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Abstract

Human papillomaviruses (HPVs) are small double-stranded DNA viruses that pose significant 

public health concerns as the causative agent of approximately 5% of worldwide cancers. The 

HPV oncogenes E6 and E7 play key roles in carcinogenesis. In the last 15 years there has been a 

significant increase in the incidence of HPV-related head and neck cancers arising primarily in the 

oropharynx. Patients with HPV-positive head and neck cancers (HNCs) have a significantly 

improved prognosis compared to those with HPV-negative disease. In this review we will discuss 

data suggesting how HPV oncogenes modulate both the intrinsic radiation sensitivity of HNCs and 

also have important effects upon the tumor microenvironment. Together, these findings contribute 

to the improved outcomes seen in patients with HPV-positive HNC.

Introduction

Early viral discovery efforts by Shope and Hurst described an agent that could be 

transmitted from one animal to another, was of a defined size that enabled it to be filtered, 

caused the growth of benign papillomas, and ultimately resulted in the identification of the 

papillomavirus family [1]. This discovery of human papillomavirus (HPV) in 1956, led to 

the finding that this pathogen causes unrestrained epithelial proliferations including 

papillomas, warts, condylomas, and carcinomas [2]. During the second half of the 20th 

century, HPV has subsequently been shown to be the cause of squamous cell carcinomas 

(SCCs) arising in multiple anatomic locations including the squamous epithelium of the 

uterine cervix, vulva, vagina, penis, anal canal, and head and neck (in particular the 

oropharynx). Radiation plays a key role in the curative treatment of each of these cancers 

and growing evidence suggests that the function of the papillomavirus proteins may play an 

important role in the relative increased sensitivity of these cancers to radiation, via the 

modulation of DNA damage response and alteration of the tumor microenvironment. Herein, 
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we briefly review the role of HPV in cancer development and describe work by a number of 

groups to elucidate mechanisms underlying the significantly improved outcomes seen in 

patients with HPV-positive tumors.

Human papillomavirus and carcinogenesis

The HPV genome encodes approximately 8,000 base pairs of double-stranded DNA. The 

virus is non-enveloped and different viral subtypes are classified on the basis of their L1 

capsid protein into nearly 200 unique subtypes (see http://pave.niaid.nih.gov/ for the most 

current listing). HPVs can be sub-classified into cutaneous or mucosal subtypes based on 

their specific tissue tropism [3] or can be separated into low-risk and high-risk types based 

on their ability to cause malignant transformation and induce cancer. The high risk subtypes 

(Table 1) can cause cancers of the uterine cervix, anus, vagina, vulva, penis, and head and 

neck [4].

The viral proteins encoded by the HPV genome (Fig. 1) regulate the viral life cycle [5]. The 

viral capsid proteins L1 and L2 play no known role in carcinogenesis but are the 

immunologic targets of current HPV vaccines such as Gardasil or Cervarix; in the tumor 

cells of many HPV-associated cancers expression of these proteins is lost, thus limiting the 

value of these vaccines for cancer treatment [6]. Viral genome replication is controlled by 

the early genes E1 and E2 which also regulate the transcription of other viral genes [5]. A 

splice variant of the E1^E4 mRNA transcript encodes the E4 protein which facilitates viral 

particle release and may play a role in G2 arrest [7]. Most important to the clinical 

oncologist, three HPV oncogenes, E5, E6, and E7 drive unrestrained cellular proliferation to 

as a required feature of viral amplification but also play key roles in carcinogenesis by 

promoting proliferation and inducing genomic instability [8–10].

The E7 protein enhances proliferation of HPV-infected cells by targeting members of the 

pocket protein family for degradation, most notably retinoblastoma 1 (Rb) [9, 11]. Rb plays 

an important role in preventing excessive cell growth by inhibiting cell cycle progression 

[12]. A higher avidity interaction between high-risk E7 and Rb appears to promote Rb’s 

degradation in the more oncogenic HPV subtypes [9]. Acting alone, E7-driven proliferation 

can result in a p53-dependent anti-proliferative response. This function is countered by HPV 

E6 mediated degradation of p53 via activation of the ubiquitin ligase E6AP [8, 13]. E6 and 

E7 act in concert to inhibit apoptosis, promote unrestrained cell proliferation, and play key 

roles in the promotion of genomic instability [2, 8, 14, 15], all critical factors in HPV-

mediated carcinogenesis. E6 and E7 cooperate to promote chromosomal segregation errors 

and aneuploidy [15] while E7 induces centrosome synthesis via CDK2 activity [16]. Beyond 

these historically well-described functions, it is now clear that both E6 and E7 interact with 

a multitude of additional cellular proteins that may play additional roles in carcinogenesis 

[17, 18]. Finally, while much less is known about its function, E5 can cooperate with E6 and 

E7 and plays a minor role in transformation [10].

HPV AS AN INDICATOR OF TREATMENT RESPONSE

As cervical cancer is overwhelmingly associated with HPV positivity, it is difficult to assess 

the role of the viral oncoproteins in contrast to non-viral associated malignancies in that 
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setting. The mixed etiology of head and neck cancer (HNC), however, provides an 

opportunity to study the influence of HPV on clinical outcomes. HPV-status is now a well-

accepted prognostic biomarker in HNC and appears to have similar value in anal cancer 

[19–22]. Two recent meta-analyses by O’Rorke and Petrelli both confirm a remarkable 

survival advantage for patients with HPV-positive HNC as compared to those with HPV-

negative disease (HR 0.46; 95% CI, 0.37–0.57 and HR = 0.33; 95% CI, 0.27–0.40, 

respectively) [23, 24]. Tobacco abuse appears to be a modifying factor as patients with 

HPV-positive HNC and significant tobacco abuse histories have outcomes intermediate to 

those in HPV-positive non-smokers or traditional HPV-negative (i.e. tobacco and/or alcohol 

associated) HNCs [25–28]. Due to these differences, clinical trials in HNC currently stratify 

patients on the basis of HPV status (including tobacco use) or are designed specifically for 

HPV-positive or HPV-negative patients. Ongoing efforts in HNC are focused on decreasing 

the intensity of therapy while maintaining excellent cure rates (see [29]) and may provide 

important insights that can be later applied to other HPV-associated malignancies.

HPV and RADIATION SENSITIVITY

Since being first postulated [30], evidence has grown that enhanced sensitivity to radiation 

in HPV-positive HNC is an important contributor to the improved prognosis of these 

patients [31]. A number of both epidemiological and mechanistic hypotheses have been 

proposed to explain the improved outcomes consistently seen in HPV-positive HNC 

patients. One of the simplest is that patients with HPV-positive HNC are typically younger 

and healthier than those with HPV-negative disease [25, 32, 33]. This makes them better 

able to tolerate therapy and less likely to die from comorbid illnesses. While this may be 

true, even within well-matched cohorts of patients (i.e. similar age, performance status, and 

disease stage), those with HPV-positive cancers have significantly improved outcomes 

compared to those with HPV-negative disease.

Over the last few years, we and others have demonstrated that both HPV-16 positive HNC 

cell lines [34–37] and oral epithelial cells engineered to express the HPV-16 E6 oncoprotein 

[34, 38], have greater intrinsic sensitivity to radiation (i.e. lower survival fractions over a 

range of radiation doses) than HPV-negative cells. While to date only a limited number of 

trials have reported outcomes comparing HPV+ and HPV− patients treated with radiation 

monotherapy, in these reports, tumor HPV status was highly prognostic for improved local 

control and overall survival [39, 40]. This result is consistent with increased intrinsic 

sensitivity to radiation demonstrated in the lab in cell line and mouse studies. Several 

complementary mechanisms appear to be at work to explain these profound differences. 

Following radiation, residual wild-type p53 not yet degraded by HPV-E6 activates a 

canonical p53 transcriptional program resulting in cell cycle arrest and apoptosis [34, 36]. 

HPV-positive tumors also exhibit impaired double-strand break repair capacity that may 

influence radiosensitivity [35, 41] that may be related to p16-mediated impairment of 

homologous recombination-mediated DNA repair [37]. A finding common to several of 

these studies is a profound and sustained G2 arrest induced by radiation in HPV positive 

tumors [34–37].
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A number of other factors also likely play a role in the improved outcomes seen in patients 

with HPV-positive HNC. For example, in the DAHANCA 5 trial, HPV-negative tumors 

demonstrated a larger benefit to hypoxic modification than HPV-positive tumors, a finding 

that correlated with an increase in hypoxia markers in HPV-negative tumors [42, 43]. This 

data led to the hypothesis that increased hypoxia in HPV-negative tumors may be partially 

responsible for the differential in response to radiation compared to less hypoxic HPV-

positive tumors. The hypoxia/HPV link remains unsettled, however, as contrasting data from 

several other groups has failed to demonstrate any correlation between imaging markers of 

hypoxia and HPV status [44, 45]. It may be that the increased radiation sensitivity seen in 

HPV-positive HNCs compensates for the presence of hypoxia in these tumors at current 

radiation doses, but that as radiation doses are decreased the impact of hypoxia will again 

become evident. In fact, work by Sorensen et al has demonstrated that HPV-positive cells 

demonstrate a similar oxygen enhancement ratio as HPV-negative cells [46].

An increasing body of evidence suggests that HPV-positive tumors may provide a more 

immunologically rich environment that may also affect tumor control. Tumor infiltrating T 

cells are increased in HPV-positive tumors [47–50], and are shifted from naïve to memory 

or effector T cells with greater frequency compared to patients with HPV-negative tumors 

[51]. Similarly, programmed death-1 (PD-1) positive tumor infiltrating lymphocytes are 

more common in HPV-positive tumors [52]. Several groups have also reported the detection 

of circulating anti-HPV16 antibodies and circulating and tumor-infiltrating HPV-specific T 

cells in patients with HPV-positive HNC, a finding that is correlated with improved clinical 

outcome [53–55]. In fact, Ward and colleagues found that patients with HPV-positive 

tumors with high levels of tumor infiltrating lymphocytes have increased survival compared 

to patients with HPV-positive tumors with low levels of tumor infiltrating lymphocytes (3-yr 

DSS 96% vs. 59%), a group which had a similar prognosis as patients with HPV-negative 

tumors [56].

Potentially necessary for the development of cancer in this more robust immune 

environment, HPV-positive tumors have also been reported to employ several immune 

evasion strategies. HPV-positive cancers exhibit impaired immune effector recognition and 

block immune-mediated cell death via reduction of HLA and FasL expression, promote an 

immune suppressive cytokine milieu, and recruit immunosuppressive regulatory T cells, 

myeloid-derived suppressor cells, and tumor-associated macrophages [49, 53, 57–59].

It has been hypothesized that radiation disrupts this tolerogenic phenotype, essentially 

“reawakening” the immune response against HPV-positive tumors. Radiation increases the 

percentage of activated circulating CD8+ and CD4+ lymphocytes, a finding that correlates 

with improved survival [60, 61]. Further data supporting an important role for the immune 

system in HPV-positive cancers comes from in vivo studies by Spanos and colleagues who 

demonstrated that control of HPV-positive mouse tumors with radiation was significantly 

better than that of HPV-negative tumors, but only in the presence of an intact immune 

system in the animals [62]. In addition, low-dose radiation therapy has been found to greatly 

enhance the antitumor response to DNA vaccination in E7-expressing tumor-bearing mice, 

with increased frequency of peripheral and infiltrating E7-specific CD8+ T cells, enhanced 

tumor cell susceptibility to CTL-mediated lysis, and improved survival of mice treated with 
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vaccination and radiation therapy compared to either therapy alone [63]. Several clinical 

studies are poised to provide much needed evidence regarding the role of the immune 

response in HPV-positive cancers and how radiation may promote immune-mediated tumor 

clearance.

CONCLUSIONS

HPV has been a growing cause of HNC. While current treatment for patients with HPV-

associated disease does not differ from those with HPV-negative cancers, it is likely that 

ongoing clinical trials will soon provide data to guide the personalization of treatment based 

on HPV-status of their cancers. A growing body of basic and translational studies describe a 

mechanistic basis for the improved outcomes seen in HPV-positive patients and point to key 

roles for microenvironmental differences in therapeutic response. Additional details that 

emerge over the coming years will further define the molecular underpinnings of HPV-

mediated altered radiation sensitivity and how HPV effects on the tumor microenvironment 

can be used to personalize therapy for these patients. Better understanding of these 

mechanisms will ultimately enhance the efficacy of radiation in the treatment of these 

cancers.
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Figure 1. HPV-16
HPV-16 is a 7905 bp genome that encodes eight proteins and at least 11 mRNA transcripts. 

E6 and E7 are the primary HPV oncogenes and play critical roles in oncogenesis via their 

interactions with the cellular proteins p53 and RB, among others.
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Table 1

Association of HPV subtypes with mucosal or skin carcinomas.

Category HPV types

Mucosal

Group 1: Carcinogenic to humans 16, 18, 31, 33, 45, 51, 52

Group 2A: Probably carcinogenic to humans 68

Group 2B: Possiblity carcinogenic to humans 26, 53, 64, 65, 66, 67, 69, 70, 73, 82

Carcinomas of Skin 5, 8; less commonly 14, 17, 20, 47
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