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ABSTRACT

Motivation: The increasing interest in rare genetic variants and epi-

static genetic effects on complex phenotypic traits is currently pushing

genome-wide association study design towards datasets of increasing

size, both in the number of studied subjects and in the number of

genotyped single nucleotide polymorphisms (SNPs). This, in turn, is

leading to a compelling need for new methods for compression and

fast retrieval of SNP data.

Results: We present a novel algorithm and file format for compressing

and retrieving SNP data, specifically designed for large-scale associ-

ation studies. Our algorithm is based on two main ideas: (i) compress

linkage disequilibrium blocks in terms of differences with a reference

SNP and (ii) compress reference SNPs exploiting information on their

call rate and minor allele frequency. Tested on two SNP datasets and

compared with several state-of-the-art software tools, our compres-

sion algorithm is shown to be competitive in terms of compression rate

and to outperform all tools in terms of time to load compressed data.

Availability and implementation: Our compression and decompres-

sion algorithms are implemented in a C++ library, are released under

the GNU General Public License and are freely downloadable from

http://www.dei.unipd.it/~sambofra/snpack.html.

Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it.
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1 INTRODUCTION

A genome-wide association study (GWAS) measures a large set

of common genetic variants, mainly in the form of single nucleo-

tide polymorphisms (SNPs), across different individuals to see

whether any variant is associated with a phenotypic trait.

Promising examples of GWAS findings that may soon be trans-

lated into clinical care are starting to emerge, including variants

that provide strongly predictive or prognostic information or

that have important pharmacological implications (Manolio,

2013).

GWASs, however, have brought insight on what is known as

the missing heritability problem: almost without exception, only

a small part of the genetic variance estimated from the data can

actually be explained with association results of GWASs

(Manolio et al., 2009). Apart from environmental and epigenetic

interactions, the genetic component of phenotypic traits is now

believed to be attributed to larger numbers of small-effect

common variants, large-effect rare variants or, probably, to a

combination of the two (Gibson, 2012).
This has induced an increase in both the number of required

samples (Lango Allen et al., 2010) and the number of measured

markers (1000 Genomes Project Consortium, 2012) in a GWAS,
often resorting to new technologies such as next-generation

sequencing. This, in turn, is leading to a compelling need for
new methods for effective compression and fast retrieval of

SNP data. For this purpose, the widely used whole-genome ana-

lysis tool PLINK has introduced the Binary PED (BED) format,
which requires only 2 bits to store the information on one geno-

type (Purcell et al., 2007). However, the achieved compression
rate is often not sufficient, with large datasets still requiring

several gigabytes for storage on disk.
BED files can be further processed with all-purpose compres-

sion tools, like 7ZIP or GZIP, which often achieve rather high

compression rates. The drawback of this solution, however, is the
need to fully decompress the files before accessing the data, thus

requiring both additional computational time and additional
disk space for the temporary storage of uncompressed data.

The majority of the methods proposed in the literature for the
storage and retrieval of DNA data are designed to compress

the entire genome of a small number of subjects and rely on

the presence of a reference genome and/or of a reference vari-
ation map (Brandon et al., 2009; Christley et al., 2009; Wang and

Zhang, 2011). Such methods, however, are unfit for GWAS data,
where the number of subjects is much higher and the proportion

of identical base pairs between subjects is much lower. Durbin

(2014) proposes an efficient algorithm for compressing collec-
tions of haplotypes, which, however, requires genetic sequences

to be phased.
Deorowicz et al. (2013) propose a software tool, TGC, for

compressing collections of SNPs and indels by positively exploit-
ing similarities in the whole collection. However, the tool still

requires genetic data to be fully decompressed before accession

and, together with the aforementioned methods, it suffers from
the large overhead required for storing a reference genome.
To the best of our knowledge, the problem of compressing

GWAS data has only been directly addressed by Qiao et al.

(2012) with the SpeedGene software tool. The authors propose
an algorithm for compressing each SNP according to the most

effective among three types of coding algorithms, or codes, de-
signed to exploit the peculiar properties of the genotype distri-

bution of each SNP in the compression process. By compressing

one SNP at a time, however, the SpeedGene approach does not
take into account the strong local similarity typical of SNP data

(linkage disequilibrium).
The object of this work is to develop a novel algorithm for the

compression and fast retrieval of SNP data, decomposing the*To whom correspondence should be addressed.
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problem in two tasks: (i) summarizing linkage disequilibrium

(LD) blocks of SNPs in terms of differences with a common

nearby SNP, and (ii) compress such SNPs exploiting information

on their call rate and minor allele frequency. The latter task is

accomplished by means of five compression codes, two of which

are inspired by some ideas from Qiao et al. (2012) but are de-

signed with a more compact representation.
We test our algorithm on two datasets, namely a set of 11 000

subjects from the Wellcome Trust Case Control study (Wellcome

Trust Case Control Consortium, 2007) and the 38 millions of

SNPs genotyped by the 1000 Genomes Project (1000 Genomes

Project Consortium, 2012). Compared with the widely used ana-

lysis tool PLINK, the SpeedGene software for SNP compression

and retrieval, the general compression tool GZIP and the specific

genetic compression tool TGC, our algorithm is shown to out-

perform the two former tools in terms of storage space and all

considered tools in terms of time to load the data.

2 MATERIALS AND METHODS

In this section, we first briefly review the three codes introduced by the

SpeedGene algorithm. We then present our improvements of the

SpeedGene codes and our novel strategy for compressing LD blocks.

The pseudo-code and the description of our final algorithm conclude

the section.

2.1 The SpeedGene algorithm

We start by defining code as an algorithm for storing, in a compressed

form, the genotype of an SNP for all the subjects in a dataset. The

SpeedGene algorithm compresses the SNP data by storing each locus

with the best performing among three codes, defined as follows.

Code 1. For each SNP and each subject, code 1 uses 2 bits to repre-

sent the number of copies of the minor allele (0, 1 or 2) or a missing

genotype. The genotype of four subjects can thus be stored on 8 bits,

equalling one byte on disk. This format is similar to the one adopted

by the PLINK software for the Binary PED files and requires the

same disk space.

Code 2. Code 2 is designed for SNPs with low minor allele frequency

(MAF) and records only the subjects with the heterozygous and rare

homozygous genotype, plus the ones with missing genotype. If n is

the number of subjects, code 2 requires dlog2ðnÞe bits to store the

index of each rare homozygous, heterozygous and missing subject,

plus 3� dlog2ðnÞe bits to store the number of subjects in each of the

three categories.

Code 3. Code 3 is designed for SNPs exhibiting a large number of

heterozygous subjects. For these subjects, code 3 uses a binary array

of n digits: the i-th element of the array is 1 if the i-th subject is

heterozygous and 0 otherwise. Rare homozygous and missing sub-

jects are stored as in code 2.

For each SNP, the number of storage bytes required by each code can

be computed beforehand, based on the allelic frequencies in the dataset,

and the code requiring less space can be selected. SpeedGene stores an

additional byte for each SNP to identify the selected code. Furthermore,

the algorithm stores the initial position in bytes of each SNP at the be-

ginning of the compressed file, to reduce the time needed for decompres-

sion by simplifying the access to each saved SNP.

2.2 Improvements of the SpeedGene codes

The first improvement we propose concerns SpeedGene codes 2 and 3

and reduces the space needed for storage. In fact, rather than storing each

time the entire indices of the subjects, requiring dlog2ðnÞe bits each, we

store, for each subject category (rare homozygous, heterozygous and

missing), the first index, followed by the differences between all pairs

of consecutive indices. For each index in each SNP, thus, it is enough

to store a number of bits equal to bdiffaa, bdiffaA and bdiffmiss, i.e. the

number of bits required to represent both the first index and a difference

between consecutive indices of rare homozygous, heterozygous and miss-

ing subjects, respectively.

The schematics of the new codes are presented in Figure 1a. As it is

clear from the figure, the first 3 bits are used to save a unique identifier

for each code. Code 1, then, ignores the subsequent 5 bits and proceeds

unmodified storing in the subsequent bytes the genotype of four subjects

for each byte.

Code 2, on the other hand, exploits the 5 bits of the first byte, together

with the two subsequent bytes, to store bdiffaA, bdiffaa and bdiffmiss. The

code, then, stores the number of rare homozygous, heterozygous and

missing subjects, each requiring dlog2ðnÞe bits, and then stores, for each

of the three sets of indices, the first index, followed by the differences

between pairs of consecutive indices.

Similarly, code 3 stores bdiffaa and bdiffmiss in the first 2 bytes, followed

by the numbers of rare homozygous and missing subjects and by the two

sets of indices. Code 3 terminates with a binary array of n digits, with a 1

for each heterozygous subject and a 0 otherwise.

For each SNP, we measure a separate bdiff for each subject category,

rather than simply taking the maximum of the three, because we observed

that it greatly varies across the three categories. This is to be expected, as

the indices of rare homozygous and missing subjects will be, on average,

more sparsely distributed than the indices of heterozygous subjects; the

latter, thus, will generally require less bits to code the difference between

two consecutive indices.

Compared with the original SpeedGene codes, our modified versions

add a fixed overhead of 2 bytes to code 2 and of 1 byte to code 3.

However, the overhead is almost always compensated by a gain of several

bits for each of the stored indices, as shown in Section 3.

The second improvement we propose is the introduction of code 4 and

5, especially useful for SNPs with many missing values. The schematics of

the new codes are represented in Figure 1a.

Code 4 is similar to code 2, but swaps the role of missing values with

the one of frequent homozygous subjects: the code records explicitly

the indices of frequent homozygous, rare homozygous and heterozy-

gous subjects, assuming the majority of subjects to be missing for the

SNP.

Code 5 is less extreme than code 4 and is similar to code 3, but

swaps the role of missing values with the one of heterozygous subjects:

the code records explicitly the indices of rare homozygous and hetero-

zygous subjects, exploiting a binary array of n digits to record missing

values.

2.3 Compression algorithm

The DNA is known for exhibiting regions of strong local similarity,

known as LD blocks, separated by small regions with high recombin-

ation rates (Wall and Pritchard, 2003). In a population, SNPs in high

LD have identical genotypes for the majority of subjects. When com-

pressing an LD block, thus, it suffices to store one of the SNPs in its

entirety and use it as a reference to summarize the other SNPs in the

block, storing just their variations with respect to the common SNP.

In what follows, we will call the former reference SNP and the latter

summarized SNPs.

We stem from this intuition to design our compression algorithm,

whose pseudo-code is reported in what follows.
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COMPRESS-SNPS

1 load SNP data

2 for each SNP i

3 cost½i�= Byte size of the best code for i

4 for each SNP i

//useful neighbours, i.e. SNPs worth being summarised by i

5 uN½i�=1
6 for each SNP j 2 N½i� //Neighbourhood of i

7 compute genotype variations between i and j

//partial gain

8 pg½i; j�=cost½j�� cost of summarising j with i

9 if pg½i; j�40

10 uN½i�=uN½i� [ j

11 gain½i�=
P

j2uN½i� pg½i; j�

12 m=argmaxiðgain½i�Þ

13 while gain½m�40

14 summary½uN½m��=m

15 gain½m�=0

16 gain½uN½m��=0

17 for each j 2 uN½m�

18 for each k such that j 2 uN½k�

19 gain½k� �=pg½j; k�

20 m=argmaxiðgain½i�Þ

21 write data to disk according to summary

The algorithm starts by computing the best of the five codes for each

SNP and the corresponding cost in bytes (lines 2–3).

For each SNP i, then, the algorithm searches its neighbourhood N½i�

for SNPs j that could be effectively summarized by i, by computing their

partial gain, i.e. by subtracting the cost of summarizing j with i from the

cost of storing j. For the moment, consider the neighbourhood of an SNP

simply as its flanking region in the DNA; the concept would be more

clearly defined in what follows. SNPs with positive partial gains are

added to the set of useful neighbours of i, uN½i�, and their partial gains

are summed to compute the total byte gain of using SNP i as a reference

for summarizing its useful neighbours (lines 4–11).

(a)

(b)

Fig. 1. Schematics of the five codes for compressing reference SNPs (a), plus the code for compressing summarized SNPs by storing their variations with

respect to a reference SNP (b). For each code, we report the sequence of stored values and, on top of them, the number of allocated bits. (a) Code 1

contains the code ID (3 bits) followed by five 0 bits and the genotype of the subjects (four subjects per byte). The remaining codes report the code ID

followed by bdiffxx, i.e. the number of bits for representing the first index and the difference between consecutive indices of the subjects in category xx,

where xx can be aa, aA, AA or NA for homozygous rare, heterozygous, homozygous frequent or missing subjects, respectively. Then codes 2–5 contain

the number of subjects with genotype xx (nxx) followed by the first xx index and the differences between the indices of consecutive subjects in category

xx. In addition, codes 3 and 5 contain binary_arrayaA and binary_arrayNA, respectively with 1 in position i if the i-th subject is in category aA (or NA)

and 0 otherwise. (b) Code 6, used to compress summarized SNPs, contains the code ID (3 bits) followed by 21 bits coding the distance, with sign

(upstream or downstream), from the reference SNP; the number of variations wrt the reference SNP (nvar), the positions (indicesvar) and values

(variations) of the variations wrt the reference SNP
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Once the gain of each SNP has been computed, the algorithm proceeds

by building the summary, i.e. by either assigning to an SNP the role of

reference or by indicating for the SNP which reference should summarize

it, in a greedy fashion (lines 12–20). The algorithm, in fact, iteratively

selects SNP m with the largest gain and sets it as the reference of its useful

neighbours. The gain of m and of its useful neighbours is set to zero and,

for each SNP j in uN½m�, the algorithm updates the gain of all SNPs that

have j as useful neighbour (as each SNP can be summarized by at most

one reference).

The depth of the summary is limited to 1, i.e. summarized SNPs are

not allowed to be reference for other SNPs. This design choice is meant to

limit the complexity of the decompression phase, as it will be further

clarified in the next section.

Finally, the algorithm writes the data to disk according to the sum-

mary, using the five aforementioned codes to store the reference SNPs

and a sixth code, named Summarized SNPs in Figure 1b, to store the

summarized SNPs. As it is clear from the figure, this latter code uses the

first three bits to save a unique identifier. The subsequent 21 bits are used

to identify the relative index of the reference SNP, with one bit for the

sign and 20 bits for the index distance. The code, then, reports the

number of genotype variations with respect to the reference SNP and

lists their indices and values.

The computational complexity of the algorithm is dominated by

two operations: the computation of genotype variations between

each SNP and the SNPs in its neighbourhood (line 7) and the iterated

computation of the maximum element of the vector gain (line 20). If n

is the number of subjects, p is the number of SNPs and jNj is the

number of SNPs in a neighbourhood, the former has complexity Oðp

njNjÞ and the latter Oðp2Þ.

Both to limit the complexity of computing genotype variations and to

cope with the variable patterns of LD throughout the genome, we de-

signed a heuristic procedure for adaptively setting the size of the neigh-

bourhood of an SNP. The procedure incrementally grows the

neighbourhood, independently up and downstream of the SNP, starting

from 10 SNPs and doubling the number as long as at least one of the

newly added SNPs turns out to be a useful neighbour, or when the max-

imum extension w, received as input from the user, is reached. Such a

procedure lets the algorithm reach the desired neighbourhood extension

in regions with low recombination, while halting the search for useful

neighbours when recombination hotspots are encountered.

As no LD is to be expected between the borders of two consecutive

chromosomes, we run the algorithm separately on each chromosome: this

allows us to reduce both memory occupation and the complexity of the

argmax operation in line 20, which becomes quadratic in the number of

SNPs in a chromosome.

Finally, to exploit the embarrassing parallelism of our compression

task, after loading a chromosome and computing the SNP costs (lines

1–3), we further split the chromosome into chunks of equal size and

assign each chunk to a separate thread, which is responsible to compute

both the gain of each SNP in the chunk (lines 4–11) and the portion of the

summary corresponding to the chunk (lines 12–20). The threads are dis-

tributed on the available computational cores, and the computation is

joined before writing the compressed chromosome on disk. Apart from

the improvement in computational time owing to parallelism, this also

has the positive side effect of further reducing both memory occupation

and the complexity of the argmax operation on line 20, of a factor equal

to the number of chunks. The drawback of this choice is a loss in

compression performance at the borders of the chunks. The loss is, how-

ever, limited if the number of chunks is reasonably low, as shown in

Section 3.

Before each chromosome, we write to disk the byte size of the entire

compressed chromosome, followed by the byte size of each of its SNPs.

This results in an overhead in the file size, but it is useful for accelerating

the decompression phase.

2.4 Decompression

Decompression is carried out separately on each chromosome, to limit

memory occupation. For each chromosome, the decompression proced-

ure loads the entire chromosome (whose compressed size is stored in our

compressed file), allocates memory to hold decompressed data and scans

the loaded chromosome twice. A first pass reads and decodes the refer-

ence SNPs, interpreting codes 1 to 5. A second pass, then, reconstructs

the summarized SNPs from the decoded reference SNPs.

A depth of the summary limited to 1 ensures that only two passes are

needed to fully decompress a chromosome, thus limiting decompression

time.

2.5 Implementation and file formats

Our compression and decompression algorithms are implemented in

C++, with parallelism handled by OpenMP directives. The code,

licensed under the GNU General Public License, is structured as a li-

brary, so to make it easily usable by other software.

Input data are required to be in the standard PLINK binary format,

consisting of a triplet of .bim, .fam and .bed files. The .bim and .fam files

hold information on the genotype and pedigree in text format, whereas

the .bed file holds genetic data in the binary format already described,

similar to code 1. Our library, thus, does not require additional data

preprocessing or unnecessary large disk space to hold the input files in

text format.

The output of our library is a binary .pck file, containing the com-

pressed genetic data. The library requires the same .fam and .bim files

received as input for decompression. We made this design choice to retain

the readability of the pedigree and genotype information typical of the

PLINK binary format, often familiar to genetic data analysts. This comes

at the cost of a larger disk occupation because of the uncompressed

nature of the .bim and .fam text files.

3 EXPERIMENTAL RESULTS

In this section, we present two SNP datasets, and we exploit them
to assess several aspects of our compression algorithm, namely:

� The improvements of the newly defined codes over the
SpeedGene codes in terms of storage space,

� The effect on the performance of the two tunable parameters

of the algorithm, i.e. the maximum neighbourhood exten-
sion and the number of chunks used for parallelization,

� The global performance of our algorithm, in terms of time
and peak memory occupation for compression, of com-

pressed file size and of time to load the compressed file,

� The relative utility of LD blocks compression.

All experiments are run on an IntelVR CoreTM2 Quad CPU

Q6700 with 8GB of RAM and a Linux operative system.

3.1 Datasets

The first dataset we adopt originates from the Wellcome-Trust
Case Control Study (Wellcome Trust Case Control Consortium,

2007) and consists of 10 992 subjects, either healthy or affected

by type 1 diabetes, type 2 diabetes, hypertension or coronary
artery disease. Each subject was genotyped on the Affymetrix

GeneChip 500K Mapping Array Set, which measures 490294
SNPs. Given that the information on the physical position of

each SNP is essential for our compression algorithm, we updated

it to reference assembly GRCh37.
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The second dataset is the 1000G Phase I Integrated Release

Version 3 of the 1000 Genomes Project (1000 Genomes Project

Consortium, 2012), consisting of 37 888 420 SNPs typed for 1092

individuals.

The two datasets can be considered fairly complementary in

terms of the number of subjects and of measured SNPs.

3.2 Effectiveness of the new codes

To assess the effectiveness of the new versions of code 2 and 3,

compared with the original SpeedGene codes, together with the

addition of codes 4 and 5, we randomly sampled 20 sets of 1000

SNPs from each of the two datasets, applied the two sets of codes

and compared the distribution and the disk occupation of the

best code for each SNP.
Figure 2 reports the median amount of disk space over the 20

sampled sets, in bytes and summed by code, needed for storing the

SNPs from theWTCCC (left) and 1000g (right) datasets, with the

SpeedGene and new codes. Whiskers extend from the first to the

third quartile of the total byte size. As it is clear from the figure, for

both datasets the application of the new codes results in a decrease

in the number of SNPs for which code 1 is the best, in favour of the

best-performing codes 2–5. The effectiveness of codes 4 and 5 is

limited for the WTCCC dataset (no SNPs with code 4 and one

SNP with code 5), while the two are by far the most effective for

the 1000g dataset. The new codes lead to a decrease in the com-

pressed file size of more than 12% for the WTCCC dataset and

40% for the 1000g dataset, statistically significant in both cases

(Wilcoxon signed-rank test P-value 55� 10�5).

3.3 Parameter tuning

The two major tunable parameters of our algorithm are the max-

imum extension of the neighbourhood, w, and the number of

chunks in which the chromosomes are split for parallelizing the

computation.

Figure 3 shows the trade-off between the computational time

for compression and the output file size for different values of w,

ranging from �10 to �200 kilobases, for the WTCCC (Fig. 3a)

and 1000g datasets (Fig. 3b).
As it is clear from the figure, varying w between 20 and 100kb

is an effective means for trading computational time for smaller

file size. In all the following experiments, we set w to 100Kb for

the WTCCC dataset, as no apparent gain can be obtained with a

larger neighbourhood, while we set it to 50 kb for the 1000g

dataset, favouring a lower compression time.
Concerning the other tunable parameter, we recall that paral-

lelism is obtained in our software by splitting each chromosome

into several chunks, each containing the same number of SNPs,

and by processing in parallel a number of chunks equal to the

number of available cores. To assess the effectiveness of such a

procedure, we measure the computational time and peak

memory usage for compression and the final size of the com-

pressed file, for the number of chunks varying between 1 and 32.

The results are represented in Figure 4.
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ting the computation for each chromosome in different numbers of

chunks (between 1 and 32), for the WTCCC (a) and the 1000g (b)
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Please recall that all experiments are run on a quad-core ma-
chine: as expected, thus, most of the gain in computational time
is obtained for up to 4 chunks. A further increase in the number

of chunks, however, still results in a decrease in computational
time, more evident on the 1000g data (Fig. 4b), owing to the
reduced complexity of the argmax operation explained in

Section 2.3. For the WTCCC dataset, however, the temporal
overhead owing to the parallelization procedures becomes detri-

mental for416 chunks. Increasing the number of chunks above
four also results in a consistent decrease in peak memory occu-
pation for both datasets.

The benefits of parallelism come at the cost of an increase in
the file size, albeit limited: given that the file size obtained with 1
chunk is the minimum achievable by varying the number of

chunks, the size achieved with 32 chunks is 50.12% larger
than the minimum for the WTCCC dataset and50.02% larger

for the 1000g dataset.
From the results, thus, we can conclude that 16 is an overall

good choice for the number of chunks on a quad-core machine

and will be adopted in all the following experiments.

3.4 Global performance

The entire compression algorithm is then applied to both data-

sets. The performance of our software library and file format, in
terms of time and peak memory occupation for compression, of
compressed file size and of time to load the compressed file, is

compared with the ones of the widely used PLINK binary
format, of the SpeedGene format, of the general compression
tool GZIP applied to PLINK binary files and of the specific

genetic compression tool TGC. For the latter two methods,
time to load is computed as time to decompress plus time to

load decompressed data with the adequate data analysis tool,
thus PLINK for the former and VCFtools (Danecek et al.,
2011) for the latter. To compute the output file size of each

format, we also take into account the size of the file descriptors,
i.e. the .bim and .fam files for our format and for the binary

PLINK format, the file with additional information on SNPs
and subjects for the SpeedGene format and the GZIPped
human reference genome required by TGC to fully decompress

the genetic data. Tables 1 and 2 report the results of the com-
parison for the WTCCC and 1000g datasets, respectively.
Starting from the PLINK binary format, our algorithm

achieves a compression rate of �2.8 for the WTCCC dataset

and of 2.3 for the 1000g dataset. The compressed file size is
also consistently better than the one obtained with the
SpeedGene tool, as is the time needed for compression.

Concerning the peak memory occupation, our library requires
almost twice as much RAM as the one required by SpeedGene
for the WTCCC dataset, but the opposite is true for the 1000g

dataset.
Compared with the GZIP software, our compression algo-

rithm is faster on the WTCCC dataset and slower on the
1000g dataset. However, the amount of memory used and the
output file size obtained by the GZIP software are better than

the ones of our algorithm.
The compression rate of the TGC tool, when considering the

900MB of the GZIPped human reference genome, is better than

the one of our algorithm on the 1000g dataset and worse on the
WTCCC dataset. On both datasets, the TGC tool requires

higher RAM and computation time, actually reaching the
8GB memory limit of our testing machine on the WTCCC data-
set: the time measurement in this case is not reported, as it would

be biased by the system’s paging operations.
When comparing the time to load the compressed data, one

can observe that our library always requires at least one order of

magnitude less time than all the other methods. For the 1000g
dataset, the time to load is not reported for the SpeedGene tool,

because its internal representation requires too much RAM on
our testing machine.
As final notes, we point out that the input formats required by

the SpeedGene and TGC tools are ad hoc textual formats,
derived from the PLINK PED and from the Variant Call
Format (VCF), respectively. As it is clear from the first line of

the two tables, considerable disk space is required to store text
inputs and additional effort is needed to convert data from

standard formats to the required input formats. Our library, dir-
ectly processing data in the PLINK binary format, requires 16
times less space and no effort for conversion. Finally, one should

note that neither SpeedGene nor TGC accomplish lossless com-
pression, with the former losing information on chromosome
and position of each SNP and the latter losing SNP IDs in the

compression process.

3.5 Effectiveness of LD blocks compression

We study the effectiveness of LD blocks compression by analys-

ing, for each dataset, the number of SNPs selected as reference or

Table 1. Performance measures of our new format versus the PLINK

binary format and the SpeedGene format on the WTCCC dataset

Format Time to

compress

RAM [MB]

to compress

Output

size [MB]

Time to

load

Text file – – 21 564 –

PLINK binary format – – 1636 0:02:52

SpeedGene format 3:16:40 77 962 0:01:56

New format 0:01:19 123 589 0:00:17

GZIPped PLINK

binary format

0:01:36 51 546 0:03:06

TGC format NAa 48000 403+900 0:03:46

aNot reported, too much RAM required.

Table 2. Performance measures of our new format vs. the PLINK binary

format and the SpeedGene format on the 1000g dataset

Format Time to

compress

RAM [MB]

to compress

Output

size [MB]

Time to

load

Text file – – 166000 –

PLINK binary format – – 11500 0:25:24

SpeedGene format 3:57:48 4100 10850 NAa

New format 0:30:02 2050 4923 0:02:38

GZIPped PLINK

binary format

0:05:47 51 1150 0:27:54

TGC format 2:04:53 2400 1036+900 0:38:56

aNot reported, too much RAM required.
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summarized (Table 3, first two columns) and the size occupied by

reference SNPs, by summarized SNPs, by the overhead in the

compressed file (described at the end of Section 2.3) and by the

.bim and .fam files (Table 3, last two columns). Both measures

are presented in Table 3 as percentages, to directly compare the

results on the WTCCC and 1000g datasets.

As expected, the fraction of summarized SNPs over the total

depends on the density of the SNP measurements along the

DNA, which is roughly proportional to the number of measured

SNPs. Around 40% of the SNPs are summarized in the WTCCC

dataset and 45% in the denser 1000g dataset.
It is even more interesting to analyse the relative sizes of refer-

ence and summarized SNPs in the output files. In the WTCCC

dataset, summarized SNPs are 40% of the total but occupy a

little more than 20% of the output files size. The effect is con-

sistent in the 1000g dataset (45% of the SNPs are summarized,

but they occupy 23% of the file size).

Considering the relative weight of the overhead and of the

.bim and .fam files on the output file size, one can observe that

it depends on the ratio between the number of SNPs and the

number of subjects in the dataset, being thus negligible for the

WTCCC dataset but significant (425% of the total output size)

for the 1000g dataset.

Finally, to gain further insights on LD-blocks compression, we

studied the distribution of the neighbourhood extension among

the reference SNPs: log counts for the WTCCC and 1000g data-

sets are reported in Figure 5. As it can be seen from the figure, in

both cases, many reference SNPs have neighbourhood extension

equal to zero, meaning no summarized SNPs. The neighbour-

hood frequency tends in general to decrease with the extension,

up to the maximum value 2w (200 kb for the WTCCC dataset

and 100kb for the 1000g). However, while for the WTCCC data

the decrease is steady and the proportion of SNPs with max-

imum extension is quite low, the effect is less evident for the

1000g dataset. This is in line with the results from Figure 3:

increasing the maximum size of the neighbourhood above the

chosen value, in fact, results in a significant increase in compres-

sion rate only for the 1000g dataset.

4 DISCUSSION

In this article, we presented a novel algorithm and file format for

the compression and fast retrieval of SNP data. Our algorithm is

based on two main ideas: summarize LD blocks in terms of dif-

ferences with a reference SNP and compress reference SNPs with

the best among five types of codes, designed to exploit the

information on the call rate and minor allele frequency of the

SNPs.

We compared our algorithm with one of the most widely

adopted tools for genetic data analysis, the PLINK software,

with the state of the art in GWAS data compression and re-

trieval, the SpeedGene software, with the general compression

tool GZIP and with the specific genetic compression tool TGC.

Our algorithm was shown to outperform the two former tools in

terms of storage space and all the other tools in terms of time to

load the data on two representative datasets. Furthermore,

among the analysed tools only our algorithm and GZIP accom-

plish truly lossless compression and were able to process both

datasets within the 8GB memory limit.
The algorithm has been implemented as an open-source C++

software library, to facilitate its integration into newly developed

genetic analysis software. Tools based on our library could sit in

the GWAS analysis pipeline right after variant calling and im-

plement, for example, data quality control or association ana-

lysis, effectively exploiting the reduction in storage space and

time to load the data granted by our library and file format.

The library directly processes SNP data in the widely used

PLINK binary format, and thus does not require additional

effort for preprocessing. The output of our software consists in

a .pck file, containing compressed SNP data, and in a pair of

.bim and .fam text files, identical to the ones of the PLINK

binary format.
Rather than extreme compression, we decided to favour the

readability of our file format and the speed of data retrieval. This

has motivated several design choices:

� retain the familiar .bim and .fam text files in the output;

� save the byte size of each compressed SNP at the beginning

of the .pck file, thus adding a size overhead to facilitate data

access;

� limit to one the depth of the summary in the compression

algorithm, thus allowing data decompression with only two

passes of the entire file.
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Fig. 5. Histogram (log counts) of the neighbourhood extension of refer-

ence SNPs, for the WTCCC (top) and 1000 g (bottom) datasets

Table 3. Percentage of the number of SNPs coded as reference or sum-

marized (first two columns) and percentage of the total file size occupied

by reference SNPs, by summarized SNPs, by the overhead in the com-

pressed file and by the .bim and .fam files (last two columns)

No. of SNPs [%] File size [%]

WTCCC 1000g WTCCC 1000g

reference SNPs 59.37 55.02 76.45 51.68

Summarized 40.63 44.92 20.53 23.22

Overhead – – 0.33 3.02

.bim, .fam – – 2.69 22.08
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The creation of the summary, i.e. the choice of which SNPs
should be coded as reference and of which SNPs should be
summarized by each reference is at the core of our compression
algorithm. In general, finding the optimal summary is an NP-

complete problem. The current version of our algorithm solves
the problem with a greedy approach, which performs sufficiently
well thanks to the strong locality of genetic information.

However, we intend to further study the problem from an opti-
mization point of view, to understand whether more advanced
solutions could be designed.

Another future direction will be to extend our compression
framework to more expressive file formats, such as the GEN
format used by the analysis tools SNPTEST and IMPUTE

(Howie et al., 2012) and the VCF, together with its binary
counterpart (BCF2) (Danecek et al., 2011). The former
format, particularly effective for complex meta analysis prob-
lems where data are aggregated from multiple genotyping plat-

forms and several SNPs are imputed, allows one to assign
probability values to the three genotypes of each SNP in
each subject. The latter format, on the other hand, is the cur-

rent standard for representing genetic variation in the form of
SNPs, indels and larger structural variants, together with add-
itional quantitative information originating from next-gener-

ation sequencing technologies, such as read depth. The seminal
idea will be to exploit the redundancy of neighbouring variants
across a collection of individuals to effectively store reduced
representations of both allele probability distributions and

read counts.
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