ranged between 286 and 1154.

This finding suggests that the occurrence of the ThX attractor
and the existence of a large number of attractors in the knockout
networks as found in Pedicini et al. (2010) are only valid under

the synchronous update scheme. It thus defines the boundary
conditions under which the conclusions of Pedicini et al. (2010)
are valid and highlights the relevance of performing modeling

under different scenarios, as offered by ASP-G, to put biological
conclusions in perspective.

4 CONCLUSION

In this article, we presented ASP-G, a modular system to simu-

late Boolean network models of GRNs and to subsequently com-
pute their attractors. ASP-G is based on the declarative ASP
programming paradigm, which has already been previously

applied in the context of biological network data analysis and
modeling (see, e.g. Corblin et al., 2012; Dworschak et al., 2008;
Gebser et al., 2008, 2010a and b, 2011). Recently, Inoue (2011)

showed in a theoretical comparison between Boolean networks
and the underlying semantics of ASP, that a strong mathematical
relation exists between the attractors/steady states of Boolean

networks and the notion of stable models commonly used in
ASP. We built on this earlier result in our proposed method,
ASP-G.

The main added value of ASP-G is in its declarativity and
modularity: it allows users to easily test different update schemes
and activation rules when simulating the dynamics of their

Boolean network model by selecting and modifying the appro-
priate modules. In addition, the fact that ASP-G is based on

a declarative language makes it less error-prone than other
approaches such as SAT, which depend on the definition of dif-
ficult to interpret and tedious to construct truth tables. Using an

underlying declarative programming paradigm also makes ASP-
G easily extendable to other parameter settings. Decoupling the
problem definition from its solution thus allows for a greater

flexibility compared with other ad hoc systems such as genYsis

(Garg et al., 2007) and geneFAtt (Zheng et al., 2013), where
assumptions such as update scheme and activation rules are al-

ready built into the system.
We showed the correctness of ASP-G in simulating Boolean

network models and obtaining attractors under different as-

sumptions by successfully recapitulating the detection of attrac-
tors of previously published studies. Relying on a modular and
flexible declarative programming paradigm definitely comes at

the expense of being slower than the more dedicated systems to

compute attractors, such as genYsis (Garg et al., 2007) and

geneFAtt (Zheng et al., 2013). However, in terms of computa-

tional efficiency, ASP-G proved to be fast (for small networks,

i.e. up to 23 genes, computations are below a second, for larger

networks, i.e. up to 51 genes, the longest computation time took

54.5 min). Also, ongoing research in ASP solvers (Gebser et al.,

2011a) will make it possible for ASP to reach a point where it

outperforms other logic paradigms. This is definitely the case

when comparing ASP with Binary (or multiple) decision dia-

grams (Lee, 1959) used to calculate attractors in Boolean

Networks models for GRNs (Arellano et al., 2011; Naldi et al.,

2007) as they suffer from memory explosion when the size of the

network starts to become large (Clarke et al., 2001).
For larger-sized networks, any exhaustive method will face a

challenge, as the state space of the network increases exponen-

tially with respect to the number of nodes in the network. When

dealing with such larger networks, methods that avoid an ex-

haustive search as in Ay et al. (2009) might become more suitable

under these conditions. Conclusively, ASP-G is tailored to simu-

late Boolean network models of GRNs and to compute attrac-

tors in a diagnostic mode, where one wants to test different

update schemes and activation rules to find the setting that

best matches experimental data or to correctly delineate the

boundary conditions under which the biological conclusions

based on these simulations are valid.
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