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ABSTRACT

Motivation: Brownian models have been introduced in phylogenetics

for describing variation in substitution rates through time, with appli-

cations to molecular dating or to the comparative analysis of variation

in substitution patterns among lineages. Thus far, however, the Monte

Carlo implementations of these models have relied on crude approxi-

mations, in which the Brownian process is sampled only at the internal

nodes of the phylogeny or at the midpoints along each branch, and the

unknown trajectory between these sampled points is summarized by

simple branchwise average substitution rates.

Results: A more accurate Monte Carlo approach is introduced, expli-

citly sampling a fine-grained discretization of the trajectory of the

(potentially multivariate) Brownian process along the phylogeny.

Generic Monte Carlo resampling algorithms are proposed for updating

the Brownian paths along and across branches. Specific computa-

tional strategies are developed for efficient integration of the finite-

time substitution probabilities across branches induced by the

Brownian trajectory. The mixing properties and the computational

complexity of the resulting Markov chain Monte Carlo sampler scale

reasonably with the discretization level, allowing practical applications

with up to a few hundred discretization points along the entire depth of

the tree. The method can be generalized to other Markovian stochas-

tic processes, making it possible to implement a wide range of time-

dependent substitution models with well-controlled computational

precision.
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1 INTRODUCTION

Brownian models have a long history in macroevolutionary stu-
dies. The first likelihood approaches to phylogenetic reconstruc-

tion based on allele frequencies (Edwards and Cavalli-Sforza,
1967), or for formalizing the comparative method (Felsenstein,

1985; Martins and Hansen, 1997), all assume that the variables of

interest undergo continuous-time changes along the lineages of
the phylogeny according to a Brownian motion. Later on,

Brownian models have been recruited for relaxing the molecular
clock (Thorne et al., 1998). Beyond variation in absolute

rate, different types of substitutions, synonymous or non-
synonymous, from or to G or C, occur at different relative

rates in different regions of the phylogeny. Following the work
of Thorne et al. (1998), it seems natural to formalize this

heterogeneity in substitution patterns among lineages in terms

of a two-level model, in which some of the parameters of the

substitution model are themselves evolving through time accord-

ing to a Brownian process (Seo et al., 2004). These generalized

Brownian substitution models can then be naturally integrated

with the classical comparative method, by considering the corre-

lated variation of the substitution parameters and the directly

observable quantitative traits as one single multivariate

Brownian process running over the phylogeny (Lartillot and

Poujol, 2011).

Beyond Brownian models, a larger family of stochastic

processes, not even necessarily Gaussian, have more recently

been explored in the context of the comparative method, as

good candidates for describing the evolution of traits undergoing

directional, stabilizing or punctuated evolution (Harmon et al.,

2010; Landis et al., 2013; Monroe and Bokma, 2010; Slater et al.,

2012). Such non-Brownian continuous-time stochastic processes

could ultimately be recruited to model variation in substitution

patterns and, more generally, to describe the joint evolution of

genetic sequences and quantitative traits in the context of an

integrative modeling framework for macroevolutionary studies

(Lartillot and Delsuc, 2012).

However, in contrast to their nice analytical properties in a

comparative context, the application of Brownian processes for

modeling sequence evolution raises important computational

issues. In the context of the classical comparative method,

exact likelihood calculation under Brownian models is straight-

forward. The detailed Brownian path taken by the process along

each branch is irrelevant for the calculation of the likelihood, and

conditioning on observed values of the quantitative traits at the

leaves only involves the net jump probability densities over entire

branches, thus implicitly and analytically integrating over all pos-

sible paths.
In contrast, for Brownian relaxed clocks, likelihood calcula-

tion involves the total substitution rate along each branch. This

total rate is the integral of the instant rate at all times along the

branch and therefore depends on the exact trajectory of the pro-

cess. Mathematically, the total rate is a random variable, whose

probability distribution conditional on the values of the process

at both ends of the branch is typically unavailable in closed form

(Lepage et al., 2007). The situation is even more complicated in

the case of generalized Brownian substitution models in which

other aspects of the substitution process (such as the equilibrium

GC content) undergo continuous-time variation. In that case, the

rate matrix itself is time-dependent, and the finite-time substitu-

tion probabilities over the branch are given by the exponential of

the integral of the matrix over the trajectory of the Brownian*To whom correspondence should be addressed.
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process, which is again a (now matrix-valued) random variable
whose distribution is not directly computable.
Exact likelihood calculation under Brownian substitution

models therefore appears to be computationally intractable. As
a result, implementations of these models have thus far relied on
rather crude approximations. Typically, the Brownian process is

explicitly sampled only at the internal nodes of the phylogeny,
corresponding to cladogenetic events (Lepage et al., 2007;
Thorne et al., 1998) or at the midpoints along the branches

(Rannala and Yang, 2007). The total rate along each branch is
then approximated by the average of the instant rates at both
ends or by the midpoint value. Similar approximations have been

used for more general substitution models (Lartillot and Poujol,
2011; Seo et al., 2004).
Such approximate strategies appear to yield qualitatively

reasonable results when tested on simulations (Lartillot and
Poujol, 2011). However, the quality of the approximation
could deteriorate for particular rate variation patterns across

phylogenies or for particular configurations of time-dependent
substitution parameters. More fundamentally, these approxima-
tions ignore the fact that the integrated substitution probabilities

across branches are themselves random, even conditional on the
values of the Brownian process at the nodes. In practice, the
additional dispersion induced by this specific level of randomness

will be buffered by other aspects of the model, in particular by
the Brownian process itself, thus potentially resulting in artifac-
tually increased variance in trait or rate evolution. This phenom-

enon could have important consequences in a comparative
context, where the covariance between substitution rates and
quantitative traits is of direct interest. All these arguments

suggest that current approximation schemes fundamentally
lack robustness. In a long-term perspective, as ever more com-
plex time-dependent substitution models are being contemplated,

the reliability of the approach will become increasingly question-
able, potentially compromising the idea of a principled model-
based approach to the molecular comparative method.

The approximation resulting from sampling the trajectories of
the Brownian process at a finite number of time points could
easily be controlled by explicitly sampling the process over a

sufficiently fine-grained discretization grid along each branch.
Doing so, however, raises several computational problems.
First, it results in a high-dimensional space of possible model

configurations, many of which have a similar fit to the data.
Efficient Monte Carlo sampling methods therefore need to be
developed to mix over this large set of possible model configur-

ations. Obviously, simple Metropolis–Hastings schemes updat-
ing one instantaneous value at a time will not scale properly in
this context, and therefore, direct resampling of entire paths,

either along or across branches, is necessary. Second, in the con-
text of complex Brownian substitution models, for a given
branch and a given trajectory of the Brownian process, efficient

methods are needed to approximate the substitution probabilities
over the branch implied by this trajectory.
In this article, an integrated solution to these computational

challenges is introduced, in the form of a Markov chain Monte
Carlo (MCMC) framework for calculating the likelihood
and sampling from the posterior distribution over Brownian

substitution models. The approach combines a discretization
scheme along the lines just suggested with path-resampling and

data-augmentation MCMC algorithms, so as to achieve approxi-

mate sampling from the posterior distribution in a time that

scales reasonably well with the level of discretization.

2 MATERIALS AND METHODS

2.1 Models and priors

The models considered here have been introduced earlier (Lartillot and

Poujol, 2011; Lartillot, 2013a). The first model is time-homogenous.

It assumes a general time-reversible nucleotide substitution process,

homogeneous across sites and along the phylogeny (measured in time,

relative to the age of the root), except for the overall substitution rate r(t),

which is time-dependent, log-normal Brownian and correlated with a

vector of L quantitative traits, denoted Cl, l=1::L. Thus, the Brownian

process X(t) has dimension M=L+1:

X1ðtÞ=ln rðtÞ

l=1::L; Xl+1ðtÞ=ln ClðtÞ

The second model is time-heterogeneous. It assumes correlated variation

of the substitution rate and the equilibrium GC content with quantitative

traits. Specifically, the nucleotide substitution process is parameterized as

follows (see also Lartillot, 2013a):
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where � is the equilibrium GC frequency, and �XY is the relative ex-

changeability between nucleotides X and Y. Then, variation in r, � and

C is modeled as a Brownian process of dimension M=L+2:

X1ðtÞ=ln rðtÞ

X2ðtÞ=ln
�ðtÞ

1� �ðtÞ

l=1::L; Xl+2ðtÞ=ln ClðtÞ

For the two models, the Brownian process X(t) is parameterized by an

M�M covariance matrix S, endowed with an inverse Wishart prior of

parameter S0=Diagð�1; . . . ; �MÞ, and with M degrees of freedom, where

�m, m=1::M are themselves from a truncated Jeffrey’s prior, on

½10�3; 103�. The prior distribution of X at the root is truncated uniform,

on ½�100; 100�. The phylogeny is fixed, and a uniform prior is used for

divergence times. All other aspects of the model, including the priors, are

as in Lartillot (2013a).

2.2 Discretization scheme

As illustrated in Figure 1, a global discretization grid is defined by a series

of P+1 regularly spaced absolute sampling times between the root and

the tips of the phylogeny, defining P time intervals of length �t=1=P

(times are relative to the age of the root). The Brownian process is

sampled at all points where the tree and the grid intersect, as well as at

the bifurcating nodes. In the following, superscripts will index branches,

while subscripts will index successive discretization points along each

branch. Note that the branchwise approximation classically used

(Lartillot and Poujol, 2011; Lepage et al., 2007; Thorne et al., 1998)

corresponds to P=1.
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For a given branch j, let n j+1 denote the total number of discret-

ization points along the branch, ðt ji Þi=0::n j the corresponding sampling

times and Xjðt ji Þ the value of the Brownian path at time t ji . Note that,

for each i=0::n j; Xjðt ji Þ is a vector of dimension M, whose entries are

denoted Xj
kðt

j
i Þ, for k=1::M. The joint probability of the Brownian path

is given by the following chain rule:

Xjðt ji+1Þ � N Xjðt ji Þ; ðt
j
i+1 � t j1ÞS

� �

2.3 Likelihood computation

The main idea proposed here is to approximate the continuous trajec-

tories of the instant substitution rate, r(t), and equilibrium GC, �ðtÞ, such

as defined by the Brownian process, by trajectories that are piecewise

constant within each time interval defined by the discretization. The

values of r(t) and �ðtÞ within each interval are taken as the average of

the values at both ends of the interval. Once this is done, integrating the

substitution rates over the branch can proceed as usual. The overall error

induced by this approximation is proportional to the resolution �t, and

can therefore be made arbitrarily small by using sufficiently fine-grained

discretizations.

In the case of the time-homogeneous model, for branch j, the total rate

(which is the substitutional length of the branch) is approximated by

lj=
Xn j

i=1

ðt ji � t ji�1Þ
eX

jðt j
i
Þ+eX

jðt j
i�1
Þ

2
:

and the matrix giving the substitution probabilities over branch j is simply

Rj=el
jQ ð2Þ

In the case of the time-heterogeneous substitution model, the rate matrix

also depends on time, through the second entry of the Brownian process,

describing the logit of the instant equilibrium GC. Specifically, for each

time point i=0::nj, the instant equilibrium GC at t ji is given by

� jðtjiÞ=
eX

j
2
ðt j
i
Þ

1+eX
j
2
ðtj
i
Þ

The equilibrium GC over the ith time interval is then assumed to be

constant and equal to the average of the instantaneous values at both

ends:

� j
i=

� jðt ji�1Þ+�
jðt ji Þ

2

A rate matrix Qj
i=Qð� j

iÞ is then calculated by setting �=�
j
i in Equation 1.

Finally, the matrix giving the substitution probabilities over the entire

branch is given by

Rj=
Ynj
i=1

eðt
j
i�t

j
i�1
ÞQj

i : ð3Þ

Equation 3 requires efficient computation of matrix exponentials of

the form e�tQ for small �t and for arbitrary Q. This exponentiation can be

done by repeated squaring, i.e. by relying on the fact that

e�tQ= e
�t
2s
Q

� �2s
’ I+

�t

2s
Q

� �2s

This approximation requires a total of s matrix products. The accuracy is

controlled by choosing s dynamically, such that maxk
�t
2s jQkkj is less than

some predefined threshold. Here, a threshold of 0.01 is used. In practice,

for moderately fine-grained discretization schemes (�t=0:01), s is most

often equal to 1, and therefore, the overall calculation of Rj requires a

total of snj ’ nj matrix products.

2.4 Markov chain Monte Carlo

The fine-grained discretization scheme introduced here results in a high

dimensional model configuration, with strong correlations between the

values of the Brownian process at neighboring time points. Simple

MCMC procedures updating one instantaneous value of X at a time

will be extremely inefficient in this context, and alternative algorithms

should therefore be developed. An efficient approach to this problem is

to rely on a combination of several general strategies for updating

the Brownian paths, possibly in combination with other components

of the model (in particular, the divergence times and the covariance

matrix).

The first strategy is to add a Brownian bridge to the current

Brownian path along a branch. Brownian bridges are Brownian paths

conditioned on starting and ending at 0. Adding a bridge to a path

therefore results in an update of the entire path that leaves the two end

points unchanged (Fig. 2A). The amplitude of the Brownian bridge

can be set to any desired level, thus leading to flexible tuning of the

proposal.

The second strategy aims at simultaneously resampling the three

Brownian paths surrounding an interior node of the tree. Here, this is

done by applying a simple uniform sliding move proposal to the value of

X at the focal node and propagating this change linearly over the three

surrounding paths, such that their other end points remain constant

(Fig. 2B).

The third strategy proposes a local resampling of the current Brownian

path on a small time-interval, conditional on the values of the path at the

endpoints. This strategy is useful in a context where the local time con-

figuration itself is being updated (Fig. 2C and D).

An important basic tool for devising all these path resampling pro-

posals is to sample Brownian paths conditional on the end points.

Consider for instance a Brownian path ðXðtÞÞt=0::T of generator S. We

wish to sample a discretized realization of X(t) along an arbitrary se-

quence of time points between 0 and T: 0=t05t15 . . .5tn=T, and

such that Xð0Þ=a and X(T)= b. This can be done by iteratively sampling

xi+1jxi;xn, for i=1::n� 1. At each step, one can use the conjugate

normal relation:

xi+1 j xi � Nðxi; ðti+1 � tiÞSÞ

xn j xi+1 � Nðxi+1; ðtn � ti+1ÞSÞ

so that

xi+1 j xi; xn � N xi; tiSÞð

Fig. 1. Discretization strategy. The Brownian process is explicitly

sampled at all time points represented by black dots. Substitution rates

and matrices are then approximated within each small time interval by

the average of the values at both ends. See text for details
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where

xi=
ðti+1 � tiÞxn+ðtn � ti+1Þxi

tn � ti

and

ti=
ðti+1 � tiÞðtn � ti+1Þ

tn � ti
:

This sampling algorithm can be generalized to bifurcating Brownian

paths. Consider three paths, ðXuðtÞÞt=0::Tu , ðXlðtÞÞt=0::Tl and ðXrðtÞÞt=0::Tr

(indexed by u for up, l for left and r for right), all of generator S and

connected at the bifurcation point Z=XuðTuÞ=Xlð0Þ=Xrð0Þ. We wish

to sample from this bifurcating configuration, conditional on the end

points Xuð0Þ=a; XlðTlÞ=b and XrðTrÞ=c. This can be done by first

sampling

Z jXuð0Þ=a; XlðTlÞ=b; XrðTrÞ=c

and then sampling each path independently, conditional on its end

points. To sample Z j a; b; c, the argument is the same

as above, although now with three factors in the conjugate normal

relation.

z j a � Nða;TuSÞ

b j z � Nðz;TlSÞ

c j z � Nðz;TrSÞ

so that

z j a; b; c � N z;TSÞ
�

where

z=
ðTuÞ

�1a+ðTlÞ
�1b+ðTrÞ

�1c

ðTuÞ
�1+ðTlÞ

�1+ðTrÞ
�1

and

T
�1
=ðTuÞ

�1+ðTlÞ
�1+ðTrÞ

�1:

With these basic building blocks, the following series of update mech-

anisms can be proposed:

� ONEPATHMOVE (Fig. 2A). Choose a branch at random. Along this

branch, sample a Brownian bridge of covariance matrix �S, where �

is a tuning parameter. Add this Brownian bridge to the current

Brownian path along the branch, recompute the likelihood and

apply the Metropolis–Hastings decision rule. By symmetry of the un-

directed Brownian motion, the Hastings ratio of this proposal is 1.

Letting the tuning parameter � go to 0 results in arbitrarily small

moves.

� THREEPATHMOVE (Fig. 2B). Take an interior node at random; pro-

pose a small random change to the value of the process z at this

node: z0=z+�m, where m�Nð0;SÞ and � is a tuning parameter.

Propagate the change linearly over the three surrounding branches;

recompute the likelihood and apply the Metropolis–Hastings deci-

sion rule. Hastings ratio is 1.

� TIMEPATHMOVE (Fig. 2C). Updating divergence times: take an inter-

ior node at random, shift the divergence time by a random amount

drawn uniformly in ½��=2; �=2�, where � is a tuning parameter.

Reflect divergence time within allowed interval if necessary. Define

the smallest on-grid window around the focal node encompassing

both the current and the proposed dates for the focal node. Within

this window, resample the Brownian path over the three branches,

conditional on the three end points. For this move, the Hastings ratio

exactly compensates for the probability of the Brownian path in the

window, and therefore, the Metropolis–Hastings ratio is simply

equal to the ratio of the likelihoods of the final and the initial

configurations.

The three update proposals just mentioned are conditional on the current

covariance matrix S. This covariance matrix can in turn be resampled

conditional on the current configuration of Brownian paths across

branches. This can be done using conjugate Gibbs sampling (as in

Lartillot and Poujol, 2011). However, this simple alternation between

updates of X conditional on S and updates of S conditional on X turn

out to be inefficient for large P (small �t, see Section 4). Thus, an add-

itional joint update of the matrix and the Brownian paths was devised,

simply consisting of applying the same linear transformation to all paths

and to the covariance matrix:

� LINEARBROWNIANSIGMAMOVE. Construct a random M�M matrix

by drawing each entry i.i.d. from a standard normal distribution:

Mij�Nð0; 1Þ. Set G=e�M, where � is a tuning parameter. Note that

exponential matrices are always invertible and that a value of � close

to 0 will result in a matrix G close to the identity matrix. Apply the

transformation X0=GX uniformly across all instantaneous values of

the Brownian process across the phylogeny (including the root).

Simultaneously, set S
0=GSGt, where Gt is the matrix transpose ofG.

Recompute the probability of the entire model and apply the

Metropolis–Hastings rule. The Hastings ratio of this move is equal to

jGjN+2, where jGj is the determinant of G and N is the number of

instantaneous values of the Brownian process instantiated over the

entire tree.

Note that most of the Hastings ratio in fact cancels out with the ratio of

the probability of the new and the old configuration of the Brownian

process. For a generic instantaneous value X (except the root):

pðX0 jS
0
Þ

pðX jSÞ
=
jS
0
j�

1
2e�

1
2X
0 tS0�1X0

jSj�
1
2e�

1
2X

tS
�1X

=
jS
0
j�

1
2

jSj�
1
2

=jGj�1:

There are N– 1 such values, which will therefore compensate for all but

three occurrences of jGj in the Hastings ratio. This point is important,

allowing the Hastings ratio to remain under control even for high-

dimensional models.

Fig. 2. (A) MCMC proposals. Current and proposed configurations

represented in red and blue, respectively. A. ONEPATHMOVE adds

a Brownian bridge to the path along the focal branch.

(B) THREEPATHMOVE shifts the instantaneous value at an internal node

(vertical arrow) and propagates the shift linearly across the three sur-

rounding branches. (C and D) TIMEPATHMOVE shifts the time of a node

by a random amount and resamples the paths within the smallest window

bracketing the move (here defined by the three black filled circles).

See text for details
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2.5 Data augmentation

To improve computational efficiency, the MCMC proposals described

above are used in combination with data augmentation. The data aug-

mentation strategy developed here is different from the one most often

used (such as described in Lartillot, 2006; Lartillot and Poujol, 2011;

Mateiu and Rannala, 2006; Nielsen, 2002), in that it does not rely on a

detailed substitution history along the branches of the tree. Instead, the

augmentation at each site consists only of the ancestral nucleotide

sequences at the interior nodes of the tree. Sampling ancestral sequences

conditional on current parameter values can be done independently for

each site, using a standard backward–forward algorithm (Nielsen, 2002).

Then, for each branch and for the root, the following sufficient statistics

are collected across sites: the number of sites going from nucleotide a at

the beginning of branch j to nucleotide b at the end of the branch,

ðnjabÞa;b=A;C;G;T, and the number of sites in each possible nucleotide

state in the ancestral sequence at the root, ðmaÞa=A;C;G;T. Conditional

on this data augmentation, when applying one of the Metropolis–

Hastings proposals described above, only local probability factors, cor-

responding to those branches on which Brownian paths have changed,

need to be recomputed. The probability factor contributed by branch j is

given by ðRj
abÞ

nj
ab , which can be calculated in a time independent of the

length of the genetic sequences. The main rate-limiting step of the overall

procedure therefore lies either in the resampling of the Brownian path or

in the recalculation of the R matrix, depending on the exact model set-

tings. The ancestral sequences are refreshed regularly, conditional on the

current parameter configuration. This update is the only one requiring

dynamic programming methods classically used for likelihood computa-

tion (Felsenstein, 1981).

The overall MCMC schedule is organized in long cycles, each starting

with a resampling of the ancestral sequences conditional on the current

parameter values, followed by a complex series of calls (of the order of

10 000 in total) to each of the update mechanisms described above and to

standard Metropolis–Hastings updates of the global parameters of the

model (Lartillot and Poujol, 2011). A typical chain is run for 1100–5100

cycles, discarding the first 100 cycles (burn-in). Convergence was checked

visually and then quantitatively assessed by estimating the discrepancy

between independent runs and the effective sample size associated to key

parameters of the model (in particular, the entries of the covariance

matrix). Typical effective sample sizes are of the order of 300 independent

points drawn from the posterior distribution for a nominal sample size

of 1000.

2.6 Data and simulations

Empirical data were gathered from several previous studies: a placental

nuclear dataset of 16 concatenated genes in 73 taxa (Lartillot and Delsuc,

2012), another placental nuclear dataset of 180 concatenated exons from

33 placental taxa (Lartillot, 2013b; Ranwez et al., 2007), a mitochondrial

dataset obtained by concatenating the 13 mitochondrial protein-coding

genes from 273 placental mammals (Nabholz et al., 2013), another similar

concatenation restricted to 201 Cetartiodactylia (Figuet et al., 2014) and

an alignment of ribosomal RNA sequences (only the stem regions) from

33 Archaea and an outgroup of 12 Eubacteria (Groussin and Gouy,

2011). In each case, the tree topology was obtained from the correspond-

ing publication and was used in all subsequent analyses.

Simulations were conducted using the placental nuclear dataset with

73 taxa as a template: a first MCMC chain was run under the

time-heterogeneous model to estimate the global parameters of the

model (the divergence times, the diagonal matrix S0 used as a constant

parameter for the inverse Wishart prior, the nucleotide exchangeabilities,

the value of the substitution rate and the equilibrium GC composition at

the root of the tree). Simulation replicates were then produced condi-

tional on these parameter values, each time drawing a covariance

matrix, a Brownian history along the tree and a multiple sequence

alignment, and using P=5000 to effectively approximate a true

Brownian motion. The Brownian process is here of dimension 3 (substi-

tution rate, equilibrium GC and one quantitative trait). True (simulated)

values of each of these components were set aside for later comparison,

and the resulting simulated data (the aligned sequences and the quanti-

tative trait) were used as an input for the MCMC sampler under various

model configurations.

3 RESULTS

3.1 MCMC mixing

Convergence and mixing of the MCMC is achieved across a wide

spectrum of discretization levels, ranging from P=25 to

P=1600 discretization points along the entire depth of the

tree, both under the time-homogeneous model (Table 1) and

the time-heterogeneous settings (Table 2). The time spent

per cycle of the MCMC is significantly longer under the

time-heterogeneous than under the time-homogeneous model,

representing a 6-fold difference between the two settings. This

difference reflects the substantially more complex matrix compu-

tation implied by models where the substitution matrix itself, and

Table 1. MCMC statistics for the time-homogenous model

Acceptance rates

P Timea Eff.sizeb Onec Timed Threee Linf

25 54 1000 86 90 31 86

50 63 1000 81 90 31 86

100 81 779 74 87 31 86

200 128 861 64 82 31 86

400 173 462 53 75 31 86

800 366 745 39 66 31 86

1600 688 554 26 55 31 86

aTime per saved point (in seconds). bEffective sample size (measured over 1000

points saved after burn-in). cONEPATHMOVE. dTIMEPATHMOVE. eTHREEPATHMOVE.
fLINEARBROWNIANSIGMAMOVE.

Table 2. MCMC statistics for the time-heterogenous model

Acceptance rates

P Timea Eff.sizeb Onec Timed Threee Linf

25 114 901 88 83 22 40

50 160 794 88 77 22 40

100 295 930 85 68 22 40

200 538 748 79 58 22 40

400 1016 782 71 45 22 40

800 2053 333 60 31 22 40

1600 4142 412 48 19 23 38

aTime per saved point (in seconds). bEffective sample size (measured over 1000

points saved after burn-in). cONEPATHMOVE. dTIMEPATHMOVE. eTHREEPATHMOVE.
fLINEARBROWNIANSIGMAMOVE.

3024

B.Horvilleur and N.Lartillot

In order 
-
-
v
-
10 
a total of 
 to 
,
3 


not just the overall substitution rate, is time-dependent (compare

Equations 2 and 3). Under both models, however, the time per

cycle is approximately linear in P, illustrating the linear complex-

ity of all of the algorithmic developments introduced here,

whether for proposing new Brownian paths or for recalculating

the likelihood once a new path has been proposed (see Section 2).
Acceptance rates remain stable across the entire range

for most proposals, except for ONEPATHMOVE and for

TIMEPATHMOVE, for which the acceptance rate declines as a func-

tion of the discretization level, albeit remaining sufficiently high

to provide good mixing even under the finest discretization

scheme. Note that acceptance rates given in Tables 1 and 2 are

given only for one reference value of the tuning parameter.

During the MCMC, a wider range of tuning parameters is

used, so as to cover the entire range of acceptance rates, from

10 to 90%. Finally, mixing rate, such as measured by the empir-

ical effective sample size, remains stable when measured per

cycle, decreasing somewhat for large P. Because time per cycle

increases linearly, the overall efficiency of the Monte Carlo sam-

pling procedure decreases approximately linearly in real time, as

a function of the discretization level P.

Importantly, LINEARBROWNIANSIGMAMOVE was essential for

obtaining good mixing. Without this proposal, mixing quickly

degrades as a function of the discretization level, to the point that

the Monte Carlo completely breaks down for more than P=400

discretization points (not shown). The main rate-limiting aspects

causing this breakdown are discussed below.

3.2 Accuracy

Data simulated under a Brownian model were reanalyzed using

either the classical branchwise approximation (P=1) or the fine-

grained discretized Brownian model introduced here (P=100).

Compared with the discretized Brownian implementation, the

branchwise approximation results in less accurate point estimates

of the instant substitution rate and the equilibrium GC content

at ancestral nodes of the phylogeny, with a root mean square

error (rmse) of 0.41 under P=1 versus 0.36 under P=100. The

reconstruction of the quantitative trait itself, on the other hand,

appears to be less affected by the branchwise approximation

(rmse of 0.32 versus 0.30). Similarly, the estimates of divergence

times appear to be robust to the specific approximation scheme

(rmse of 0.042 versus 0.039).
The inaccuracies at the level of the instantaneous values of the

substitution parameters result in inflated estimates of the corres-

ponding entries of the covariance matrix. Diagonal entries are

systematically overestimated (rmse=1.26 versus 0.69).

Similarly, covariance parameters are inflated in absolute values

(rmse=0.66 versus 0.29, Fig. 3). This bias is accompanied by a

greater uncertainty about the estimation of the variance and co-

variance parameters, by �50% (Fig. 3). This error incurred on

the estimation of the covariance matrix can be explained by the

fact that the variance contributed at the levels of branch-specific

rates or substitution patterns by the randomness of the Brownian

paths, which is ignored under the branchwise approximation, is

absorbed by the values taken by the Brownian process at the

nodes of the phylogeny. This artifactually increased variance is

then naturally reflected in the estimated generator of the

Brownian process.

Of note, the accuracy was found to be nearly the same under

all values of P � 25 explored here (between 25 and 200, Fig. 3),

suggesting that even moderate levels of discretization are suffi-

cient to achieve good precision in the reconstruction of Brownian

substitution models.

3.3 Empirical data

The model was applied to a series of real datasets spanning

a broad range of taxon sampling and sequence length. The

time-heterogeneous model was used in all cases, leading to an

estimation of the correlation of the variation in substitution rate

(Table 3) and equilibrium GC content (Table 4) with a quanti-

tative trait (body mass in the case of mammals and optimal

growth temperature for the archaeal ribosomal RNA sequences).

The overall reconstructions obtained with P=100 are globally

consistent with previously reported results on the same datasets.

In particular, substitution rate decreases with body mass in mam-

mals and with temperature in Archaea (Table 3). The relation

between equilibrium GC and body mass in mammals is esti-

mated to be negative in nuclear genomes but positive in mito-

chondrial genomes (Table 4), probably reflecting a biased gene

conversion effect in the nuclear case (Lartillot, 2013b; Romiguier

et al., 2010) and a body-size–dependent mutation bias in the

mitochondrial compartment (Nabholz et al., 2013). Finally, a

strong positive correlation between GC and growth temperature

is found in Archaea, possibly the result of an adaptative tuning

of RNA stem composition induced by thermodynamic stability

constraints (Galtier and Lobry, 1997; Groussin and Gouy, 2011).
These correlation patterns are globally robust to the choice of

the specific approximation scheme. On the other hand, some

differences in the quantitative results are present between the

branchwise (P=1) and the fine-grained (P=100) approaches,

mirroring what was already observed on simulated data.

Globally, the branchwise approach leads to larger estimated co-

variance parameters. This additional dispersion in turn results in

weaker correlations. For instance, body size explains 36 versus

Fig. 3. Estimated versus inferred covariances (non-diagonal entries of the

covariance matrix), under the branchwise approximation (top left) or

using the discretization strategy with P=25 (top right), P=100

(bottom left) and P=200 (bottom right). Error bars are proportional

to posterior standard deviation
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18% of the variation in substitution rate in placental nuclear

genomes in the case of the 33 taxon dataset. Similarly, growth

temperature explains R2=61% of the variation in equilibrium

GC content in Archaea according to the discretized model,

versus R2=42% under the branchwise method. The use of

even a moderately fine-grained discretization scheme (typically

P=100) therefore appears to result in a moderate gain in stat-

istical power for detecting and measuring correlations between

substitution patterns and quantitative traits.

4 DISCUSSION AND CONCLUSION

In this work, the details of an MCMC method for sampling fine-

grained discretizations of stochastic time-dependent substitution

models have been worked out and presented. While confirming

earlier observations that the classical branchwise approximation

of Brownian substitution models gives qualitatively acceptable

results (Lartillot and Poujol, 2011), the present simulations

nevertheless suggest that a more fine-grained computational ap-

proach leads to increased accuracy in the estimation of those

features of the model, ancestral rates and covariance matrix,

that are of more direct relevance in a comparative perspective.

As suggested by the application of this new framework to em-

pirical data, this increased accuracy results in a gain in statistical

power when assessing the strength of correlated variation in sub-

stitution patterns and quantitative traits along phylogenies.

Beyond these relatively modest short-term gains, the main

contribution of the present work is primarily algorithmic and

computational. Fundamentally, the present methodological

developments represent an important first step toward a general

framework for addressing the specific challenges raised by

stochastic time-heterogenous substitution models. Ultimately,

the promising results obtained here on Brownian models open

the way to the implementation of a much wider class of stochas-

tic processes.

4.1 Fine-grained discretizations and MCMC

Among the specific challenges raised by fine-grained time-

dependent substitution models, the most critical one encountered

in this work has been to obtain a MCMCwhose mixing behavior

scales acceptably with the level of discretization of the model.

Even for a stochastic process as simple as a Brownian motion,

good MCMC update proposals that do not become extremely

inefficient for fine-grained discretization settings turn out to be

difficult to find.
The fundamental reason behind this difficulty is that the

subset of model configurations significantly contributing to the

posterior distribution, and which the MCMC should therefore

efficiently visit, is large in the absolute but small relative to the

space of all possible configurations. The data provide only lim-

ited constraint for determining which paths are acceptable, so

that the relative size of the subset of acceptable configurations

is primarily determined at the level of the Brownian process

itself. Technically, the Brownian process acts as a regularizer,

selecting only those paths that have globally consistent correl-

ation patterns (i.e. whose successive increments along the discret-

ization grid look all i.i.d. from the same multivariate normal

distribution). In the limit of large P, these paths are all in the

vicinity of a subspace of much lower dimension than the total

configuration space. In this regime, the proposed updates are

likely to be rejected, unless they are based on good prior guesses.
Practically, these fundamental limitations manifest themselves

in several indirect ways. First, while the data provide limited

information about the covariance matrix S, and thus the mar-

ginal posterior on S is relatively broad, the conditional posterior

density on S given the current configuration of the Brownian

process X, on the other hand, is highly peaked in the vicinity of

the empirical correlation matrix defined by the current paths

across branches. As a result, resampling S conditional on

X and then X conditional on S becomes highly inefficient

under fine-grained discretization.

Integrating out the covariance matrix, which is possible in the

present case because the inverse-Wishart is conjugate to the

normal distribution, does not really improve the situation for

the following reason: the independent Brownian paths instan-

tiated over distinct branches still have to match in their correl-

ation patterns, to be jointly considered as acceptable under any

given covariance matrix. Thus, updating one branch-specific

path at a time, conditional on all other paths, while important

for mixing paths under the current correlation structure, will not

result in a good mixing across correlation structures. This sug-

gests that the only possibility to mix over the correlation struc-

ture of the Brownian process is to update all paths

simultaneously. Even in that case, however, the update will be

Table 3. Correlation between substitution rate and trait in empirical data

P=100 Branchwise (P=1)

Dataset Taxa Sites cova Rb ppc cov R Pp

Plac nuc 73 15 117 –1.38 –0.57 50.01 –1.43 –0.53 50.01

Plac nuc 33 112 089 –1.68 –0.60 50.01 –1.29 –0.45 0.01

Cet mit 201 11 355 –0.37 –0.28 0.01 –0.18 –0.13 0.16

Plac mit 273 3843 –0.27 –0.17 0.02 –0.10 –0.06 0.25

Arch RNA 43 1801 –28.1 –0.64 50.01 –33.1 –0.62 50.01

aCovariance. bCorrelation coefficient. cPosterior probability of a positive

correlation.

Table 4. Correlation between equilibrium GC and trait in empirical data

P=100 Branchwise (P=1)

Dataset Taxa Sites cova Rb ppc cov R pp

Plac nuc 73 15 117 –1.11 –0.37 0.01 –1.43 –0.35 0.01

Plac nuc 33 112 089 –1.89 –0.49 0.04 –1.73 –0.36 0.08

Cet mit 201 11 355 0.92 0.28 0.90 0.98 0.25 0.90

Plac mit 273 3843 1.06 0.24 0.97 1.19 0.24 0.96

Arch RNA 43 1801 70.0 0.78 40.99 72.0 0.62 40.99

aCovariance. bCorrelation coefficient. cposterior probability of a positive

correlation.
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accepted only if the final paths are all typical Brownian-looking

paths, all with similar empirical correlation structures, which is

what LINEARBROWNIANSIGMAMOVE is meant to achieve.

All these difficulties are certainly not specific to Brownian

models. Instead, they merely betray a more fundamental curse

of dimensionality inherent to the project of implementing fine-

grained implementations of doubly stochastic substitution

models. On the other hand, the solutions proposed here, while

not totally satisfactory (some of the MCMC updates used here

do seem to ultimately fail for sufficiently fine-grained discret-

ization schemes, see Table 1 and 2), are good enough for reason-

ably large values of P. In addition, they should generalize well to

other types of processes.
Other specific challenges are also worth mentioning. In par-

ticular, alternative discretization schemes have been explored but

did not prove robust in the face of the other constraints of the

model. Branchwise discretization schemes, for instance, in which

each branch is subdivided into segments of equal size, were not

found to be satisfactory, raising problems of consistency of the

overall approximation procedure or inducing non-local changes

when divergence times are modified. The global discretization

grid developed here, in contrast, is globally consistent and

allows for local-only proposals, which can then be flexibly

tuned to target any desired acceptance rate. It should also be

noted that the solution developed here could easily be general-

ized to proposals that would modify the topology of the tree.

Paths would then be resampled in the neighborhood of the prun-

ing and the regrafting points, directly from the distribution

defined by the stochastic process and conditional on the end

points.

The main computational bottleneck under time-heterogeneous

models is the calculation of the matrix giving the substitution

probabilities across branches (Equation 3). Currently, this rate-

limiting step is still prohibitive for larger state spaces, such as

implied in particular by codon models. On the other hand, given

that the underlying algorithmics entirely consists of iterated

series of matrix–matrix products, all of identical dimensions,

standard vectorization or parallelization methods could certainly

be recruited here. In its current form, the present program typ-

ically allows for comparative analyses using datasets with up to a

few hundred taxa and a few hundred thousand aligned positions

(Tables 3 and 4), achieving effective sample sizes of 100–300 after

a few days of computation on a single core, reaching up to one or

two weeks for the largest datasets and under time-heterogeneous

models (180h for the placental mitochondrial dataset, 273 taxa).

4.2 Long-term applications

Beyond the specific case of Brownian models, the approach

introduced here delineates a general framework for developing

fine-grained implementations of a large spectrum of time-

dependent substitution models. In principle, it could easily be

adapted to more general Gaussian processes, such as the

Ornstein–Uhlenbeck process (Hansen, 1997), or to other more

complex models such as Levy processes (Landis et al., 2013).
In fact, the main properties of the process used here for

developing path sampling algorithms (see Section 2) are (i) the

Markov property, (ii) the possibility of efficiently calculating and

sampling from conditional finite-time probability distributions

and (iii) the possibility of applying a joint transformation to

the paths and the generator of the process that leaves the prior

invariant. Most Markovian stochastic processes used in the com-

parative method today meet these requirements and could there-

fore now be recruited as alternative models for the evolution of

the substitution rate or any other parameter of the substitution

process.

On the other hand, by relying on a fixed discretization grid, the

current approach may possibly not be ideal for processes that

make rare but large jumps at arbitrary time points. Although the

approximation would still be controlled with an error propor-

tional to �t even in the presence of jumps, for the sake of accur-

acy, it might be more convenient to adapt the sampling grid so as

to match the actual positions of the jumps. In this direction,

compound Poisson processes (Huelsenbeck et al., 2000) could

represent a promising avenue of research.
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