
Vol. 30 no. 21 2014, pages 3120–3122
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu491

Genome analysis Advance Access publication July 23, 2014

FisHiCal: an R package for iterative FISH-based calibration of Hi-C

data
Yoli Shavit1,*, Fiona Kathryn Hamey2 and Pietro Lio1

1Computer Laboratory, University of Cambridge, Cambridge CB3 0FD and 2Cambridge Systems Biology Centre,
University of Cambridge, Cambridge CB2 1GA, UK

Associate Editor: John Hancock

ABSTRACT

Summary: The fluorescence in situ hybridization (FISH) method has

been providing valuable information on physical distances between

loci (via image analysis) for several decades. Recently, high-

throughput data on nearby chemical contacts between and within

chromosomes became available with the Hi-C method. Here, we pre-

sent FisHiCal, an R package for an iterative FISH-based Hi-C calibration

that exploits in full the information coming from these methods. We

describe here our calibration model and present 3D inference methods

that we have developed for increasing its usability, namely, 3D recon-

struction through local stress minimization and detection of spatial

inconsistencies. We next confirm our calibration across three human

cell lines and explain how the output of our methods could inform our

model, defining an iterative calibration pipeline, with applications for

quality assessment and meta-analysis.

Availability and implementation: FisHiCal v1.1 is available from

http://cran.r-project.org/.

Contact: ys388@cam.ac.uk

Supplementary information: Supplementary Data is available at

Bioinformatics online.
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1 INTRODUCTION

With molecular biologists getting a closer look at the spatial
organization of the nucleus, important methodologies currently

used enlist Hi-C, FISH and electron microscopy (EM). In many

ways, these methods offer complementary information. Hi-C

data provide a genome-wide capture of chromatin contacts,

with the advantages of high-throughput and scale; however,
their spatial interpretation is complicated. FISH data, on the

other hand, are usually limited in scale but offer a direct measure

for physical distance (through image analysis). They can be

obtained regardless of range or physical obstacles that affect
the chemical capture of contacts (in Hi-C) between far away or

inaccessible loci, and with a distinction between homologs, which

is absent in Hi-C data.
Tanizawa et al. (2010) previously suggested an exponential

model to convert yeast Hi-C frequencies to FISH distance ap-

proximations and used them to reconstruct a 3D model for the

yeast genome. However, it was not clear whether the same model

could be used for higher-order organisms with larger genomes,

where Hi-C limitations are likely to be more prominent, and

given that previous studies have suggested a power law model

to relate physical distances and contact frequencies (Duan et al.,

2010; Fraser et al., 2009). Whether the same parameters are

appropriate across short, medium and long ranges, or for differ-

ent chromosomes and cell types, also remained an open question.

More recently, Trieu and Cheng (2014) used FISH data for para-

meterizing an objective function that will reconstruct the 3D

configuration from human Hi-C data. Although innovative,

this approach did not exploit in full the relationship between

Hi-C and FISH data and lacked a model to study their discre-

pancies. Here we present FisHiCal, an R package for integrating

Hi-C and FISH data, which offers a modular and easy-to-use

tool for chromosomal spatial analysis. With FisHiCal, re-

searchers can prepare and apply FISH-based Hi-C calibration,

which converts contact frequencies into distances while taking

into consideration range limitations in Hi-C data. To make our

calibration especially useful, FisHiCal also includes 3D inference

methods that we have developed, that can in turn iteratively

refine the calibration model. We confirm our calibration across

three human cell lines and show that our methods can provide

valuable information for Hi-C/FISH calibration refinement,

meta-analysis and quality assessment. To the best of our know-

ledge, FisHiCal is the only tool available for performing these

tasks.

2 MATERIALS AND METHODS

Given a set D of pairwise FISH distances and a matching set C of Hi-C

contact frequencies, we assume a power law model such that C� �D�.

Taking the log of this model gives a linear dependency that could be

solved with linear regression to estimate � and �. As long range frequen-

cies are typically noisy and less reliable, we would like to consider only a

subset of (shortest) matching distances and frequencies. We denote tr, a

reliability threshold that defines this subset, and solve instead for Ctr and

Dtr the matching subsets of C and D, induced by tr, respectively. After we

have estimated the values of � and �, Hi-C frequencies could be converted

into calibrated Hi-C distances, approximating FISH distances. Because of

Hi-C limitations, the suggested model may be appropriate only up to a

certain distance threshold tn, above which corresponding contact frequen-

cies should be discarded as non-informative or noisy (the Supplementary

information gives the details of selecting tr and tn).

Calibrated Hi-C data can then provide input for 3D reconstruction.

We denote �i,j as the calibrated distance between loci i and j, and di,j(Y)

as their Euclidian distance, in the true underlying 3D configuration Y.

Here, a zero �i,j, for different loci i and j, represents missing information

that was discarded in the calibration step. Our goal is then to minimize*To whom correspondence should be addressed.
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the following function, usually termed stress in a multidimensional scaling

setting (Kruskal, 1964):
P

i5j wi;jð�i;j � di;jðYÞ
2, where wi,j are the weights

we assign according to the reliability of �i,j. As we mostly rely on local

information, we can use here a local stress function (Chen and Buja,

2009), where missing �i,j are replaced with a constant dinf (dinf 44
known �i,j) and wi,j take the value of 1/dinf for missing distances and 1

otherwise (for dinf� 1, weights of missing distances should be set to a

small constant551). As wi,j define an irreducible matrix, the stress mini-

mization could be performed through Scaling by Majorizing a

Complicated Function (SMACOF) (De Leeuw, 1977), a well-established

strategy for this task, which guarantees convergence.

The calibrated Hi-C distances �i,j further define a weighted undirected

graph G{V, E}, where V is the set of loci and E is the set of edges: {(vi,vj)j

�i,j40, i!= j} with weights �i,j. Here we distinguish between immediate

neighbors from the same chromosome (cis) and from different chromo-

somes (trans) and detect a spatial inconsistency for a node v in G, if the

subgraph G’ of all (immediate) trans neighbors of v is not connected.

Further identifying the connected components in G’ can highlight the

cause of inconsistency and the underlying spatial division. An inconsist-

ency represents an event where several loci that are in an accessible range

from another locus (in trans), are not in an accessible range themselves,

which may occur, for example, owing to homology or noise.

The iterative calibration process starts with measuring the discrepan-

cies between Hi-C and FISH data, which could aid in reproducibility

assessment and point to functionally meaningful events (Supplementary

information, Section 5). The output of the calibration is then used for 3D

inference applications, as described above (and for other applications,

Section 4). Finally, studying the resulting spatial models, for example,

across chromosomes or different tissues, provides the input for the next

iteration to further refine the calibration model.

3 SOFTWARE IMPLEMENTATION

FisHiCal v1.1 implements the methods described in Section 2.

Users can first prepare and apply their calibration

(Supplementary Table S1: prepareData, prepareCalib, calibrate)

and use 3D inference methods (Supplementary Table S1: lsmacof,

and –Inc functions) to spatially explore their data and further

refine their calibration (Supplementary Table S1: updateCalib,

getInfoLevelForChr). To make it user-friendly and accessible,

FisHiCal further includes examples and comprehensive documen-

tation. Finally, scalability and feasible running times are achieved

through C++/R integration (Supplementary information,

Section 6).

4 USE CASE AND APPLICATIONS

Hi-C data from human IMR90 fibroblasts (Dixon et al., 2012),

GM06990 lymphoblasts and K562 erythroleukemia (Lieberman-

Aiden et al., 2009) cell lines were pre-processed and corrected for

noise and bias, as described by Shavit and Lio’ (2014). The data

were then matched with FisHiCal::prepareData, at a resolution

of 1Mb, to FISH distances from human primary fibroblasts

(Mateos-Langerak et al., 2009). Supplementary Figure S1 pre-

sents these data and the calibration curves that were estimated

with FisHiCal::prepareCalib, confirming our model across the

three cell lines. The best fit was achieved for FISH and Hi-C

data from the same cell type (fibroblasts) with a consistent outlier

at 1.49mm, mapped to a cis distance in chromosome 1. To

further explore the spatial basis of this outlier, we have recon-

structed the 3D structure of chromosome 1 from the calibrated

(fibroblasts) Hi-C matrix with FisHiCal::lsmacof. The predicted

structure (Supplementary Figure S2) confirmed the known

partition into two chromatin compartments (Lieberman-Aiden

et al., 2009) and suggested a possible explanation for the outlier.

The corresponding two successive 1-Mb bins (encircled in

Supplementary Figure S2b) formed part of a chromatin loop

in our model. While Hi-C captured all intra-loop frequencies

(leading to a relatively high value), FISH distances were likely

to be measured between the far ends of the loop, as the corres-

ponding probes were mapped to highly transcribed genes

(Mateos-Langerak et al., 2009). Further exploring the calibration

curves of silenced and activated regions could confirm whether

this example illustrates a new measure for looping events

(see also Supplementary information, Section 8). Additional

examination of the inconsistencies detected for loci in chromo-

some 1 with FisHiCal::searchInc, highlighted a long genomic

domain (184–196Mb), which was in contact with two loci in

chromosomes 7 and 16 that were not themselves connected

(Supplementary Figure S3). As previous findings position

chromosome 1 homologs at different locations in the nucleus

(Bolzer et al., 2005), this inconsistency suggests that the loci in

chromosome 16 and chromosome 7 are in contact with different

instances of the genomic domain in chromosome 1, correspond-

ingly. Additional experimental knowledge (e.g. from EM) could

be used to further explore this finding. The use case described

above illustrates an iterative FISH-based procedure for Hi-C

calibration. Further applications of calibration include quality as-

sessment and genome wide cytogenetic studies (Supplementary

Figures S4 and S5). With more FISH and Hi-C data becoming

available, building chromosomes maps with accurate scale and

carrying time-series calibration analysis will be made possible

with FisHiCal (Supplementary Figures S6 and S7).

5 CONCLUSION

Being the first tool to integrate FISH and Hi-C data, FisHiCal

shows the importance of calibration for studying the nuclear

architecture with different techniques, with applications span-

ning cytogenetics, differentiation and spatio-temporal studies.
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