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Abstract

Rationale and objectives—Tumor volume change has potential as a biomarker for diagnosis, 

therapy planning, and treatment response. Precision was evaluated and compared among semi-

automated lung tumor volume measurement algorithms from clinical thoracic CT datasets. The 

results inform approaches and testing requirements for establishing conformance with the 

Quantitative Imaging Biomarker Alliance (QIBA) CT Volumetry Profile.

Materials and Methods—Industry and academic groups participated in a challenge study. 

Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative 

magnitudes of various sources of variability were estimated using a linear mixed effects model. 

Segmentation boundaries were compared to provide a basis on which to optimize algorithm 

performance for developers.

Results—Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least 

performing), with most algorithms demonstrating improved repeatability as the tumor size 

increased. Inter-algorithm reproducibility determined in three partitions and found to be 58% for 

the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 

84% when all groups but the least performer were included. The best performing partition 

performed markedly better on tumors with equivalent diameters above 40 mm. Larger tumors 

benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total 

variability came from sources independent of the algorithms. Segmentation boundaries differed 

substantially, not just in overall volume but in detail.

Conclusions—Nine of the twelve participating algorithms pass precision requirements similar 

to what is indicated in the QIBA Profile, with the caveat that the current study was not designed to 

explicitly evaluate algorithm Profile conformance. Change in tumor volume can be measured with 

confidence to within ±14% using any of these nine algorithms on tumor sizes above 10 mm. No 

partition of the algorithms were able to meet the QIBA requirements for interchangeability down 

to 10 mm, though the partition comprised of the best performing algorithms did meet this 

requirement above a tumor size of approximately 40 mm.

I. Introduction

Lung tumor volume change assessed with computed tomography (CT) has potential as a 

quantitative imaging biomarker to improve diagnosis, therapy planning, and monitoring of 

treatment response [1, 2]. Tumor volume change as a predictor of outcome has been of 

interest for some time [3-5].

To establish confidence in algorithmic analysis for CT volumetry as a rigorously defined 

assay useful for clinical and research purposes, volume measurement algorithms need to be 
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characterized in terms of both bias and variability. Measurement error on serial CT scans 

can be affected by a number of inter-related factors, including imaging parameters, tumor 

characteristics, and/or measurement procedures [6-8]. These effects must be understood and 

quantified. A number of technical studies have been performed toward that goal [9-32].

The Quantitative Imaging Biomarker Alliance (QIBA) [33] has defined standard procedures 

for reliably measuring lung tumor volume changes in a document called a Profile. The CT 

Volumetry Profile is based in part by available literature, as well as “groundwork” studies 

conducted by QIBA itself [34]. Groundwork studies of algorithm performance organized as 

public challenges have been conducted under the moniker of “3A.” The first 3A study was 

conducted to estimate intra- and inter-algorithm bias and variability using phantom data sets 

(manuscript under review). Algorithms utilized by participating groups were applied to CT 

scans of synthetic lung tumors in anthropomorphic phantoms. While such a study design 

was effective for estimating bias since ground truth was known, phantom studies are likely 

to underestimate the biological variability typically seen in clinical data sets. More recently, 

QIBA has undertaken studies on the analysis of clinical data. The QIBA “1B” study was 

undertaken to compare two reading paradigms, independent readings at both time points vs. 

locked sequential readings, using a test-retest design [35]. Readers in the QIBA 1B study 

used a single algorithm. The current study, known as the “second” 3A, combines the 

algorithm performance challenge approach established by the first 3A study using the same 

clinical data as was used in 1B. The goal of the current study was to quantify the error when 

a tumor with no biological change in size was imaged twice and each image was measured 

by the same or multiple algorithms.

Intra- and inter-algorithm variability was analyzed using data from twelve diverse tumor 

segmentation algorithms from eleven academic and commercial participating groups for 

measuring volume. The algorithms included semi-automated algorithms with and without 

post-segmentation manual correction. The analysis of algorithm performance conducted in 

this study complements the other groundwork studies in establishing performance claims for 

the QIBA Profile.

In section 2 we describe the statistical methods and open-source informatics tool used to 

conduct the study as a challenge problem. The estimated intra-algorithm repeatability and 

inter-algorithm reproducibility are presented in section 3. Section 3 also describes a 

comparison of the segmentation boundaries themselves for the subset of algorithms where 

tumor segmentations were submitted.

II. Materials And Methods

Data Collection

Thirty-one subjects with non-small cell lung cancer were evaluated in a test-retest design. 

The cases were contributed to the RIDER database from Memorial Sloan Kettering Cancer 

Center, acquired in a previously conducted study [36]. Each patient was scanned twice 

within a short period of time (< 15 minutes) on the same scanner and the image data was 

reconstructed with thin sections (< 1.5 mm). Since the time interval between repeat scans is 

small, the actual volume of the tumor is the same in each scan (a zero-change scenario).
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CT scans were obtained with a 16–detector row (LightSpeed 16; GE Healthcare, 

Milwaukee, Wisconsin) or 64–detector row (VCT; GE Healthcare) scanner. Parameters for 

the 16–detector row scanner were as follows: peak voltage across the X-ray tube, 120 kVp; 

tube current, 299– 441 mA; detector configuration, 16 detectors × 1.25-mm section gap; and 

pitch, 1.375. Parameters of the 64–detector row scanner were as follows: tube voltage, 120 

kVp; tube current, 298–351 mA; detector configuration, 64 detectors × 0.63-mm section 

gap; and pitch, 0.984. The thoracic images were obtained without intravenous contrast 

material during a breath hold. Since the second scan was considered as a separate scan, its 

field of view was set given the patient's second scout image. Adjustment was allowed owing 

to the patient's position in the scanner. Thin-section (1.25 mm) images were reconstructed 

with no overlap by using filtered back projection with the lung convolution kernel and 

transferred to the research picture archiving and communication system server where Digital 

Imaging and Communications in Medicine (DICOM) images were stored.

One tumor per subject was selected for measurement by the clinical staff at Memorial Sloan 

Kettering. Among them, most were primary lung cancers but three were metastatic tumors 

(used because the primary tumors were non-measureable, as defined by the Response 

Evaluation Criteria in Solid Tumors criteria). The data set includes tumors that are distinct 

and solitary as well as others with attachment to various structures including bronchus, chest 

wall, and mediastinum. The approximate tumor diameters ranged from 8 mm to 65 mm, as 

calculated by the equivalent diameter were a sphere to include the same volume.

The shapes of the selected tumors ranged from simple and isolated to complex and cavitated. 

To facilitate comparison of results with the prior QIBA 1B study, the tumors were further 

subdivided according to whether they met the following “measurability” criteria defined in 

the Profile: tumor margins were sufficiently conspicuous and geometrically simple enough 

to be recognized on all images, and the longest in-plane diameter of the tumor was 10 mm or 

greater (see Figure 1).

Eleven groups from a diverse set of industry and academic groups participated in the 

challenge by submitting results from twelve algorithms (one group made two submissions). 

The participating groups downloaded the images, including the raw image data and location 

points. The location (“seed”) points were defined to lie within the tumor margin. Groups 

were allowed to select different or multiple seed point(s) for their individual algorithms, 

provided they utilized the tumor identification scheme provided. Some of the groups 

submitted data from the algorithm without any post-segmentation modifications (semi-

automated without editing), others submitted data with adjustments made to varying degrees 

by a reader (semi-automated with editing), and one group submitted both. Each group then 

uploaded their results using an open-source informatics tool called QI-Bench [37]. To 

establish and maintain anonymity of participants, all communications were handled through 

the QIBA staff at RSNA. The participants are as follows (listed alphabetically rather than 

according to the IDs used in reporting the results of the study):

• Fraunhofer MEVIS

• GE Healthcare

• ICON Medical Imaging
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• KEOSYS

• MEDIAN Technologies

• Mirada Medical

• Perceptive Informatics

• Siemens AG

• UCLA

• University of Michigan

• Vital Images

See the appendix for detailed algorithm descriptions for each of the participating groups.

Statistical Methods

Estimation of Variability—The repeatability coefficient (RC, was used to characterize 

the intra-algorithm variability [6]. The RC was defined as:

where  is the within-tumor variance. The range in which two measurements on the same 

tumor were expected to fall for 95% of replicated measurements was given by [-RC, +RC] 

[38]. In this study we computed the within-tumor variance and thus RC based on the 

difference of the test and retest measurements for each algorithm respectively.

Two calculation methods were used, one using log transformed data and the other a root 

mean square approach. The root mean square approach proceeds by calculating the square 

root of the mean of squared tumor-based RC values. Additionally, the within-tumor 

coefficient of variability (wCVintra) was calculated as a measure of precision for single 

measurements [6]. It was calculated in an analogous fashion, but dividing each tumor-based 

 by the square of the mean of the two measurements and without use of the 2.77 factor. 

The percent RC (% RC) for an algorithm was determined by multiplying wCVintra by 2.77. 

In the logarithmic approach, the % RC is determined by taking an inverse transform. Both 

wCVintra and % RC are relative measures proportional to the magnitude of the tumor's size. 

We verified the equivalence of these two methods in a manner described by Bland [39], with 

the equivalence strongest when the % metrics were small. Since we were interested in how 

the metrics changed for differing tumor sizes, we plotted the percentage metrics as a 

function of tumor size.

The reproducibility coefficient (RDC), as well as its percentage counterpart percent RDC (% 

RDC), and wCVinter, were used to characterize inter-algorithm variability [6]. The RDC, 

similar to RC, was calculated from the variance across different algorithms' measurements of 

the same tumor [6]. In this study [-RDC, +RDC] described the range within which 

approximately 95% of the differences in measurements between two algorithms lie. We 
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reported the reproducibility results in three partitions of algorithms, partitioned based on the 

intra-algorithm repeatability results. One partition included all algorithms minus the lowest 

performing algorithm. Another partition included the set of algorithms with % RC less than 

30%. A third partition was formed by only including those algorithms with a % RC less than 

15%.

A linear mixed effects (LME) model using transformed data was fitted to estimate the 

relative contributions of different factors to the total variability. The dependent variable in 

the model was the measured tumor volume. Volume estimation is considered a fixed effect 

in this model. The independent variables were tumor, algorithm, and tumor-by-algorithm 

interactions. Model assumptions were evaluated with Q-Q (quantile-quantile) and observed-

versus-fitted plots.

Comparison of Segmentation Boundaries—Five groups provided segmentation data 

in addition to tumor volume measurements, four of which were compatible for analysis (the 

data from the fifth was submitted with different orientation and scaling). To compare 

algorithms' segmentation boundaries, we produced a reference segmentation using the 

Simultaneous Truth And Performance Level Estimation (STAPLE) method [40] on 3D 

volumes. This method performs a voxel-wise combination of an arbitrary number of input 

images, which in our case consisted of the segmentations extracted by the four participant 

algorithms. Each input segmentation to STAPLE was weighted based on its “performance” 

as estimated by an expectation-maximization algorithm, described in detail in [41]. This 

algorithm used all input segmentations to create “consensus” results according to the level of 

overlap among input segmentations. We then compared each individual segmentation result 

to this reference data. We computed voxel-wise accuracy, based on the number of voxels 

segmented with a particular algorithm compared with the reference data by tabulating counts 

of true positives (TP, where both the algorithm and the reference contained that voxel), true 

negative (TN, where neither the algorithm and the reference contained that voxel), false 

positive (FP, where the algorithm contained the voxel but the reference did not), and false 

negative (FN, where the reference contained the voxel but the algorithm did not). These 

were used in the calculation of two spatial overlap measures, the Jaccard index [42], and 

Sørensen–Dice coefficients [43, 44] defined as:

The Jaccard index includes a penalty for false positive voxels, i.e., when the candidate 

segmentation is larger than the reference segmentation. The Sørensen– Dice coefficient also 

penalizes false positives, but penalizes more strongly segmentations that have missed true 

positives. We computed and presented both types of overlap metrics to allow easier and 

wider comparison with results from other studies.
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Excel was used for RC, wCV, and RDC estimation, the R statistical software was used for 

the mixed-effects model, and Matlab was used for overlap metrics.

III. Results

1. Precision of Volume Measurements

The total number of possible readings was 744, with each of twelve participating groups 

submitting both test and retest readings for each of 31 tumors. Of these, 740 were actually 

submitted, with the following cases missing:

• One group only submitted readings on 30 tumors (rather than 31).

• One group only submitted test readings (without retest readings) for two tumors.

Basic descriptive statistics on submitted measurements are given in Table 1, based on the 

740 submitted readings. The distribution is skewed due to a very few large reading values, 

where the mean is much higher than the median.

Detailed review of these 740 submitted readings exposed 34 presumably anomalous 

readings (leaving 706):

• The unpaired readings were judged anomalous due to having no retest readings.

• Four test/retest reading pairs from three groups differed by log-orders of 

magnitudes from the rest of the data, suggesting data transcription errors.

• One tumor was particularly challenging for all groups, as judged by the differences 

in volume measurements being log-orders of magnitudes from each other (whereas 

other tumors, even other ones which did not otherwise meet the measurability 

criteria established by QIBA did not exhibit this behavior).

Intra-algorithm repeatability analyses were performed and presented here with and without 

the readings judged as anomalous. Inter-algorithm reproducibility was assessed with these 

values excluded. These were removed from the analyses.

Intra-algorithm Repeatability Across Test-Retest Repetitions Within Groups—
Repeatability results assessed separately for each group are presented in Table 2. Tumors 

were judged to be “Small” if they had a volume of less than 4189 mm3, an equivalent 

diameter of less than about 20 mm for a sphere, and “Large” otherwise (as judged by 

algorithms individually). Since the algorithm measurements were not normally distributed 

and did not have constant variance, a log-transformation was applied, reshaping the 

distribution of the data into a usable form. These summary metrics apply across the large 

range of tumor volumes included in the study. Figure 2 depicts how the percentage metrics, 

wCVinter and % RC, changed based on the difference in the two measurements for differing 

tumor sizes, stratified by algorithm performance. Moderately performing algorithms are 

plotted in the upper panel. In general, these algorithms perform at levels less than 20 % RC 

over the majority of the range, and would be generally understood as being capable of 

conforming with QIBA repeatability performance requirements. The lower panel depicts the 

results for the best performing algorithms which not only provide the best repeatability, but 
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which could also be considered for interchangeability were they to be utilized in certain 

clinical trial designs or clinical use cases.

Inter-algorithm Reproducibility Across Groups—Three separate reproducibility 

partitions were analyzed. One partition included all groups but Group 3 which demonstrated 

multiple discrepancies from the behavior exhibited by the other algorithms and had a % RC 

well above other groups. Another partition included the set of groups that would be 

considered to conform to QIBA's requirements as judged by a % RC less than 30%. A third 

partition was formed by only including those algorithms with a % RC less than 15%. 

Reproducibility results across all groups are presented in Table 3. Figure 3 depicts how the 

percentage metrics changed for differing tumor sizes.

Linear Mixed Effects Model for Estimating Algorithm vs. Other Sources of 
Error—Results of the Linear Mixed Effects (LME) are presented in Figure 4 which 

illustrates the weights of the four different variables on overall volume variability. The 

variables included in the LME model are: tumor, algorithms, and tumor-by-algorithm 

interactions. Residual error relates to factors not included in the model.

Tumor variation between patients dominates with 96% of total variation, which is expected 

as this is the component which is due to true differences in the object being measured. 

Tumor-by-algorithm interaction variance comprises the next highest variance, accounting 

for 3% of the variance, indicating that tumors were measured differently by different 

algorithms, which is the primary reproducibility result. Residual variance of 1% accounts for 

factors not attributable to the algorithm performance, e.g., hardware variations or scanning 

technique.

Stratified Reproducibility Analyses—Four other stratified analyses of reproducibility 

were carried out, for various combinations of the tumors outlined in Table 4. (For these 

analyses, definition of Small and Large was judged based on the average volume estimate 

for a tumor across the algorithms and using the same 4189 mm3 threshold as used in the 

repeatability analyses.)

Results for the stratified analyses are summarized in Table 5. The reproducibility of 

volumetric measurements was better for tumors meeting the QIBA Profile (Profile=Yes) 

compared to those tumors that did not (Profile=No). This was also reflected in the reduced 

ratio of algorithm/residual variance for those two analyses. Reproducibility was better when 

editing was not allowed, indicated by smaller RDC, and smaller algorithm/residual variance 

in the factors model.

2. Analysis of Segmentation Boundaries

Figure 5 shows an example of a reference standard segmentation based on the STAPLE 

algorithm applied to the segmentation results. A reference segmentation was created for 

each test-retest repetition and each individual tumor. As indicated in the methods section, 

the reference segmentations were formed using an expectation-maximization algorithm 

applied to the four compatible submissions. Figure 6 shows an example slice for a single 

algorithm (Group08) overlapping with the corresponding reference segmentation. Full 
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evaluation of individual segmentation methods is beyond the scope of the present study but 

the detailed maps are provided to the groups who contributed segmentation boundaries for 

their own analysis.

Merging and Plotting of Histograms by Metric and Group—Figure 7 illustrates the 

histograms of the results created for each group and merged onto a plot that compares the 

relative segmentation performance of each. The higher numbers of Sorensen-Dice results 

above 0.8 compared with Jaccard results suggests that over-segmentation (resulting in larger 

volume measurements) may have been a larger issue than under-segmentation (relative to 

the imperfect reference standard). Group10/16 performs best, Group03 was the least 

performing algorithm (consistent with its poor computed volume performance), and Groups 

04 and 08 depend on the metric used.

IV. Discussion

This study was setup to simulate actual practice in the field vs. what might be considered 

from a more controlled academic setting, consistent with QIBA's role of engaging the 

multiple stakeholders, notably industry, in the practice of quantitative imaging biomarkers 

such as CT volumetry. In this setting, the information identified in the appendix is similar to 

what would be available for methods that are used in practice. Through studies such as ours, 

we document the performance available and through the Profile writing effort we seek to 

identify and reduce sources of variable performance where studies like the present one 

highlight variability. The goal was not to determine the best algorithm but rather the range in 

performance across diverse algorithms. This is important to the QIBA Profile because the 

profile describes the performance not of any one algorithm but of a diverse group of 

algorithms.

Intra-algorithm %RC ranged from 13% (best performing) to 100% (least performing), with 

most algorithms demonstrating better percentage performance as the tumor size increased. 

The four algorithms with the smallest RCs (Groups 2, 4, 5, 8) were self-identified as semi-

automated without editing while the ones with the highest RCs tended to be semi-automated 

with editing algorithms (Groups 3 and 11: semi-automated with editing) as described in the 

Appendix. Semi-automated with editing algorithms allow the clinician to correct for 

egregious segmentation boundaries that can occur when segmenting low-contrast, large or 

complex tumors, but this can also introduce the variability often observed from individual 

perception. One interpretation of these results would be that poorly performing algorithms 

need editing due to egregious results without it, but once an algorithm is refined to avoid 

these then editing actually makes the results inferior as they may be best left alone. The 

algorithms generally show a marked tendency to have smaller percentage metrics (less 

variability) for larger tumors which is consistent with related literature findings [11, 45, 46]. 

Algorithms were also fairly consistent across tumor sizes in that the algorithms with the 

highest wCVs for small tumors also tended to have the highest wCVs for large tumors. The 

data shows some differences, however; for example Group 8 has a lower disparity in wCVs 

between small and large tumors compared with the other best performers.
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The RC and wCV results indicate good overall repeatability performance for at least a subset 

of algorithms, possibly suggesting that some algorithms may also have the potential to be 

used interchangeably as tumor volume measurement tools for use cases where it is not 

possible to use a single algorithm. By itself, RC is not sufficient comparing algorithms with 

unknown truth, motivating the reproducibility analysis which is a measure of the dispersion 

in values across algorithms. If the multiple algorithms are individually repeatable but each 

comes up with (widely) varying measurements, RDC is large (poor) and the algorithms 

would not be deemed interchangeable. The only way for RDC to come out small is if the 

algorithms measurements are similar among them, and if both the test and retest 

measurements from each algorithm are included in the calculation of RDC, then it may 

suffice as a test of interchangeability, hence our approach. Previously reported repeatability 

results are widely varied across projects and authors; our results demonstrate a range of 

results as experienced in practice to help account for some of these differences.

The RDC and % RDC was determined in three partitions; 58% for the four best performing 

groups, 70% for an expanded set of algorithms on the basis of their intra-algorithm 

repeatability being less than 30%, and 84% when all groups but one that was excluded due 

to erratic behavior. This analysis of the RDC values shows that across all algorithms, the 

reproducibility performance was low and that in general, interchanging of all algorithms is 

not appropriate. This is not surprising because of the low repeatability for some algorithms 

including Groups 3 and 11 among others. When we evaluated the reproducibility for the 

subset of algorithms with the best repeatability (e.g., Groups 2, 4, 5 and 8) we found that 

reproducibility improved to 7%. This provides initial evidence that some tumor volume 

measurement tools might be appropriate for interchangeable use across patient scans 

acquired at different times. However, this appears to be only possible for a small subset of 

the algorithms evaluated in this study, and even with these only on tumors with equivalent 

diameter exceeding 40 mm. For the other algorithms, or for tumors less than 40 mm, care 

should be taken that the same algorithm is applied at each subsequent time point to eliminate 

inter-algorithm variability as part of the overall measurement error.

The reproducibility results of Table 5 show that RDC is lowest when algorithms were 

applied on tumors meeting the measurability criteria defined in the Profile as expected. 

Editing helps performance on larger tumors but no editing is better for small tumors. This 

may be intuitive, in that larger tumors often include more complex structure, such as larger 

vessel attachments, and more variation in structure within the tumor whereas smaller tumors 

might be more easily segmented without need for editing and actually more variable if users 

try to do so.

Another consideration concerns the extent to which the algorithm may be considered “the 

end of the line” with respect to variability of the entire process of evaluating tumor size. Our 

LME analysis showed that over 96% of the variation is associated with the tumor, leaving 

just 4% related to other factors. Of this remaining 4%, one-fifth to one-half of this variability 

comes from sources independent of the algorithms. The ratio of the size of the effect due to 

algorithm (plus algorithm-tumor interaction) versus the residual informs an “error budget” 

that may be used for specifying allowable variability due to algorithm versus other parts of 

the processing chain, so that the system as a whole meets the QIBA claim. On this basis, 
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using results summarized in Table 5, no more than two-thirds of the overall variability claim 

of the system can be allocated to analysis software if the overall system is to be meet the 

QIBA Profile claims. By this measure, conforming algorithms are those with RC less than 

two-thirds of the overall QIBA profile claim of 30%, or 20%. Eight of the twelve algorithms 

assessed in this study met this criterion. If the scanner and acquisition parameters are not 

controlled, demands on algorithms would be much higher. Hence, the QIBA approach is to 

define performance requirements as means to reduce this variability, even though it cannot 

be eliminated completely.

An additional consideration in characterizing and comparing segmentation algorithms is the 

segmentation boundaries themselves. We utilized the Jaccard Index and Sørensen-Dice 

coefficient for this task. The Jaccard Index and Sørensen-Dice coefficient are consistent 

across Groups 4 and 8 indicating that the segmentations are generally consistent in both 

volume and edge profiles for these high RC algorithms. This provides stronger evidence that 

these two algorithms, and potentially Group 5 as well, could be used interchangeably when 

evaluating CT tumor progression. Groups 3 and 10/16 did not agree with each other or with 

Groups 4 and 8 in regard to the Jaccard Index and Sørensen-Dice coefficient indicating that 

they likely could not be used interchangeably with any other algorithm and may in fact have 

divergent performance.

The reference standard segmentation was based on the STAPLE algorithm defined across all 

of the four algorithms that provided segmentation results (Groups 3, 4, 8 and 10/16). This is 

the maximum likelihood segmentation for the tumor based on the segmentations. It may be 

appealing to think of the reference standard as an estimate for the borders of the true tumor. 

However, this is generally not appropriate because the segmentation algorithms likely over- 

or under-segment the true tumor, globally or within local regions. Either case would produce 

a bias in the true boundaries. Even with this limitation, the reference standard can be useful 

when comparing a set of algorithms because it will show which algorithms have substantial 

deviation from the norm. This information is likely very helpful in determining which 

subsets of algorithms can potentially be used interchangeably as discussed above.

The greatest utility of this work, and public algorithm challenges in general, from a group's 

point of view, or a company seeking to commercialize analysis software for tumor 

volumetry, may be the performance of their algorithm compared with other similar 

algorithms. Individualized reports inclusive of raw data and intermediate analysis results 

have been provided to participants in the challenge. The value of the results is highest to 

those who contributed actual segmentation boundaries, given the ability to distinguish true 

positive and negatives from false positives and negatives at a level of granularity allowing 

algorithm optimization. This data is instrumental to inform the definition of a performance 

standard for CT tumor volumetry algorithms. Participating groups also benefit in that 

algorithm weaknesses are identified.

Our study has limitations. The degree and extent of editing applied to semi-automated 

algorithms was not held constant between replicates (test-retest measurements) which could 

have contributed to the overall variability and associated measures of repeatability and 

reproducibility. Also, our analyses did not account for differences in experience between 
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algorithm operators in terms of interacting with radiological findings or in terms of 

familiarity/training with the software. Another limitation stems from an explicit 

determination for this study that workflow not be constrained, but the related QIBA 1B 

study suggests that workflow considerations are of substantial importance. In this case, 

workflow refers to how the repeat scans were processed. In our study, all of the scans were 

processed independently while in part of the QIBA 1B study scans were process in a locked 

sequential fashion. We had originally thought that semi-automated without editing 

algorithms (no post-segmentation correction) would not differ in their performance based on 

workflow, but found that this does not always hold true because ROI and seed placements 

may be affected. Additionally, the data used in this study were relatively limited, thus only 

an early version of the QIBA Profile claim specification can be made. Although the data 

contained an assortment of clinical cases, they did not fully represent the claimed clinical 

context of use for the corresponding QIBA Profile. Definitive reference data sets that 

adequately represent the target patient population according to formally assessed statistical 

criteria should include patients representing a range of common co-morbidities, disease 

characteristics, and imaging settings (e.g. sedated vs. non-sedated patients). Finally, the 

manner in which these tests are run and the data collected has implications regarding the 

interpretation and use of metrics computed and reported. For example, execution of these 

tests by a trusted third-party on sequestered data sets may increase their utility.
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VI. Appendix: Algorithm Descriptions

Eleven groups participated in the challenge by submitting volume readings for twelve 

algorithms and five submitted segmentation boundaries, four of which were compatible for 

analysis. Algorithms from each participating group are described below.

Participating Group Description / Workflow

Group02 (volume readings 
and segmentation 
boundaries1)
Moderate image/boundary 
modification (on less than 
50% of the tumors)

Volumetric analysis was determined using a segmentation approach employing a Z-score 
on the highest conspicuity post-contrast volumetric image set.
A cylinder is placed around the highest conspicuity slice and around all slices above and 
below this slice in which the tumor is seen.
A kernel defined within the region of interest (ROI) is then propagated to other slices 
using connectivity algorithms. The search is constrained by the predefined cylinder to 
accelerate the search algorithm.

Group03 (volume readings 
and segmentation 
boundaries)
Editing not allowed

One-click user-seeded segmentation.
Utilizes shape and boundary information to delineate the tumor.
The workflow for segmenting lung tumors involves a single click at a seed-point roughly 
centered in the tumor.
The algorithm uses the seed point in combination with a thresholded ROI in order to 
extract the most probable shape of the tumor.
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Participating Group Description / Workflow

Group04 (volume readings 
and segmentation 
boundaries)
Limited image/boundary 
modification (on less than 
15% of the tumors)

Utilize a trained non-radiologist technician and trained radiologist.
As the images would be of chest and the tumors would be in lung parenchyma, all the 
volume assessment were made using a fixed lung window/level display setting of 
200HU (window) and -1400HU (level).
Trained non-radiologist opens the images in and uses the tumor location to identify the 
tumors on images.
Trained non-radiologist outlines/ROIs of the identified tumors using automated 
algorithms.
Trained non-radiologist evaluates the quality of the segmentation and adjusts outlines 
with additional semi-automated tools as necessary.
Finally, that image data is submitted to trained radiologist for final assessment of 
outlines/ROIs. The trained radiologist evaluates the quality of the segmentation and 
adjusts outlines with automated & semi-automated tools as necessary.
Once trained radiologist is satisfied with all the outlines/ROIs of the respective tumors, 
the automated volume assessment tool is used to calculate volume as volume = (Image 
Position Interval1 * Area1) + (Image Position Interval2 * Area2)…+…+ (Image Position 
Interval n * Area n).
The images with ROI is processed, re-colored and converted in to .nii file.

Group05 (volume 
readings)
Moderate editing allowed 
(on less than 50% of the 
tumors).

Modelization of the heat-flow between the inside and outside of the tumor. Based on 
intensity gradients, in 3D.
User clicks on a tumor, or draws a diameter joining the boundaries of the tumor => 
software computes a segmentation of the tumor, and displays its contours.
User can then refine the segmentation by the means of a slider => software adjusts the 
segmentation accordingly, and displays in real-time the new contours.
If needed, user can manually edit any contour by drawing it.
User finally validates the segmentation => software “locks” the segmentation and 
extracts the statistics: volume, long axis, short axis, and all intensity-based numbers 
(average value, standard deviation, etc.)

Group06 (volume 
readings)
Editing not allowed; (uses 
only seed points and ROI 
information)

This algorithm combines the image analysis techniques of region-based active contours 
and level set approach in a unique way to measure tumor volumes. It may also detect 
volume changes in part solid and Ground Glass Opacity tumors.
The user clicks and drags to define an elliptical/circle ROI to initiate the segmentation.
The computer then carries out the segmentation, and tumor measurements are saved.
The algorithm is an edge-based segmentation method that uniquely combines the image 
processing techniques of marker-controlled watershed and active contours.
An operator initializes the algorithm by manually drawing a region-of-interest 
encompassing the tumor on a single slice and then the watershed method generates an 
initial surface of the tumor in three dimensions, which is refined by the active contours.
The volume, maximum diameter and maximum perpendicular diameter of a segmented 
tumor are then calculated automatically.

Group07 (volume 
readings)
Editing not allowed; (uses 
only seed points and ROI 
information)

An initialization sphere is drawn from the center of the mass, on the slice with its largest 
boundaries, such that it covers the entire extent of the mass. The user determines the 
center and radius in a single click-drag action, and this initialization circle imposes hard 
constraints on the maximum boundaries of the three dimensional segmentation.
The employed algorithm is part of a commercial software package for multimodal 
oncology treatment assessment and review. Thus the workflow mimics the typical 
workflow a user has with this tool:
Select the desired CT data set and load it into any review mode
Select the lung window-level setting
Navigate to the tumor center using the pixel and slice locations from the MSKCC Coffee 
Break study
Locate the slice where the tumor has the greatest boundaries
Select the algorithm, and initialize the segmentation by clicking in the approximate 
center of the mass and dragging the mouse to set the radius of the spherical region of 
interest.
The spherical region of interest contains a fixed inner sphere and the outside sphere 
which is set by the mouse dragging motion. The radius is chosen such that the inner 
circle encompasses most of the mass to be segmented, and the outer sphere can be used 
as a constraint to prevent any leakage into the chest wall or heart if the mass is attached/
abducting to these organs.
The computation takes a few seconds (single digit numbers) to compute the result. User 
may retry the segmentation a few times if the result is unsatisfactory. With each try the 
previous result is erased, and does not influence the result of preceding try. In this 
experiment, the user has in overall three tries to get a satisfactorily result.
Once the segmentation has been determined, the user reads off the volume from the 
region statistics, which are automatically computed and displayed as soon as the 
segmentation has been defined. (The volume measurement algorithm counts all voxels 
whose centroid lies within the segmented contour and multiplies this number with voxel 
volume)
To document the segmentation result, save the segmentation as a RT-structure set to the 
data repository
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Participating Group Description / Workflow

Group08 (volume readings 
and segmentation 
boundaries)Moderate 
editing allowed (on less 
than 50% of the tumors)

Semi-automatic segmentation based on thresholds, growing region and mathematical 
morphology processing
DICOM images are downloaded and imported into a database. Image data are converted 
to a proprietary optimized format before the insertion into the database. Tumors 
coordinate are downloaded and reformatted by our data manager. Relying on a 
proprietary Validation Framework System, landmarks are automatically inserted into the 
database.
The software is allowed then to display the repeated images side by side with the correct 
landmarks identifying the tumors to segment. The first repetition was edited as a single 
image. The side-by-side displayed was available only for the repetition when the first 
scan edit was locked.
Three reviewers are involved, each in charge of segmenting approximately a third of the 
dataset. The data manager made available to the reviewers a commercial semi-automated 
algorithm dedicated to Lung tumors. Another manual tool can be enabled if semi-
automatic segmentations were not fully satisfactory. The data manager recommended 
using different window level to better assess tumors boundary, pulmonary window level 
being the major window level to refer to. The data manager recommended correcting 
semi-automated segmentation as long as the segmentation was not fully satisfactory. 
Once the whole dataset segmented, an additional reviewer was involved to check the 
whole coherency of the measurements: Total number of tumors, no obvious incoherency, 
correct recording of the data, etc.
A complete report was extracted. The same Validation Framework System allowed 
automatic extraction of tumors mask as .mhd format. A third party software as SLICER 
was used to convert masks to NIFTI format.

Group11 (volume 
readings)
Editing not allowed (uses 
only seed points and ROI 
information)

Method is completely automatic and consists of three steps. First, a region of interest is 
extracted and the tumor is classified as solid or subsolid. In the second step, a binary 
segmentation mask is computed by an algorithm based on thresholding and 
morphological postprocessing, using slightly different procedures for the two classes. 
Finally, the volume of the tumor is determined by adaptive volume averaging correction.
Preprocessing: a stroke is generated from the given center and bounding box by 
shortening the bounding box diameter to 40%.
The segmentation is performed in a cubic region of interest (ROI), whose edge length is 
twice the stroke length. The ROI is smoothed with a 3 × 3 Gaussian filter and resampled 
to isotropic voxels and a maximum size of 100 × 100 × 100 voxels. For detecting the 
tumor type, the local maximum in a 5 × 5 × 5 neighborhood of the ROI center is 
identified. If its value is greater than -475 HU, the tumor is treated as solid, otherwise as 
subsolid.
The ROI center is used as a seed point for region growing. The lower threshold is 
derived from the 55% quantile of the histogram of the dilated stroke by applying an 
optimal elliptic function yielding values between -780 and -450 HU. The resulting mask 
contains the complete tumor, but may also leak into adjacent vasculature or, in case of 
juxtapleural tumors, into structures outside the lungs.
In order to remove vessels, an adaptive opening is applied, where the erosion threshold is 
chosen such that the segmentation has no connection to the ROI boundary anymore. A 
slight overdilation allows a final refinement of the mask. In order to avoid leakage 
outside the lungs, a convex hull of the lung parenchyma is computed within a minimal 
elliptical region that is fitted to the shape of the tumor. The convex hull is then used as a 
blocker for the segmentation.
Due to the limited spatial resolution of CT and partial volume effects, the volume of a 
segmented tumor cannot be determined exactly by voxel counting. Instead, voxels in a 
tube around the segmentation boundary are weighted according to their estimated 
contribution to the tumor volume. The weight depends on the relation of a voxel's value 
to the typical tumor and parenchyma densities.

Group12 (volume 
readings)
Moderate editing allowed 
(on less than 50% of the 
tumors)

We start with an automatic method (submitted Group11) and correct results interactively 
if necessary. The user draws partial contours which are included in the segmentation in 
the edited slice. Additionally, the correction is automatically propagated to a set of 
neighboring slices by sampling the contour, matching points to the next slice and 
connecting them with a live-wire method.
Interactive correction: Our interactive correction tool provides an efficient way to fix 
segmentation results which are mostly correct but need some refinement. The user draws 
partial contours indicating the desired segmentations which are then automatically 
propagated into 3d. Seed points calculated from the user contour are moved to adjacent 
slices by a block matching algorithm and the seed points are connected by a live-wire 
algorithm. For the submission, correction was performed by two experienced developers 
in consensus.
Volumetry: The volumetry used for automatic results is integrated in the segmentation 
algorithm. To ensure consistency after interactive correction, the change in the number 
of voxels is computed and multiplied with the (partial-volume-corrected) volume of the 
initial result.
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Participating Group Description / Workflow

Group14 (volume 
readings)
Editing not allowed (uses 
only seed points and ROI 
information)

The system is fully automated after manual input of an approximate bounding box for 
the tumor of interest. Within the bounding box, the system automatically processes the 
images in 3 stages-preprocessing, initial segmentation, and 3D level-set segmentation.
In the first stage, a set of smoothed images and a set of gradient images are obtained by 
applying 3D preprocessing techniques to the original CT images. Smoothing, anisotropic 
diffusion, gradient filtering, and rank transform of the gradient magnitude are used to 
obtain a set of edge images.
In the second stage, based on attenuation, gradient, and location, a subset of pixels is 
selected, which are relatively close to the center of the tumor and belong to smooth (low 
gradient) areas. The pixels are selected within an ellipsoid that has axis lengths one-half 
of those of the inscribed ellipsoid within the bounding box. This subset of pixels is 
considered to be a statistical sample of the full population of pixels in the tumor. The 
mean and SD of the intensity values of the pixels belonging to the subset are calculated. 
The preliminary tumor contour is obtained after thresholding and includes the set of 
pixels falling within 3 SDs of the mean and with values above the fixed background 
threshold. A morphologic dilation filter, a 3D flood fill algorithm, and a morphologic 
erosion filter are applied to the contour to connect the nearby components and extract an 
initial segmentation surface. The size of the ellipsoid and the remaining parameters are 
selected experimentally in a way that enables segmentation of a variety of tumors, 
including necrotic tumors.
In the third stage, the initial segmentation surface is propagated by using a 3D level-set 
method. Four level sets are applied sequentially to the initial contour. The first three 
level sets are applied in 3D with a predefined schedule of parameters, and the last level 
set is applied in 2D to every section of the resulting 3D segmentation to obtain the final 
contour. The first level set slightly expands and smooths the initial contour. The second 
level set pulls the contour toward the sharp edges, but at the same time, it expands 
slightly in regions of low gradient. The third level set further draws the contour toward 
the sharp edges. The 2D level set performs final refinement of the segmented contour on 
every section

Group15 (volume 
readings)
Moderate editing allowed 
(on less than 50% of the 
tumors)

The software used is essentially a semi-automated contouring method. The user clicks on 
a voxel located inside the tumor of interest and then drag a line to the outside of the 
tumor (to the background).
The voxels along that line are sampled and a histogram of intensities (Hounsfield Units) 
is created.
A statistical method is employed to determine the threshold that best separates the two 
distributions (tumor and background) in that histogram.
Once that threshold is determined, the software employs a 3-D (or if selected a 2-D) 
seeded region growing using the initial voxel selected as the point inside the tumor and 
the threshold determined from the histogram analysis.
The tool also provides several user editing tools such as adding and erasing voxels from 
the contour, etc. The workflow description:
Each contour is automatically stored in a database linked to the experiment along with 
meta data such as patient id, contouring individual's id, etc. Each contoured object has a 
unique id that is linked to the series uid to maintain its identity.
Once the contour is completed and accepted, the volume of the contoured object is 
calculated. This is done essentially by counting the number of voxels within the 
boundaries of the contoured object and multiplying that by the voxel size (as derived 
from DICOM header data).

Group10/16 (volume 
readings and segmentation 
boundaries2)
Limited editing allowed 
(on less than 50% of the 
tumors)

As the input for the algorithm, the user has to draw a stroke being favorably the largest 
diameter in the axial orientation or click a point in the given lung tumor. Usually, the 
decision to use a stroke or a single click point depends on the size of the tumor to be 
segmented (for bigger tumors, a stroke is preferable, while for small tumors, a single 
click is sufficient).
In the next step, a Volume of Interest (VOI) around the tumor is estimated. In the case 
where the algorithm has been initialized with stroke, the size of the VOI depends on the 
length of the stroke.
3D region growing is conducted in a VOI starting from seeds generated along the stroke 
or around the click point, depending on the initialization.
Adjacent structures of similar density (pleura, vessels) are separated by a set of 
interchanging morphological operations (erosion, dilation, convex hull and binary 
combination with region growing mask.)
Finally, a plausibility check between the resulting segmentation mask and the position of 
the initial stroke or click point is conducted. If necessary, initial thresholds are readjusted 
and the whole procedure (steps 2-5) is repeated.
For the case when the semi-automatic results are not satisfactory, the software provides 
the possibility of correcting the results by drawing contours in selected slices and then 
propagating the contours in an automatic manner onto the whole 3D segmentation. The 
algorithm performs best optimally for the resolution up to 2 mm, though it still works 
reasonably well for thicker slices such as 5 mm.

1
Alignment issues prevented inclusion in the segmentation boundary analysis.
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2
Volume results submitted under ID Group16 and segmentation objects submitted under ID Group10.

Three groups (Group01, Group09, and Group13) initially applied but did not submit results.
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Figure 1. 
Examples of tumors from our study. (a) and (b) are examples of tumors that were judged to 

have met the QIBA measurability criteria, while (c) and (d) were not found to meet the 

criteria. Image (c) was excluded because it demonstrates a large attachment to other 

pulmonary structures and (d) was excluded because it demonstrates a highly invasive 

structure where the boundary between tumor and non-tumor is not well demarcated.
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Figure 2. 
Results of intra-algorithm repeatability analysis plotted as a function of measured tumor 

size. The line fits follow exponential functions. Fits for the least performing algorithms 

could not be made given highly variable results from tumor to tumor. Upper panel shows 

performance with fit lines for moderate performing algorithms, and lower panel for best 

performing algorithms. The fit lines are truncated where they would imply better 

performance than the sparse set of points at high tumor volumes actually suggest.
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Figure 3. 
Results of inter-algorithm reproducibility analysis plotted across tumor size range. Line fits 

follow exponential functions. The fit lines are truncated where they would imply better 

performance than the sparse set of points at high tumor volumes actually suggest.
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Figure 4. 
Results of LME for overall reproducibility analysis, illustrating the percent of total variation 

captured by each model factor.
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Figure 5. 
Example of a reference truth segmentation. (RIDER-1129164940, first repetition, Group08)
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Figure 6. 
Example of a group's result superimposed on to the reference. True positive (TP) voxels are 

rendered as light grey, False Negative (FN) voxels as dark grey, and False Positive (FP) as 

medium grey. True Negative (TN) pixels are displayed as reduced intensity background 

image. (RIDER-1129164940, first repetition, Group08)
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Figure 7. 
Merged histograms for each of three overlap metrics. The x axis represents the relevant 

index value (0-1). The y axis represents the number of tumors with the corresponding index 

value. Results from 4 algorithms are plotted with separate colors but combined on each plot 

to facilitate comparison.
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Table 1
Basic Descriptive Statistics for measured tumor volume

Volume (mm3) Equivalent Sphere Diameter (mm)

Arithmetic Mean 24,100 36

Geometric mean 8,320 25

Median 9,110 26

Range 160,000 67
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Table 3
Inter-algorithm reproducibility results

Partition RDC % RDC

All but Group 3 25,284 mm3 84%

Conforming Groups 16,057 mm3 70%

Best Performers 9,290 mm3 58%
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Table 4

Number of tumors analyzed in each strata. Profile=Yes or No indicates whether the tumor met the 

measurability requirements as described above. With/without editing defines whether post-segmentation 

contours could be adjusted by a user.

Analysis Strata N

Overall All 31

Small 8

Large 23

Profile=Yes All 20

Small 7

Large 13

Profile=No All 11

Small 0

Large 11

With editing All 31

Small 8

Large 23

Without editing All 31

Small 8

Large 23
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Table 5

Summary of reproducibility results for stratified subgroups of tumors and algorithms. “Alg/Residual 

Variance” indicates the relative contributions of the two factors to the total variability.

RDC of Small Tumors RDC of Large Tumors Alg/Residual Variance (all tumors)

Combined 1,290 mm3 28,205 mm3 3:1

Profile=Yes 1,290 mm3 6,369 mm3 2:1

Profile=No (none in sample) 41,074 mm3 10:2

With Editing 1,343 mm3 26,760 mm3 4:1

Without editing 1,234 mm3 33,004 mm3 2:1
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