
Vol. 30 no. 21 2014, pages 3070–3077
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu489

Gene expression Advance Access publication July 23, 2014

Inferring condition-specific miRNA activity from matched miRNA

and mRNA expression data
Junpeng Zhang1, Thuc Duy Le2, Lin Liu2, Bing Liu3, Jianfeng He4, Gregory J. Goodall5 and
Jiuyong Li2,*
1Faculty of Engineering, Dali University, Dali, Yunnan 671003, China, 2School of Information Technology and
Mathematical Sciences, University of South Australia, Adelaide, SA 5095, Australia, 3Children’s Cancer Institute Australia,
Randwick, NSW 2301, Australia, 4Kunming University of Science and Technology, Kunming, Yunnan 650500, China and
5Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia

Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: MicroRNAs (miRNAs) play crucial roles in complex cellular

networks by binding to the messenger RNAs (mRNAs) of protein

coding genes. It has been found that miRNA regulation is often con-

dition-specific. A number of computational approaches have been

developed to identify miRNA activity specific to a condition of interest

using gene expression data. However, most of the methods only use

the data in a single condition, and thus, the activity discovered may

not be unique to the condition of interest. Additionally, these methods

are based on statistical associations between the gene expression

levels of miRNAs and mRNAs, so they may not be able to reveal

real gene regulatory relationships, which are causal relationships.

Results: We propose a novel method to infer condition-specific

miRNA activity by considering (i) the difference between the regulatory

behavior that an miRNA has in the condition of interest and its behav-

ior in the other conditions; (ii) the causal semantics of miRNA–mRNA

relationships. The method is applied to the epithelial–mesenchymal

transition (EMT) and multi-class cancer (MCC) datasets. The validation

by the results of transfection experiments shows that our approach is

effective in discovering significant miRNA–mRNA interactions.

Functional and pathway analysis and literature validation indicate

that the identified active miRNAs are closely associated with the

specific biological processes, diseases and pathways. More detailed

analysis of the activity of the active miRNAs implies that some active

miRNAs show different regulation types in different conditions, but

some have the same regulation types and their activity only differs in

different conditions in the strengths of regulation.

Availability and implementation: The R and Matlab scripts are in the

Supplementary materials.

Contact: jiuyong.li@unisa.edu.au

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 BACKGROUND

MicroRNAs (miRNAs) are a family of short non-coding RNA
molecules (usually 19–25 nt) that regulate gene expression via the
full degradation of the target messenger RNA (mRNA)

transcript or the translational repression of it (Bartel, 2009).

miRNAs have been found to be involved in most biological

processes, including developmental timing, cell proliferation,

metabolism, differentiation, apoptosis, stress responses, cellular

signaling and even various human cancers (Ambros, 2003;

Bartel, 2004; Du and Zamore, 2007).
miRNA target prediction is a vital step toward the under-

standing of miRNA activity. Because experimental methods

are limited by their low efficiency and high cost, computational

approaches have become a key alternative for predicting miRNA

activity. Several tools have been developed to identify miRNA

targets, such as MicroCosm (Griffiths-Jones et al., 2008), PicTar

(Krek et al., 2005), TargetScan (Friedman et al., 2009) and

miRanda (Betel et al., 2008). However, the predictions are

based on sequence complementarity and/or structural stability

of the putative duplex and thus have a high rate of false positives

and false negatives (Rajewsky, 2006). Furthermore, sequence

data are static and they do not change in different conditions

or at different times. Thus, from sequence data alone we are

unable to identify the effect of miRNAs on their targets’ expres-

sion in specific biological conditions, while miRNA regulation or

activity is often condition-specific (Le and Bar-Joseph, 2013).
Some recent work has combined sequence data and gene

expression data to infer miRNA activity. Cheng and Li (2008)

employed an enrichment score used by the Gene Set Enrichment

Analysis (Subramanian et al., 2005) to infer miRNA activity.

They identified the activity enhancement of miRNAs in

miRNA-transfected HeLa cells. Madden et al. (2010) combined

correspondence analysis, between group analysis and co-inertia

analysis to detect miRNA activity using microarray datasets.

They produced a ranked list of miRNAs associated with a

specific splitting in the samples, by combining miRNA target

predictions with gene expression levels. Volinia et al. (2010) pro-

posed T-REX to build miRNA activity map. They used the

effect of miRNAs over their targets for detecting miRNA activity

with mRNA expression profiles. Some tools also have been de-

veloped, including miReduce (Sood et al., 2006), Sylamer (van

Dongen et al., 2008), BIRTA (Zacher et al., 2012), DIANA-

mirExTra (Alexiou et al., 2010), mirAct (Liang et al., 2011),

miTEA (Steinfeld et al., 2013) and cWords (Rasmussen et al.,

2013), to infer miRNA activity. The first three are stand-alone

applications and the last four provide online services.*To whom correspondence should be addressed.
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Although these methods were successfully applied to infer con-
dition-specific miRNA activity, most of them only look at a

specific condition (e.g. cancer), without considering the differ-

ence in miRNA activity between conditions. Therefore, the
miRNA activity found based on the information in one condi-

tion of interest may contain regulatory relationships that are not

unique to the condition. Moreover, when considering only one

specific condition, the number of samples that can be used is
smaller, worsening the over-fitting problem with high-dimen-

sional gene expression data.
Additionally, most existing methods use statistical correlations

or associations to identify miRNA–mRNA interactions.

However, associations may not reveal gene regulatory relation-

ships that are indeed causal relationships. For example, the
expression levels of an miRNA and a gene can be strongly cor-

related, but the correlation may not indicate a regulatory rela-

tionship between the miRNA and the gene because the strong

correlation may be the consequence of the regulation of a
common regulator of them.

To address the above limitations, in this article, we propose a
novel approach to discovering condition-specific miRNA activity.

To identify miRNA activity that is specific to a condition of
interest, our method exploits the difference between the regula-

tory behavior of miRNAs in the condition of interest and in the

other condition. We divide matched samples of miRNA and

mRNA expression into groups according to sample conditions,
e.g. cancer and normal. Then miRNA–mRNA causal inter-

actions are examined using each group of samples, respectively,

but only those interactions showing significant difference in their
strengths in different conditions (called significant causal inter-

actions) are retained. These significant causal interactions are

then used to find out active miRNAswith respect to the condition

of interest, i.e. miRNAs that have significantly different causal
interactions with mRNAs in different conditions. The significant

causal interactions associated with an active miRNA are the

condition-specific activity of this miRNA.
To capture the causal semantics of miRNA–mRNA regulatory

relationships, in the above procedure, we use IDA (Maathuis et al.,

2009, 2010), a causal inferencemethod, to estimate the strengths of
miRNA–mRNA interactions. With observational data, IDA

simulates an intervention process (e.g. a gene knockdown experi-

ment) and predicts the causal effects of the intervention. It is

proved to be an effective method for predicting the causal regula-
tory effects that an miRNA has on an mRNA (Le et al., 2013).

To validate the proposed method, we apply it to two gene ex-
pression datasets: epithelial–mesenchymal transition (EMT) and

multi-class cancer (MCC), respectively. The identified miRNA

activity is validated by using the miRNA transfection experiments
data, as well as by functional analysis, pathway analysis and the

information from literature. The results show that the proposed

method can effectively infer condition-specific miRNA activity.

2 METHODS

2.1 Overview of the proposed method

As illustrated in Figure 1, the method comprises the following steps:

(1) Data preparation. Given the matched miRNA and mRNA expres-

sion profiles, a list of differentially expressed miRNAs and

mRNAs are identified. The expression profiles of the differentially

expressed miRNAs and mRNAs are then split into sample groups

according to the conditions (phenotypes) of the samples. In each

condition, the miRNA and mRNA samples are matched and inte-

grated into one dataset (matrix) as an input of the next step.

(2) Using IDA to learn a causal structure and to calculate the causal

effects of each miRNA on each mRNA. This is done for each

condition separately. To overcome the over-fitting problem of

high-dimensional data, we use bootstrapping to improve the sta-

bility of the estimation of causal effects.

(3) Extracting significant miRNA–mRNA causal interactions.

Kolmogorov–Smirnov (KS) test is used to evaluate the significance

of the difference of the causal effects of an miRNA–mRNA causal

interaction in different conditions. miRNA target binding informa-

tion is used as a constraint in this step for extracting significant

causal interactions, and an interaction that passes the KS test and

is implied by the target binding information is selected as a signifi-

cant miRNA–mRNA causal interaction.

(4) Detecting active miRNAs and condition-specific miRNA activity.

For each miRNA, the difference of its significant causal inter-

actions across all conditions is assessed using the KS test. If the

test result is significant for the miRNA, then it is an active miRNA

with respect to the condition of interest, and its activity in the

condition (significant causal interactions with the mRNAs) is con-

sidered specific to the condition.

In the following, we will present the key steps in detail.

2.2 Causal inference with IDA

The application of IDA (Maathuis et al., 2009, 2010) to matched miRNA

and mRNA expression data can be divided into two steps: (i) learning a

causal structure from expression data, and (ii) calculating causal effects

(Le et al., 2013).

In step (i), the expression levels of miRNAs and mRNAs are repre-

sented by a set of random variables. The PC algorithm (Spirtes et al.,

2000) is used to learn the causal structure of the variables in the form of a

directed acyclic graph (DAG), where the nodes represent the random

variables (miRNAs or mRNAs) and the edges denote causal relationships

between these variables.

The PC algorithm is based on conditional dependence tests. Because

different DAGs may encode the same conditional independencies in a

given dataset, the output of the PC algorithm is an equivalence class of

DAGs, which can be uniquely described by a completed partially directed

acyclic graph (CPDAG) (Maathuis et al., 2009). Learning a CPDAG

from high-dimensional data is computational expensive, and we need

to select an efficient conditional independent test to implement it. The

PC algorithm with partial correlation test (Kalisch and B €uhlmann, 2007)

is proved to be uniformly consistent in the high-dimensional context, and

thus, we can use it to learn causal structures with gene expression data in

inferring gene causal regulatory networks. In this article, we use the

R-package pcalg (Kalisch et al., 2012), which implements the PC algo-

rithm with partial correlation test and set the significant level of the

conditional independence test �=0.01.

In step (ii), we simulate the controlled experiments with do-calculus

(Judea, 2000), to estimate the causal effect that each miRNA has on an

mRNA. Given a DAG, do-calculus can estimate the causal effect of a

node on any other node in the DAG from observational data. For an

miRNA–mRNA causal interaction, we calculate the causal effect

ef(miRNA, mRNA) based on each of the DAGs represented by

the CPDAG learnt by the PC algorithm, respectively. We then use

the minimum absolute value of the obtained causal effects as the

final result of this step, to get a lower bound on the estimated

strength of miRNA–miRNA causal interaction. For example,
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ef(miRNA, mRNA) 2 {0.75, 0.55, –0.7, 0.65}, then the final result ef

(miRNA, mRNA) is 0.55. It suggests that the causal effect of the

miRNA on the target gene is at least 0.55. Details of how the causal

effects are calculated are out of the scope of this article and interested

readers are referred to (Le et al., 2013; Maathuis et al., 2009, 2010) for

more information.

Unstable estimation caused by the small number of samples is a chal-

lenge to the proposed method, and the problem may get more serious

with high-dimensional gene expression data. To tackle this problem, we

use a bootstrapping strategy. The above described IDA procedure is

carried out in each run of the bootstrapping, and all the results will be

used in the next step for identifying significant miRNA–mRNA causal

interactions.

2.3 Identifying significant miRNA–mRNA interactions

As mentioned previously, to identify condition-specific miRNA activity,

significant miRNA–mRNA causal interactions, i.e. those that vary in

their strengths in the condition of interest and the other conditions

should be the focus of the examination. The interactions that do not

change much across different conditions are not unique to the condition

of interest.

To evaluate the significance of a miRNA–mRNA causal interaction,

we compare its causal effect, ef, calculated in the two different conditions

using a two-sample KS statistic test. The KS test can assess whether the

distribution of ef in the samples of one condition is significantly shifted

compared with the distribution in the samples of the other condition. We

choose to use KS test because it has the following advantages: (i) it is non-

parametric and hence does not rely on any assumptions about the distri-

bution of the changes of causal effects; (ii) it does not rely on arbitrary

thresholds; and (iii) it measures significant shifts between the entire dis-

tribution rather than just comparing the tails.

Suppose that Fjðef Þ=
1
B

PB
i=1 Iefi�ef is the empirical cumulative distri-

bution function (cdf) of ef in the two groups of samples, where j 2 {1, 2},

B is the number of bootstrapping runs and I is the indicator function

whose value is 1 when efi � ef and 0 otherwise. Then the KS test is the

maximum difference (D) between the two groups of samples in value of

the cdfs, i.e. D=supefjF1ðefÞ � F2ðefÞj, where supef is the supremum of the

set of difference.

We use the Matlab function kstest2 to calculate the KS test statistic

and the asymptotic P-value [adjusted by Benjamini–Hochberg (BH)

method] of each miRNA–mRNA causal interaction. The miRNA–

mRNA causal interaction with adjusted P50.05 is regarded as a signifi-

cant miRNA–mRNA causal interaction between the two conditions.

In the implementation, before conducting the KS test, for each

miRNA–mRNA causal interaction, we check if the mRNA is a predicted

target of the miRNA by using miRNA target binding information, and

the interaction is undergoing the KS test only if the interaction is con-

firmed by the target binding information.

2.4 Inferring condition-specific miRNA activity

Generally, a single significant miRNA–mRNA interaction only shows the

partial activity of the miRNA regarding the condition of interest, as the

miRNA may be involved in multiple significant miRNA–mRNA inter-

actions. Thus, to obtain a complete picture of the condition-specific ac-

tivity of an miRNA we need to investigate all the significant interactions

in which the miRNA is involved. Note that our definition of an active

miRNA is specific to the condition of interest. The overall causal effect

that the active miRNA has on all the mRNAs significantly interacting

with it must have changed significantly between the condition of interest

and the other condition.

To infer such condition-specific active miRNAs or their activity,

firstly, for each identified significant miRNA–mRNA causal interaction,

we find out the median value of its causal effects calculated during the

B times of bootstrapping, in each condition, respectively.

Then for each miRNA, we examine the difference of the distributions

of the median causal effects of all its associated significant causal inter-

actions in the condition of interest and the other condition, using the KS

test. We also use the Matlab function kstest2 to calculate the KS test

statistic and the asymptotic P-value (adjusted by BH method) for the

miRNA. If the adjusted P is50.05, then this miRNA is regarded as an

active miRNA specific to the condition of interest.

3 RESULTS

3.1 Data sources and preparation

To demonstrate our method, we apply it to the matched miRNA

and mRNA expression profiles from the EMT and MCC

datasets.
The miRNA expression profiles of EMT are from Søkilde

et al. (2011) (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE26375). They were profiled from the 60 cancer cell

lines of the drug screening panel of human cancer cell lines

at the National Cancer Institute (NCI-60). The mRNA

Fig. 1. A flowchart of the proposed method. The expression profiles of

differentially expressed miRNA and mRNAs are firstly split according to

the conditions (phenotypes) of the samples, and in each condition the

matched miRNA and mRNA expression samples are integrated. Then,

we identify miRNA–mRNA causal relationships with IDA learning

by combining target binding information, in each condition, respectively.

Bootstrapping is used to improve the result of IDA with high-

dimensional data. KS test is then conducted to identify significant

miRNA–mRNA causal interactions. To determine if an miRNA is an

active miRNA, in each condition, we obtain the median value of all

causal effects obtained in all the B runs of bootstrapping for each signifi-

cant miRNA–mRNA causal interaction associated with this miRNA,

and use KS test to evaluate the significance of the difference of this

miRNA’s activity in the two conditions
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expression profiles of EMT for NCI-60 were obtained

from ArrayExpress (http://www.ebi.ac.uk/arrayexpress, acces-

sion number E-GEOD-5720). Samples of the EMT data categor-

ized as epithelial (11 samples) and mesenchymal (36 samples)

were used for this work.
The miRNA expression profiles of MCC were obtained from

Lu et al. (2005) (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE2564). The mRNA expression profiles of MCC

are from Ramaswamy et al. (2001) (http://www.broad.mit.edu/

cancer/pub/migcm). Samples of the MCC data classified as

normal (21 samples) and tumor (67 samples) were used in this

work.
We perform differential gene expression analysis on the gene

expression profiles to identify differentially expressed miRNAs

and mRNAs between the two conditions in each dataset using

the limma package (Smyth, 2005) of Bioconductor. Genes with

410 missing values are removed. As a result, 46 probes of

miRNAs and 1612 probes of mRNAs for the EMT dataset

and 66 probes of miRNAs and 1318 probes of mRNAs for the

MCC dataset are identified to be differentially expressed at a

significant level (adjusted P50.05, adjusted by BH method).

The detailed results of the differentially expressed miRNAs and

mRNAs are in Supplementary Material 1.
We use the putative miRNA target information in MicroCosm

v5 (Griffiths-Jones et al., 2008) as the constraint when identifying

significant miRNA–mRNA causal interactions (Fig. 1). Note

that the putative target information is an independent compo-

nent in our method, and any database of miRNA target infor-

mation can be used. We choose MicroCosm to illustrate the

method.
The number of bootstrapping, B, is set to 100.

3.2 Validations by transfection experiment result

In this section, we validate identified significant miRNA–mRNA

interactions using the transfection experimental data from (Khan

et al., 2009), and the data included in the transfection data are

listed in Supplementary Material 2. The 18 unique miRNAs

overlap with 11 and 12 miRNAs in the EMT andMCC datasets,

respectively, which enables the validation of the significant inter-

actions involving these miRNAs. Differentially expressed genes

between the control and miRNA transfected samples are con-

sidered as targets of the miRNA, and are used as the ground

truth to validate the predicted miRNA targets (significant

miRNA–mRNA interactions). In the transfection experiment,

mRNA differential expression levels are calculated by comparing

mRNA expression levels between transfection and control sam-

ples via log2 fold change (LFC). The larger the absolute value of

the LFC is, the more significant the mRNA differential expres-

sion level is. The commonly used fold change (FC) cutoffs are 1.5

and 2.0 (Dalman et al., 2012), so we use the logarithm of the FC

cutoffs and round them to 0.5 and 1.0 in this work. The follow-

ing validations are done using the differentially expressed genes

(ground truth) obtained with both LFCs, respectively.

3.2.1 Validation in comparison with MicroCosm To assess how

well the proposed method enriches the putative miRNA target

information (MicroCosm), we compare the performance of the

method with MicroCosm. For each dataset, we retrieve all the

target genes of each miRNA predicted by the method and cal-

culate the percentage of confirmed targets. As shown in Figure 2,

our method overall performs better than MicroCosm in most

miRNAs in both datasets. When the LFC cutoff is set to 1.0,

our method also performs better thanMicroCosm in terms of the

number of validated targets (see Supplementary Fig. S1 in

Supplementary Material 3). The results suggest that the

method significantly enriches the putative target information

used in the model. We also conceive a cumulative hypergeo-

metric (HG) test to assess the statistical significance of the

number of validated miRNA–mRNA interactions in our

method. We found that the number of validated miRNA–

mRNA interactions is statistically significant (P50.05) in both

the EMT and MCC datasets (see Supplementary Table S1 in

Supplementary Material 3 for details).

3.2.2 Validation in comparison with non–condition-specific
approach To evaluate the effectiveness of the condition-specific

approach, we compare the performance of the proposed method

with its non–condition-specific variant that does not consider

sample categories. The non–condition-specific approach will

not split the dataset into different conditions, and it simply

applies IDA to the whole dataset to enrich the putative target

information.

We extract the top 10 and 20 predicted targets for all the

transfected miRNAs in the EMT and MCC datasets (11 for

EMT and 12 in MCC) and compare the total number of vali-

dated targets for the two approaches. Figure 3 shows that the

proposed condition-specific approach predicts more confirmed

targets than that by the non–condition-specific approach in

all cases (Top10-EMT, Top20-EMT, Top10-MCC and Top20-

MCC). When the LFC cutoff in transfection experiments is set to

1.0, the proposed method also performs better than non–condi-

tion-specific method in terms of the number of validated targets

(see Supplementary Fig. S2 in Supplementary Material 3).

3.2.3 Validation in comparison with the cases using correlation
methods To show the advantage of causal inference, in this
section, we replace step (2) of our proposed method (see

Section 2.1) with each of the five correlation methods, Pearson,

Spearman, Kendall, Lasso and Elastic-net (called the correlation

Fig. 2. The percentage of confirmed target genes identified by using the

proposed method and MicroCosm in the EMT and MCC dataset

(LFC=0.5)
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methods), and compare their results with the results obtained by

the proposed method in terms of the number of validated

miRNA targets.
We extract the top 10 and 20 predicted targets for all trans-

fected miRNAs in the EMT and MCC datasets (11 in EMT and

12 in MCC), and compare the total number of validated targets

obtained by different methods. As illustrated in Figure 4, our

method performs better than all the correlation methods in all

cases (Top10-EMT, Top20-EMT, Top10-MCC and Top20-

MCC). When the LFC cutoff is set to 1.0, the proposed

method also outperforms all the five correlation methods in

the number of validated targets (see Supplementary Fig. S3 in

Supplementary Material 3).

3.3 Inferring condition-specific active miRNAs

Using our method, we have identified 18 and 41 active miRNAs

in the EMT and MCC datasets, respectively. The identified

miRNA activity with the KS tests and the box plots of causal

effects of the active miRNAs in both datasets are provided in

Supplementary Material 4.

3.3.1 Causal effects vs. correlations for inferring condition-specific
active miRNAs To show the effectiveness of using causal effects

as the measure of the strength of miRNA–mRNA interactions,
we also use the five correlation methods (Pearson, Spearman,

Kendall, Lasso and Elastic-net) for detecting condition-specific

miRNA activity. That is, in Step (2) of our method (Section 2.1),

instead of using IDA, we use one of the correlation methods to

compute the strength of an interaction, and the obtained values

instead of casual effects are used in the next two steps.
Because no benchmarks are available, to compare the

performance of each method in inferring condition-specific

miRNA activity, we use the number of identified active

miRNAs out of the differentially expressed miRNAs as the

criterion. If a method identifies the largest number of condi-
tion-specific active miRNAs, the method performs the best. As

shown in Table 1, our method significantly outperforms all the

five correlation methods in detecting active miRNAs, suggesting

that causal effect is a useful measure to detect active miRNAs.

The results of condition-specific miRNA activity using the five

correlation methods are provided in Supplementary Material 5.

3.3.2 Comparing with existing methods in inferring condition-

specific active miRNAs We evaluate the performance of our
method by comparing it with other five existing methods:

DIANA-mirExTra (Alexiou et al., 2010), Sylamer (van

Dongen et al., 2008), MIR (Cheng and Li, 2008), miReduce
(Sood et al., 2006) and cWords (Rasmussen et al., 2013).

Similarly, an miRNA with P50.05 is regarded as an active

miRNA. We also use the number of identified active miRNAs

out of the differentially expressed miRNAs as the criterion. As

illustrated in Table 2, for the EMT dataset, our method is

comparable with cWords and performs better than the other

four existing methods. For the MCC dataset, our method out-

performs all the five existing methods. The results of condition-
specific active miRNAs (P50.05) using the five existing methods

are provided in Supplementary Material 6.

3.4 Validation of active miRNAs

We use the TAM (Lu et al., 2010) software to conduct the func-

tional analysis of the active miRNAs found by our method.

Significant biological functions and associated diseases are iden-

tified for an active miRNA with the adjusted P-value (adjusted
by BH method) of 0.05. The analysis of the molecular pathways

that the active miRNAs are potentially involved is performed

with mirPath (Vlachos et al., 2012), and TarBase 6.0

(Vergoulis et al., 2012) is regarded as a reference database to

mine significantly enriched pathways.

Fig. 4. Comparison between the proposed method and the correlation

methods in terms of the number of confirmed targets (LFC=0.5).

P-values of validated targets are calculated using cumulative HG test

Fig. 3. Comparison between condition-specific and non–condition-speci-

fic analyses in terms of the number of validated targets (LFC=0.5).

P-values of validated targets are calculated using cumulative HG test

Table 1. Comparing the number of active miRNAs found by the

proposed method and the five correlation methods

Dataset Proposed

method

Pearson Spearman Kendall Lasso Elastic-net

EMT 18 6 2 2 0 0

MCC 41 38 26 24 1 5
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For the EMT dataset, the 47 samples are closely related to

nine human cancer cell lines, Breast, Cardiovascular Nervous

System, Colon, Leukemia, Lung, Melanoma, Ovarian, Prostate

and Renal. Here, we only discuss EMT in the biological func-

tions and diseases associated with these nine human cancer cell

lines.
As illustrated in Figure 5, 9 of the 18 active miRNAs identified

using our method are significantly associated with EMT, and 11

miRNAs are closely related to Breast Neoplasms. As shown in

Figure 6, of the 18 active miRNAs, most of them are significantly

enriched in the top five KEGG pathways, including Pathways in

cancer, Chronic myeloid leukemia, Cell cycle, HTLV-I infection

and Colorectal cancer.
Our method has found a number of literature-confirmed active

miRNAs in EMT, including four members (miR-141, miR-200a,

miR-200c and miR-429) of the miR-200 family and two members

(miR-192 and miR-215) of the miR-192 family. Previous studies

(Gregory et al., 2008; Mongroo and Rustgi, 2010) have revealed

that members of the miR-200 family play a critical role in the

suppression of EMT, tumor cell adhesion, migration, invasion

and metastasis and may have therapeutic implications for the

treatment of metastatic and drug-resistant tumors. The miR-

200 family and miR-192 family are critical mediators of p53-

regulated EMT (Kim et al., 2011).
The MCC samples are closely associated with 11 human

cancer lines, including Bladder, Breast, Colon, Lung,

Melanoma, Mesothelioma, Ovarian, Pancreas, Prostate, Renal

and Uterus. In the results, of the 41 miRNAs indentified to be

active between the normal and tumor samples, 20 miRNAs are

shown to be significantly associated with miRNA tumor suppres-

sors in Figure 5. Furthermore, many active miRNAs are

significantly associated with Carcinoma of Renal Cell, Colonic

Neoplasms, Lung Neoplasms, Melanoma, Ovarian Neoplasms,
Pancreatic Neoplasms and Prostatic Neoplasms.
The pathway analysis indicates that more than half of the 41

active miRNAs are significantly enriched in the top five KEGG
pathways including Prostate cancer, Pathways in cancer, Chronic

myeloid leukemia and Bladder cancer, except RNA transport
(Fig. 6).

Our method has also identified that six members (let-7a, let-
7b, let-7c, let-7d, let-7f and let-7g) of the let-7 family, two mem-

bers (miR-181a and miR-181c) of the miR-181 family and two
members (miR-29a and miR-29c) of the miR-29 family are active

in the process of tumor. Recent research (Boyerinas et al., 2010)
has found out that let-7 and its family members are highly con-

served across species in sequence and function, and misregulation
of the let-7 family leads to a less differentiated cellular state and

the development of cell-based diseases such as cancer. The miR-
181 family has been demonstrated to play an important role in

occurrence and progression of malignant tumors such as lung
cancer, pancreatic cancer, prostate cancer and breast cancer
(Zhu et al., 2012). The miR-29 family has also been shown to

be silenced or downregulated in many different types of cancer
and have subsequently been attributed predominantly tumor-

suppressing properties (Schmitt et al., 2013).

3.5 Condition-specific miRNA activity

To understand the types of regulation of active miRNAs on their
targets in different conditions, we compare the number of posi-

tive and negative effect of each active miRNA on their targets.
With our method, a positive (negative) causal effect indicates

upregulation (downregulation) of the miRNA on its interacting
mRNA. If the number of negative effects of an active miRNA on

its targets is more than that of positive effects on its targets in one
condition, the active miRNA dominantly downregulates its

target genes in the condition, and vice versa. When an active
miRNA has the same number of negative effects and positive

effects on its targets in a condition, the regulation type of the
active miRNA is uncertain in the condition.
As shown in Table 3, most active miRNAs identified using our

method (13 of 18) downregulate their target genes in class E
(epithelial), but most active miRNAs (10 of 18) upregulate

their targets in class M (mesenchymal). Most active miRNAs
(11 of 18) have different regulation types between E and M.

For the MCC dataset, most active miRNAs (30 of 41) upregulate

Fig. 5. Functional analysis of active miRNAs. The results are generated

by TAM, and significant biological functions and associated diseases are

identified with a P-value cutoff of 0.05

Fig. 6. Pathway analysis of active miRNAs. The results are generated by

mirPath, the top five KEGG pathways are listed for both datasets

Table 2. Comparing the number of active miRNAs found by the

proposed method and the five existing methods

Dataset Proposed

method

DIANA-

mirExTra

Sylamer MIR miReduce cWords

EMT 18 5 10 13 3 18

MCC 41 35 20 10 0 6
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their target genes in class N (normal), but most active miRNAs

(23 of 41) downregulate their targets in class T (tumor). In total,

17 active miRNAs have different regulation types between

N and T.
The results indicate that in each sample condition there is a

dominant regulation type. The results also show that some active

miRNAs behave differently in different conditions in the types of

regulation (up or down), but some active miRNAs have the same

regulation type in different conditions and the difference across

conditions is just the strengths of their regulation. If we only look

at the whole dataset without considering the difference between

conditions, we may miss the interactions in a specific condition

(e.g. cancer).

4 CONCLUSIONS

miRNAs have been regarded as the main regulators at the post-

transcriptional level. Identifying the targets of miRNAs is a fun-

damental task in predicting miRNA functions. Great efforts

have been made to elucidate miRNA functions and regulatory

mechanism. One stream of the research is focused on miRNA

activity specific to a condition of interest. However, most of the

studies only use samples obtained in the specific condition, with-

out examining the difference of miRNA behavior in the specific

condition and the other conditions, thus the miRNA activity

discovered may not be unique to the specific condition.

Furthermore, most computational methods only use associations

or correlations in predicting miRNA–mRNA regulation while

the regulation is in fact causal relationships.

In this study, we have proposed an alternative method to

reveal ‘truly’ condition-specific miRNA activity with the consid-

eration of the causal semantics of miRNA–mRNA relationships.

We have applied our method to the EMT and MCC datasets.

The validation with transfection experiment data illustrates that

our method is more efficient than MicroCosm v5 in identifying

the miRNA targets, and considering the difference across differ-

ent sample conditions improves the number of validated

interactions.
The comparison with five correlation methods demonstrates

that causal effects provide a better measure than correlations in

modeling the strengths of miRNA–mRNA interactions, leading

to more effective discovery of active miRNAs.

As the main aim of the article is to identify condition-specific

active miRNAs and their activity, we conduct function and

pathway analysis of the active miRNAs detected using our
method. The results have shown that a significant number of

the identified active miRNAs are closely related to the biological

functions associated with the conditions of samples in the EMT

and MCC datasets, and play a vital role in the potential patho-
genesis of complex diseases. Furthermore, to understand the

activity of the active miRNAs, we investigate how these

miRNAs behave differently in different conditions. It was

found out that some active miRNAs show different regulation
types in different conditions and some active miRNAs have the

same regulation types and their activity only differs in different

conditions in terms of the strengths of regulation.
In conclusion, the validation and analysis results indicate that

the proposed method can be an effective method to detect con-

dition-specific miRNA activity.
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