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Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support
vector machine (SVM) is a kernel-basedmachine learningmethod that is widely used in QSAR study. For a successful SVMmodel,
the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most
studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and
implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it
to the BBB penetration prediction.The results show that our GA/SVMmodel is more accurate than other currently available log BB
models.Therefore, to optimize both SVMparameters and feature subset simultaneously with genetic algorithm is a better approach
than other methods that treat the two problems separately. Analysis of our log BBmodel suggests that carboxylic acid group, polar
surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among
those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively
correlated with BBB penetration.

1. Introduction

The blood-brain barrier (BBB) plays important roles in
separating the central nervous system (CNS) from circulating
blood and maintaining brain homeostasis. BBB penetration,
which may be desired or not depending on the therapeutic
target, is a critical character in chemical toxicological studies
and in drug design. Compounds can cross the BBB by passive
diffusion or by means of a variety of catalyzed transport
systems that can carry compounds into the brain (carrier-
mediated transport, receptor-mediated transcytosis) or out
of the brain (active efflux). Various parameters are used
for predicting BBB penetration such as CNS+/−, log𝐵𝐵,
and log𝑃𝑆. CNS+/− is a qualitative property denoting the
compound’s activity (CNS+) or inactivity (CNS−) against
a CNS target with its BBB penetration [1]. The problem

with CNS+/− datasets is that CNS activity implies BBB
permeation, while CNS inactivity might be due to factors
other than nonpermeation, such as the fact that compounds
might be rapidly metabolized or effluxed from the brain. Log
𝐵𝐵, which is defined as logarithmof Brain/Blood partitioning
ratio at steady state [2], is by far the most widely used
parameter for BBB penetration.However, this parametermay
also result in misleading conclusions because it ignores the
main parts of process of permeability [3]. Log PS, which is
defined as the logarithmof permeability-surface area product
reflecting the rate of brain permeation, is superior to butmore
difficult to measure compared to log𝐵𝐵 [4]. In vivo brain
uptake methods may be the most reliable evaluation of BBB
penetration. However, the low-throughput, expensive, and
labor-intensive characteristics make these methods inappli-
cable in early drug discovery stages. For these reasons, in vitro
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and in silicomethods have been introduced. As there is no one
in vitro model which can mimic all properties of the in vivo
BBB, developing more reliable models remains challenging
[4]. So far, a great number of in silico BBB models have been
developed and thoroughly reviewed [2, 3, 5–9]. Because of the
high complex nature of the BBB, most computational models
only account for passive diffusion.

Initial studies were focusing on making correlation
between BBB permeability of small set of compounds and
simple descriptors and then revealed “rules of thumb.”These
rough models reflect some important relationships between
BBB penetration and properties of compounds but have
a problem of oversimplification [10, 11]. As the accumula-
tion of new data, various more sophisticated models were
reported to predict BBB permeability. Classification models
[12] which were used widely explored for distinguishing
between the molecules capable of being across the BBB and
those restricted to periphery. These models often developed
by using the same dataset of about 1500 drugs compiled by
Adenot and Lahana [13], which is the largest single homoge-
neous up-to-date source of qualitative data published. Some
others [12, 14] distinguishmolecules based on a certain log𝐵𝐵
threshold. However, themain problem is the threshold which
is subjectively determined and not unified. Most quantitative
models were developed by buildingQSARmodels [10, 15–18].
Since different datasets and validation methods were used,
it is difficult to compare the performance of these models
[19]. Recently, Carpenter et al. [20] developed a new model
predicting the BBB penetration using molecular dynamic
simulations and received good results, providing new thread
of BBB permeability prediction. Here we focused on log𝐵𝐵
models of BBB penetration by passive diffusion.

Various data mining methods have been employed in
BBB penetration models, such as multiple linear regression
[21, 22], partial least squares (PLS) regression [13, 23],
recursive partitioning [23, 24], neural network [25–27], and
support vector machine (SVM) [28–30]. SVM, which was
originally developed by Vapnik and coworkers [31], has been
extensively used and consistently achieves similar or superior
performance compared to other machine learning methods
[32]. Its main idea is to map data points to a high dimension
space with a kernel function, and then these data points can
be separated by a hyper plane.

For a successful SVM model, kernel parameters of SVM
and feature subset selection are the two most important
factors affecting the prediction accuracy. Various strate-
gies have been adopted for the two problems. Grid-based
algorithm is one of the most straightforward strategies for
parameter optimization, which discretizes the parameters
and then systematically searches every grid point to find
a best combination of the parameters [33]. However, its
use is limited due to the computational complexity and
time-consumption. Gradient-basedmethods [34, 35] are also
widely used, which require the kernel function and the
scoring function differentiable to assess the performance of
the parameters. Evolutionarymethod [36] has also been used
and achieved promising results. As for the feature selection,
genetic algorithms- (GA-) based [37–41], 𝐹-score based
feature recursive elimination [42], and many other methods

[43–47] have been employed.Most of thesemethods focus on
feature selection or parameters optimization separately [45].
However, the choice of feature subset influences the appropri-
ate kernel parameters and vice versa [48]. Hence the proper
way seems to address the two problems simultaneously. GA
[41], immune clonal algorithm (ICA) [49], and Bayesian
approach [50] have been recently used for simultaneously
feature selection and parameters optimization for SVM on
general classification problems. In our study, GA was used
to do parameter optimization and feature subset selection
simultaneously, and an SVM regressionmodel was developed
for the blood-brain barrier penetration prediction.

2. Methods

The workflow used in this study for BBB penetration predic-
tion is illustrated in Figure 1.

2.1. Dataset and Molecular Descriptors. The log𝐵𝐵 dataset
used in this study was compiled by Abraham et al. [51],
which was a combination of both in vivo and in vitro data,
including 302 substances (328 data points). Abraham et al.
applied linear free energy relationship (LFER) to the dataset
and obtained good correlation between log𝐵𝐵 values and
LFERdescriptors plus two indicator variables [51]. CODESSA
[52] could not calculate descriptors for the first 5 gases ([Ar],
[Kr], [Ne], [Rn], and [Xe]) of the original dataset, and they
were excluded from the dataset. The final dataset contained
297 compounds (323 data points). The indicator variables
of 𝐼V and AbsCarboxy used in Abraham’s study [51] were
retained in this study. 𝐼V was defined as 𝐼V = 1 for the in
vitro data and 𝐼V = 0 for the in vivo data. AbsCarboxy was an
indicator for carboxylic acid (AbsCarboxy = 1 for carboxylic
acid, otherwise AbsCarboxy = 0).

The initial structures in SMILES format were imported
to Marvin [53] and exported in MDL MOL format. AM1
method in AMPAC [54] was used for optimization plus
frequencies and thermodynamic properties calculation. The
generated output files were used by CODESSA to calculate a
large number of constitutional, topological, geometrical, elec-
trostatic, quantum-chemical, and thermodynamic descrip-
tors.Marvin was also used to calculate some physicochemical
properties of the compound, including log𝑃, log𝐷, polar
surface area (PSA), polarizability, and refractivity. All these
descriptors and properties were used as candidate features in
later modeling.

Features with missing values or having no change across
the data set were removed. If the correlation coefficient of
two features is higher than a specified cutoff value (0.999999
used here), then one of them is randomly chosen and
removed.The cutoff value used here is very high because very
high variable correlation does not mean absence of variable
complementarity [55]. A total number of 326 descriptorswere
left for further analysis. However, many highly correlated
features have very similar physicochemical meanings. In our
final analysis, similar features were put together by their
physicochemical meaning, which we hope could unveil some
underlying molecular properties that determine the BBB
penetration.
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Figure 1: Workflow of GA/SVMmodel for BBB penetration prediction.

The dataset was then split into training set and test
set using the Kennard-Stone method [56], which selects a
subset of representative data points uniformly distributed in
the sample space [57]. At start, the Kennard-Stone method
chooses the data point that is the closest to the center of the
dataset measured by Euclidean distance. After that, from all
remaining data points, the data point that is the furthest from
those already selected is added to the training set.This process
continues until the size of the training set reaches specified
size. 260 data pointswere selected as training set and the other
63 were used as test set.

2.2. SVM Regression. Details about SVM regression can be
found in literatures [58–60]. As in other multivariate statis-
tical models, the performance of SVM regression depends
on the combination of several parameters. In general, 𝐶 is a
regularization parameter that controls the tradeoff between
training error and model complexity. If 𝐶 is too large, the
model will have a high penalty for nonseparable points and
may store too many support vectors and get overfitting. If it
is too small, the model may have underfitting. Parameter 𝜀
controls the width of the 𝜀-insensitive zone, used to fit the
training data. The value of 𝜀 can affect the number of the
support vectors used to construct the regression function.
The bigger 𝜀 is, the fewer support vectors are selected. On
the other hand, bigger 𝜀-values result in more flat estimates.
Hence, both 𝐶 and 𝜀-values affect model complexity (but
in a different way). The kernel type is another important
parameter. In SVM regression, radial basis function (RBF)
(1) was the most commonly used kernel function for its
better generalization ability, less number of parameters, and
less numerical difficulties [33] and was used in this study.
Parameter 𝛾 in RBF controls the amplitude of the RBF kernel
and therefore controls the generalization ability of SVM
regression.The LIBSVM package (version 2.81) [61] was used
in this study for SVM regression calculation, taking the form
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2.3. Genetic Algorithms. Genetic algorithms (GA) [41] are
stochastic optimization and search method that mimics
biological evolution as a problem-solving strategy. They are
very flexible and attractive for optimization problems.

Given a specific problem to solve, the input to the GA is
a set of potential solutions to that problem, encoded in some
fashion, and a fitness function that allows each candidate to
be quantitatively evaluated (Figure 2). Selection, mating, and
mutation justmimic the natural process. For each generation,
individuals are selected for reproduction according to their
fitness values. Favorable individuals have a better chance to
be selected for reproduction and the offspring have chance
to mutate to keep diversity, while the unfavorable individuals
are less likely to survive. After each generation, whether the
evolution is converged or the termination criteria are met is
checked; if yes, job is done; if not, the evolution goes into
next generation. After many generations, good individuals
will dominate the population, and we will get solutions that
are good enough for our problem.

First, in order to solve a problemwithGA, each individual
in the population should be represented by a chromosome.
In our study, since the parameter optimization and feature
subset selection should be addressed simultaneously, the
chromosome is a combination of parameter genes and feature
gene (Figure 3), where 𝑓

𝑛
is an integer in the range of [1,𝑁]

and 𝑁 is the number of candidate features for model con-
struction. A chromosome represents an individual in genetic
algorithms and parameters contained in chromosome could
be used for SVM modeling. Left part of the chromosome is
the parameter genes, of which 𝐶, 𝛾, and 𝜀 all are float genes.
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Figure 3: Encoding of the chromosome.

The feature gene is an array of integers, and each integer
represents a feature.

Fitness function can be seen as a ruler, which was used
to quantitatively evaluate and compare each candidate. In
our study, the mean squared error (MSE) of 10-fold cross
validation (CV) for SVM was used as fitness function, and
smaller fitness value indicated better individual. Given a
training set containing 𝑛 compounds, (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), 𝑥𝑖
is descriptor vector of compound 𝑖 and 𝑥
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where 𝑛 is the number of all data points, ̂𝑋
𝑖
is the predicted

value, and𝑋
𝑖
is the experiment value.

Tournament selection was used as the selection strategy
in GA, which selected the best 1 from 3 randomly chosen
candidates. The advantage of tournament selection over
roulette wheel selection is that tournament selection does not
need to sort the whole population by fitness value.

Since there are different types of genes in a chromosome,
different mating strategies were used for different types of
genes (Figure 4):

𝑉new = 𝛽𝑝1 + (1−𝛽) 𝑝2, (4)

where 𝛽 uniformly distributed random number on the
interval [−0.25, 1.25], 𝑝

𝑛
is the value of parent gene, and𝑉new

is the value of child gene.
For float genes, the new value is a linear combination of

the parents (4). For feature gene, uniform crossover is used:
each element of the child gene is selected randomly from the
corresponding items of parents.



BioMed Research International 5

CParent A

CParent B

C

C

Child A

Child B

Uniform crossover

++ + +

++ + +

f1 f2 f3 f4 fn𝛾 𝜀 · · ·

f1 f2 f3 f4 fn𝛾 𝜀 · · ·

f1 f2 f3 f4 fn𝛾 𝜀 · · ·

f1 f2 f3 f4 fn𝛾 𝜀 · · ·

Vnew = 𝛽p1 + (1 − 𝛽)p2

Figure 4: Mating strategy of GA.

Table 1: Performance comparison of models with different number of features.

Number of features Training (CV = 10) Prediction/𝑟2 Parameters of SVM
MSE 𝑟

2 Test set Training set 𝐶 𝛾 𝜀

4 0.1197 0.674 0.722 0.740 38.8833 0.6081 0.1491
5 0.1042 0.715 0.770 0.805 16.3419 0.7973 0.2743
6 0.0945 0.744 0.840 0.829 13.3573 0.7158 0.1513
7 0.0959 0.74 0.821 0.843 34.3067 0.5218 0.1595
8 0.0883 0.761 0.834 0.883 60.9596 0.5871 0.2357
9 0.0815 0.777 0.847 0.864 3.7770 0.8764 0.1663
10 0.0823 0.776 0.858 0.903 15.2236 0.6247 0.1434
11 0.0714 0.804 0.861 0.891 5.6937 0.6531 0.1573
12 0.0780 0.787 0.864 0.905 7.2787 0.7428 0.1515
13 0.0817 0.778 0.862 0.922 4.1957 0.7791 0.1574
14 0.0812 0.778 0.882 0.917 14.8391 0.5002 0.2054
15 0.0734 0.799 0.870 0.919 4.9915 0.5231 0.1077

Again, different mutation strategies were used for differ-
ent types of genes. For float genes, the values were randomly
mutated upward or downward. The new value was given by

𝑉new =
{

{

{

𝑉 − 𝛽 (𝑉 − 𝑉min) if random () < 0.5

𝑉 + 𝛽 (𝑉max − 𝑉) if random () ≥ 0.5,
(5)

where 𝛽 was a random number distributed in [0, 1], 𝑉 and
𝑉new are values before and after mutation, and 𝑉min and 𝑉max
are the minimum and maximum values allowed for a gene.

For feature gene, several points were first randomly
chosen for mutation, and then a random number in [1,𝑁]
(𝑁 is the total number of features) was chosen as new feature
while avoiding duplicate features. The GA was terminated
when the evolution reached 1000 generations. In our pilot
study (data not shown), 1000 generations were enough for the
GA to converge.The other parameters for GAwere as follows:
population size 100, cross rate 0.8, mutation rate 0.1, elite size
2, and number of new individuals in each generation 8.

3. Results and Discussion

3.1. GA/SVM Performance. GA was run with different num-
ber of features from 4 to 15. For each number of features,
GA was run 50 times, and the best model was chosen for
further analysis. From Table 1 and Figure 5, the overall trend
of the GA showed the following: (1) the accuracy of themodel
increased with the number of the features; (2) the accuracy
of the model on training set was better than the accuracy on
the test set, which was then better than the accuracy of cross
validation.

As the feature number increases, the complexity also
increases, which will often increase the probability of overfit-
ting. A complex model is also difficult to interpret and apply
in practical use, so generally speaking, we need to find a
balance between the accuracy and complexity of themodel. It
is observed that (Table 1, Figure 5(a)) the prediction accuracy
(𝑟2 = 0.744) of cross validation (𝑛 = 10) of the 6-feature
model was similar to that of the Abraham’s model (𝑟2 =
0.75) which used all 328 data points (Table 2). As the number
of features increased from 6 to 15, the prediction accuracy
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Figure 5: (a) Performance comparison of models with different number of features. (b) Evolution of the best 6-feature model.

Table 2: Comparison of most relevant QSAR studies on BBB permeability.

Descriptors 𝑁train 𝑁test Methods 𝑟train
2 Predictive accuracy

on test set Reference

Δlop𝑃, log𝑃,and log𝑃cyc 20 — Linear
Regression 0.69 — Young et al. [77]

Excess molar refraction,
dipolarity/polarisability, H-bond acidity,
and basicity
Solute McGowan volume

148 30 LFER 0.75 𝑟test
2
= 0.73 Platts et al. [66]

Δ𝐺

∘

𝑊
55 — Linear

Regression 0.82 — Lombardo et al. [78]

PSA, the octanol/water partition
coefficient, and the conformational
flexibility

56 7 MLR 0.85 𝑟test
2
= 0.80 Iyer et al. [79]

CODESSA/DRAGON (482) 200 110 PLS
SVM

0.83
0.97

𝑟test
2
= 0.81

𝑟test
2
= 0.96

Golmohammadi et al. [62]

Molecular (CODESSA-PRO) descriptors
(5) 113 19 MLR 0.78 𝑟test

2
= 0.77 Katritzky et al. [15]

Molecular fragment (ISIDA) descriptors 112 19 MLR 0.90 𝑟test
2
= 0.83 Katritzky et al. [15]

PSA, log𝑃, the number of H-bond
acceptors, E-state, and VSA 144 10

Combinatorial
QSAR (KNN

SVM)
0.91 𝑟test

2
= 0.8 Zhang et al. [17]

Abraham solute descriptors and
indicators 328 — LFER 0.75 — Abraham et al. [51]

Abraham solute descriptors and
indicators 164 164 LFER 0.71 𝑠 = 0.25, MAE = 0.20 Abraham et al. [51]

CODESSA/Marvin/indicator (6) 260 63 GA based SVM 0.83 𝑟test
2 = 0.84, RMSE =

0.23

This research, GA/SVM,
final model

𝐶 = 13.3573, 𝛾 = 0.715761, 𝜀
= 0.151289

CODESSA/Marvin/indicator (236) 260 63 GA based SVM 0.97 𝑟test
2 = 0.55, RMSE =

0.31

This research, Grid/SVM
𝐶 = 8.0, 𝛾 = 0.015625, 𝜀 =

0.0625

CODESSA/Marvin/indicator (6) 260 63 GA based SVM 0.86 𝑟test
2 = 0.58, RMSE =

0.29
This research, Grid/SVM
𝐶 = 8.0, 𝛾 = 1.0, 𝜀 = 0.125
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Figure 6: Prediction accuracy of the final model on training set (a) and test set (b).

on training set increased from 0.829 to 0.919, while the
prediction accuracy on test set only slightly increased from
0.840 to 0.870 accordingly. Take all these into consideration,
the 6-feature model (Table 1, Figure 5(a)) was chosen as our
final model (Figure 6), of which the prediction accuracy on
both test set and training set was similar (𝑟train

2
−𝑟test
2
= 0.11)

and high enough (>0.82).
Figure 5(b) showed the evolution of the prediction per-

formance of the model (MSE and 𝑟test
2). In the first 100

generations, the MSE decreased very fast, followed with a
platform stage from about 100 to 650 generations. Another
decrease occurred at about 650 generations, and then the
evolution became stable at about 850 generations.Themodels
did not improve much in the last 150 generations, which may
imply a convergence.

A tabular presentation of relevant studies regarding the
prediction of the blood-brain distribution is shown inTable 2.
These models were constructed by using different statistical
learning methods, yielding different prediction capability
with 𝑅test

2 ranging from 0.5 to over 0.9. Generally, regression
by SVM appears to be more robust than traditional linear
approaches such as PLS andMLR, with respect to the nonlin-
ear effects induced bymultiple potentially cooperative factors
governing the BBB permeability. For example, the SVM
model by Golmohammadi et al. [62] yielded the highest𝑅test

2

on a test set containing 110 molecules. However, it should
be noted that direct comparison with results from previous
studies is usually inappropriate because of differences in their
datasets. In this study, a combination of both in vivo and
in vitro data compiled by Abraham et al. [51] was used for
developing BBB prediction model, which is of high data
quality and covers large chemical diversity space. In addition
to the data source, kernel parameter optimization and feature
selection are two crucial factors influencing the prediction
accuracy of SVM models. To reduce the computational cost,
most of the existing models addressed the feature selection
and parameter optimization procedures separately. In this
study, we used a GA scheme to perform the kernel parameter
optimization and feature selection simultaneously, which is
more efficient at searching the optimal feature subset space.

Abraham’s model [51] is the best model that is currently
publicly available. A comparison of our models with Abra-
ham’s models was shown in Table 2. In Table 2, the last 3
rows are models in our study. The same dataset was used in
Abraham’s research and this study, but the data set was split
into different training set and test set (our model: train/test =
260/63; Abraham’smodel: training/test = 164/164). 7 variables
were used in Abraham’s model, compared to 6 in our final
model. The 𝑟2 values for training set in Abraham’s 164/164
model and 328/0 model were 0.71 and 0.75, respectively,
compared with 0.83 for our model. It has to be noted that the
size of our training set (260) is bigger than Abraham’s (164).

Our model was also compared with grid method imple-
mented with Python toolkit (grid.py) shipped with libsvm
[61] for parameter optimization. First, since grid method
cannot be used to select feature subset, all 326 features were
used to construct a BBB prediction model. The prediction
accuracy of the training set was very high (𝑟train

2
= 0.97)

but that of the test set was disappointing (𝑟test
2
= 0.55). Then

we used the same feature set as our final model (6 features).
The result was slightly better, but still too bad for test set
prediction (𝑟train

2
= 0.86, 𝑟test

2
= 0.58).

So compared with the grid-based method, our GA-based
method could get better accuracy with fewer features, which
suggested that GA could get much better combination of
parameters and feature subset. This was also observed in
other’s study [48].

3.2. Feature Analysis. An examination of the descriptors used
in the model could provide an insight into the molecular
properties that are most relevant to BBB penetration. Table 3
showed the features used in the final 6-feature model and
their meanings. In order to explore the relative importance
and the underlying molecular properties of the descriptors,
the most frequently used features in all 50 6-feature models
were analyzed. Table 4 showed the top 10 most frequently
used features. Interestingly, AbsCarboxy, an indicator of the
existence of carboxylic acidwas themost significant property.
Some features with similar meaning were also found to occur
in the models, such as PSA related features (M PSA 7.4,
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Table 3: Features used in the final model.

Name Meaning
M log𝑃 log𝑃 (Marvin)
HA dependent HDSA-2 [Zefirov’s PC] H-bond donor surface area related (CODESSA)
M PSA 7.4 PSA at pH 7.4 (Marvin)
AbsCarboxy Carboxylic acid indicator (Abraham)
HA dependent HDCA-2/SQRT(TMSA) [Zefirov’s PC] H-bond donor charged area related (CODESSA)
Average Complementary Information content (order 0) Topology descriptor (CODESSA)

Table 4: The most frequently used features for all 6-feature modelsa.

Number Feature name Occurrence
(50 models) Meaning

11 AbsCarboxy 36 Indicator for carboxylic acid†

268
ESP-
FHASA Fractional HASA (HASA/TMSA) Quantum-
Chemical PC

14 H-acceptor surface area/total molecular
surface area#

101 Topographic electronic index (all bonds) Zefirov’s PC 12 Topological electronic index for all
bonded pairs of atomsb‡

8 M PSA 7.4 11 PSA at pH 7.4c§

267 ESP-HASA H-acceptors surface area Quantum-
Chemical PC 10 H-acceptor surface area#

5 delta log𝐷 9 log𝐷 (pH 6.5) − log𝐷 (pH 7.4)d,e∧

7 M PSA 7.0 9 PSA at pH 7.0§

138 HA dependent HDCA-2 [Zefirov’s PC] 9 H-donors charged surface area#

6 M PSA 6.5 8 PSA at pH 6.5§

1 M log𝑃 7 log𝑃∧
aRows with the same symbol could be categorized into the same group.
bTopological electronic index is a feature to characterize the distribution of molecular charge: 𝑇 = ∑𝑁𝐵

(𝑖<𝑗)
(|𝑞𝑖 − 𝑞𝑗|/𝑟

2
𝑖𝑗), where 𝑞𝑖 is net charge on 𝑖th atom and

𝑟𝑖𝑗 is the distance between two bonded atoms.
c7.4 is the pH in blood.
d6.5 is the pH in intestine.
e
𝐷 is the ratio of the sum of the concentrations of all species of a compound in octanol to the sum of the concentrations of all species of the compound in
water. For neutral compounds, log𝐷 is equal to log𝑃.

M PSA 7.0, andM PSA 6.5), andH-bond related descriptors
(number 267, 268, and 138). So we decided to put similar
descriptors into the same group (Figure 7) to find the under-
lying properties affecting BBB penetration.

According to the associated molecular properties of
the features, those frequently used features are catego-
rized into 5 groups: AbsCarboxy (indicator of carboxylic
acid), H-bonding (H-bonding ability, including H-bond
donor/acceptor related features), PSA (molecular polar sur-
face area related features), lipophilicity (including M log𝑃
and delta log𝐷), and molecular charge (including charge
and topological electronic index related features).

The following is observed:

(1) Interestingly, AbsCarboxy was also the most signif-
icant feature, which occurred 36 times in total 50
models. This may indicate that the carboxylic acid
group plays an important role in the BBB penetration,
which is consistent with the study of Abraham et al.
[51].
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Figure 7: Top features for all 6-feature models (50 in all).

(2) H-bonding (H-bond donor/acceptor) related surface
area, polar surface area, log𝑃 related features, and
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Table 5: Most frequently used features for all top models (number of features range from 4 to 15)∗.

Number Descriptor name Occurrence
(120 models) Meaning

11 AbsCarboxy 84 Indicator for carboxylic acid†

5 delta log𝐷 35 log𝐷 (pH 6.5) − log𝐷 (pH 7.4)∧

7 M PSA 7.0 32 PSA at pH 7.0§

1 M log𝑃 28 log𝑃∧

138 HA dependent HDCA-2 [Zefirov’s PC] 27 H-donors charged surface area#

268
ESP-
FHASA Fractional HASA (HASA/TMSA) Quantum-
Chemical PC

27 H-acceptor surface area/total molecular
surface area#

6 M PSA 6.5 25 PSA at pH 6.5§

167 PPSA-1 Partial positive surface area [Quantum-
Chemical PC] 25 Partial positive surface area§

101 Topographic electronic index (all bonds) Zefirov’s PC 23 Topological electronic index for all
bonded pairs of atoms‡

8 M PSA 7.4 21 PSA at pH 7.4§
∗Rows with the same symbol could be categorized into the same group.
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Figure 8: The most frequently used features for all top models.

topological electronic index related features are also
significant.

In order to further confirm the previous finding, all top
10 models from features = 4 to 15 were further analyzed,
and the result was almost the same (Table 5, Figure 8). The
top 10 most frequently used feature sets were very similar.
Compared to the 6-feature models, the only difference was
that H-bond related feature number 267 is replaced with PSA
related feature number 167.

Again, the descriptors were analyzed by group. The
composites of the groups were almost the same. Given that
there are 4 descriptors in PSA group, AbsCarboxy was also
the most significant property, followed by PSA, lipophilicity,
and H-bonding having similar occurences, then followed
by molecular charge with relatively low frequencies. The
high consistency suggested that these groups of features had
signficant impact on the BBB penetration ability.

PSA andH-bonding descriptors are highly relevant prop-
erties: PSA is the molecular areas contributed by polar atoms

(nitrogen, sulphur, oxygen, and phosphorus), andmost of the
time these polar atoms can be H-bond acceptor or donor.
If PSA and H-bonding were merged into one group (𝑛 =
157), they will become the most significant property group
of features.

3.3. Properties Relevant to BBB Penetration

3.3.1. Carboxylic Acid Group. It was proposed by Abraham et
al. [51] that carboxylic acid group played an important role in
BBB penetration. While it was commonly believed that the
most important molecular properties related to BBB pene-
tration were H-bonding ability, lipophilicity, and molecular
charge [63, 64]. However, our study confirmed Abraham’s
conclusion and showed that the importance of carboxylic
acid group in BBB penetration could be underestimated.

In the models by Abraham et al. [51], the indicator
variable of carboxylic acid group has the largest negative
coefficient, indicating its importance in BBB penetration,
and is consistent with observations in our model that the
indicator of carboxylic acid group is the most frequently
used descriptor. Zhao et al. [23] tried to classify compounds
into BBB positive or BBB negative groups using H-bonding
related descriptors, and the indicator of carboxylic acid group
was also found to be important in their model. Furthermore,
our results are consistent with the fact that basic molecules
have a better BBB penetration than the acid molecules [10].

The carboxylic acid groupmay affect the BBB penetration
throughmolecular charge interactions since inmost cases the
carboxylic acid group will exist in the ionized form carrying
a negative charge.The carboxylic acid group could also affect
the BBB penetration by formingH-bondwith BBB and hence
weaken the BBB penetration abilities of molecules.

Abraham et al. suggested that the presence of carboxylic
acid group which acted to hinder BBB penetration was
not only simply due to the intrinsic hydrogen bonding and
polarity properties of neutral acids [51]. There were some
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other ways in which the carboxylic acid groups could affect
the BBB penetration, such as acidic drugs which could
bind to albumin [65], the ionization of the carboxylic acid
groups which could increase the excess molar refraction and
hydrogen bonding basicity, and finally the carboxylic acid
groups which may be removed from brain by some efflux
mechanism [66].

3.3.2. Polar Surface Area and H-Bonding Ability. As pointed
out in our previous analysis, PSA and H-bonding ability
are actually two highly correlated properties. If these two
groups are merged, they will be the most significant group
of properties, even more significant than the carboxylic acid
indicator (Figure 8). Norinder and Haeberlein [6] concluded
that hydrogen bonding term is a cornerstone in BBB penetra-
tion prediction. In Zhao et al.’s study [23], PSA, AbsCarboxy,
number of H-bonding donors, and positively charged form
fraction at pH 7.4 were all treated as H-bonding descriptors
and were found to be important in the final model.

Furthermore, almost all published models make use of
molecular polar and/orH-bonding ability related descriptors,
such as PSA [23, 67, 68], high-charged PSA [22], number of
hydrogen donors and acceptors [23, 69], and hydrogen bond
acidity/basicity [23]. And, in these models, PSA and/or H-
bond ability are all negatively correlated with log𝐵𝐵, which
is in agreement with Abraham et al.’s study [51] in which the
coefficients of the H-bond acidity and H-bond basicity are
both negative.

After review of many previous works, Norinder and
Haeberlein [6] proposed that if the sum of number of
nitrogen and oxygen atoms (N + O) in a molecule was five
or less, it had a high chance of entering the brain. As we all
know, nitrogen and oxygen atoms have great impact on PSA
andH-bonding. Norinder and Haeberlein [6] also concluded
that BBB penetration could be increased by lowering the
overall hydrogen bonding ability of a compound, such as
by encouraging intramolecular hydrogen bonding. After an
analysis of the CNS activity of 125 marketed drugs, van de
Waterbeemd et al. [70] suggested that the upper limit for PSA
in a molecule that is desired to penetrate the brain should
be around 90 Å2, while Kelder et al. [71] analyzed the PSA
distribution of 776 orally administered CNS drugs that have
reached at least phase II studies and suggested that the upper
limit should be 60–70 Å2.

Having in mind that molecules mainly cross the BBB
by passive diffusion, we think it may be because molecules
with strong H-bonding ability have a greater tendency to
formH-bonds with the polar environment (the blood), hence
weakening their ability to cross the BBB by passive diffusion.

3.3.3. Lipophilicity. Lipophilicity is another property widely
recognized as being important in BBB penetration, and most
of the current models utilize features related to lipophilicity
[22, 64, 67, 72]. Lipophilicity was thought to be positively
correlated with log𝐵𝐵; that is, increase the lipophilicity of a
molecule will increase the BBB penetration of the molecule.
Norinder andHaeberlein [6] also proposed that if log𝑃−(N+
O) > 0, then log𝐵𝐵 was positive. Van de Waterbeemd et

al. [70] suggested that the log𝐷 of the molecule should be
in [1, 3] for good BBB penetration. These observations are
consistent with the fact that the lipid bilayer is lipophilic in
nature, and lipophilic molecules could cross the BBB and get
into the brain more easily than hydrophobic molecules.

3.4. Molecular Charge. From the viewpoint of computational
chemistry, the distribution of molecular charge is a very
important property that affects the molecule properties
greatly. It is the uncharged form that can pass the BBB
by passive diffusion. Fischer et al. [73] have shown that
acid molecules with p𝐾a < 4 and basic molecules with
p𝐾a > 10 could not cross the BBB by passive diffusion.
Under physiological conditions (pH = 7.4), acid molecules
with p𝐾a < 4 and basic molecules with p𝐾a > 10 will be
ionized completely and carry net charges. As mentioned in
our previous analysis, the carboxylic acid group may affect
the BBB penetration through molecular charge interactions.
Mahar Doan et al. [74] compared physicochemical properties
of 93 CNS (𝑛 = 48) and non-CNS (𝑛 = 45) drugs and showed
that 0 of 48 CNS drugs have a negative charge and CNS
drugs tend to have less positive charge. These are reasonably
consistent with the study of Abraham et al. [51] in which the
coefficient of the carboxylic acid indicator is negative.

It has to be noted that, all these molecular properties
are not independent, and they are related to each other. For
example, the carboxylic acid group is related to both PSA and
H-bonding ability, for theOatom in the carboxylic acid group
is a polar atom and has a strong ability to form H-bonds;
the carboxylic acid group, which carries charge under most
conditions, is also related to molecular charge. The PSA/H-
bonding ability is also correlated tomolecular charge, because
in many cases atoms could contribute to PSA or form H-
bonds which could probably carry charges. Lipophilicity is
also related to molecular charge.

We can get a conclusion that the most important prop-
erties for a molecule to penetrate BBB are carboxylic acid
group, PSA/H-bonding ability, lipophilicity, and charge. BBB
penetration is positively correlated with the lipophilicity
and negatively correlated with the other three properties. A
comparison of the physicochemical properties of 48 CNS
drugs and 45 non-CNS suggested that compared to non-CNS
drugs, CNS drugs tend to be more lipophilic and more rigid
and have fewer hydrogen-bond donors, fewer charges, and
lower PSA (<80 Å2) [74], which is in reasonable consistency
with our finding except that the molecular flexibility is not
important in our model.

There are some other properties utilized in some existing
models, such as molecular weight, molecular shape, and
molecular flexibility. It is suggested by van de Waterbeemd
et al. [70] that molecular weight should be less than 450 for
good BBB penetration, while Hou and Xu [22] suggested that
the influence of molecular bulkiness would be obvious when
the size of themolecule was larger than a threshold and found
that molecular weight made a negative contribution to the
BBB penetration when the molecular weight is greater 360.
This is not widely observed in other studies. In Zhao et al.’s
study [23], molecular weight was found to be not important
compared to hydrogen bond properties.
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Lobell et al. [68] proposed that spherical shapes have a
small advantage compared with rod-like shapes with regard
to BBB penetration, they attributed this to the membranes
that are largely made from rod-shaped molecules and rod-
like shapemay becomemore easily trappedwithinmembrane
without exiting into the brain compartment. However, in
Rose et al.’s model [75] based on electrotopological state
descriptors showed that BBB penetration increased with less
sketch branching. Crivori et al. [76] tried to correlate descrip-
tors derived from 3D molecular fields and BBB penetration
and concluded that the size and shape descriptors had no
marked impact on BBB penetration.

Iyer et al. [67] found that increasing the solute conforma-
tional flexibility would increase log𝐵𝐵, while in the study of
Mahar Doan et al. [74], CNS drugs tend to be more rigid.
However, the roles of molecular weight, molecular shape,
and molecular flexibility in BBB penetration seem to be still
unclear and not well received. Further studies are still needed.

4. Conclusion

In this study, we have developed a GA/SVM model for
the BBB penetration prediction, which utilized GA to do
kernel parameters optimization and feature selection simul-
taneously for SVM regression. The results showed that our
method could get better performance than addressing the
two problems separately. The same GA/SVM method can be
extended to be used on other QSAR modeling applications.

In addition, the most important properties (carboxylic
acid group, PSA/H-bond ability, lipophilicity, and molecu-
lar charge) governing the BBB penetration were illustrated
through analyzing the SVM model. The carboxylic acid
group and PSA/H-bond ability have the strongest effect. The
existence of carboxylic acid group (AbsCarboxy), PSA/H-
bonding and molecular charge is all negatively correlated
with BBB penetration ability, while the lipophilicity enhances
the BBB penetration ability.

The BBB penetration is a highly complex process and
is a result of many cooperative effects. In order to clarify
the factors that affect the BBB penetration, further efforts
are needed to investigate the mechanistic nature of the BBB,
and, as pointed out by Goodwin and Clark [7], the most
fundamental need is for more high quality data, both in vivo
and in vitro, upon which the next generation of predictive
model can be built.
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[26] A. Guerra, J. A. Páez, and N. E. Campillo, “Artificial neural
networks in ADMET modeling: prediction of blood-brain
barrier permeation,”QSAR&Combinatorial Science, vol. 27, no.
5, pp. 586–594, 2008.

[27] Z. Wang, A. Yan, and Q. Yuan, “Classification of blood-
brain barrier permeation by Kohonen’s self-organizing neural
network (KohNN) and support vector machine (SVM),” QSAR
& Combinatorial Science, vol. 28, no. 9, pp. 989–994, 2009.

[28] A. Yan, H. Liang, Y. Chong, X. Nie, and C. Yu, “In-silico
prediction of blood-brain barrier permeability,” SAR and QSAR
in Environmental Research, vol. 24, no. 1, pp. 61–74, 2013.

[29] J. Shen, F. Cheng, Y. Xu, W. Li, and Y. Tang, “Estimation
of ADME properties with substructure pattern recognition,”
Journal of Chemical Information and Modeling, vol. 50, no. 6,
pp. 1034–1041, 2010.

[30] H. Golmohammadi, Z. Dashtbozorgi, and W. E. Acree Jr.,
“Quantitative structure-activity relationship prediction of
blood-to-brain partitioning behavior using support vector
machine,” European Journal of Pharmaceutical Sciences, vol. 47,
no. 2, pp. 421–429, 2012.

[31] V.N. Vapnik,TheNature of Statistical LearningTheory, Springer,
New York, NY, USA, 1995.

[32] K. Heikamp and J. Bajorath, “Support vector machines for drug
discovery,” Expert Opinion on Drug Discovery, vol. 9, no. 1, pp.
93–104, 2014.

[33] C. W. Hsu, C. C. Chang, and C. J. Lin, A Practical Guide to
Support Vector Classication, National Taiwan University, Taipei,
Taiwan, 2006.

[34] O.Chapelle, V.Vapnik,O. Bousquet, and S.Mukherjee, “Choos-
ing multiple parameters for support vector machines,”Machine
Learning, vol. 46, no. 1–3, pp. 131–159, 2002.

[35] K.-M. Chung, W.-C. Kao, C.-L. Sun, L.-L. Wang, and C.-J. Lin,
“Radius margin bounds for support vector machines with the
RBF kernel,”Neural Computation, vol. 15, no. 11, pp. 2643–2681,
2003.

[36] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple SVM
parameters,”Neurocomputing, vol. 64, no. 1–4, pp. 107–117, 2005.

[37] J. H. Yang and V. Honavar, “Feature subset selection using
genetic algorithm,” IEEE Intelligent Systems & Their Applica-
tions, vol. 13, no. 2, pp. 44–48, 1998.

[38] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and
A.K. Jain, “Dimensionality reduction using genetic algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 4, no. 2,
pp. 164–171, 2000.

[39] S. Salcedo-Sanz, M. Prado-Cumplido, F. Perez-Cruz, and C.
Bousono-Calzon, “Feature selection via genetic optimization,”
in Artificial Neural Networks—Icann 2002, vol. 2415, pp. 547–
552, Springer, 2002.

[40] Z.Q.Wang andD.X. Zhang, “Feature selection in text classifica-
tion via SVM and LSI,” in Advances in Neural Networks—ISNN
2006, vol. 3971 of Lecture Notes in Computer Science, part 1, pp.
1381–1386, Springer, Berlin, Germany, 2006.

[41] M. Fernandez, J. Caballero, L. Fernandez, andA. Sarai, “Genetic
algorithm optimization in drug design QSAR: bayesian-
regularized genetic neural networks (BRGNN) and genetic
algorithm-optimized support vectors machines (GA-SVM),”
Molecular Diversity, vol. 15, no. 1, pp. 269–289, 2011.

[42] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selec-
tion for cancer classification using support vector machines,”
Machine Learning, vol. 46, no. 1–3, pp. 389–422, 2002.

[43] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324,
1997.

[44] K. Z. Mao, “Feature subset selection for support vector
machines through discriminative function pruning analysis,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 34, no. 1, pp. 60–67, 2004.

[45] K.-Q. Shen, C.-J. Ong, X.-P. Li, and E. P. V. Wilder-Smith,
“Feature selection via sensitivity analysis of SVM probabilistic
outputs,”Machine Learning, vol. 70, no. 1, pp. 1–20, 2008.

[46] Y.-W. Chen and C.-J. Lin, “Combining SVMs with various
feature selection strategies,” in Feature Extraction, vol. 207 of



BioMed Research International 13

Studies in Fuzziness and Soft Computing, pp. 315–324, Springer,
Berlin, Germany, 2006.

[47] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, and V. Vapnik,
“Feature selection for SVMs,” inAdvances in Neural Information
Processing Systems 13, pp. 668–674, MIT Press, 2000.

[48] C.-L. Huang and C.-J. Wang, “A GA-based feature selection and
parameters optimizationfor support vector machines,” Expert
Systems with Applications, vol. 31, no. 2, pp. 231–240, 2006.

[49] X. R. Zhang and L. C. Jiao, “Simultaneous feature selection
and parameters optimization for SVM by immune clonal
algorithm,” in Advances in Natural Computation, vol. 3611
of Lecture Notes in Computer Science, pp. 905–912, Springer,
Berlin, Germany, 2005.

[50] C. Gold, A. Holub, and P. Sollich, “Bayesian approach to feature
selection and parameter tuning for support vector machine
classifiers,” Neural Networks, vol. 18, no. 5-6, pp. 693–701, 2005.

[51] M.H.Abraham,A. Ibrahim, Y. Zhao, andW.E.Agree Jr., “A data
base for partition of volatile organic compounds anddrugs from
blood/plasma/serum to brain, and anLFER analysis of the data,”
Journal of Pharmaceutical Sciences, vol. 95, no. 10, pp. 2091–2100,
2006.

[52] A. R. Katritzky, V. S. Lobanov, and M. Karelson, CODESSA:
Reference Manual, University of Florida, 1996.

[53] Marvin 4.0.5, ChemAxon, 2006, http://www.chemaxon.com/.
[54] AMPAC 8, 1992–2004 Semichem, Shawnee, Kan, USA.
[55] I. Guyon and A. Elisseeff, “An introduction to variable and

feature selection,”TheJournal ofMachine LearningResearch, vol.
3, pp. 1157–1182, 2003.

[56] R. W. Kennard and L. A. Stone, “Computer aided design of
experiments,” Technometrics, vol. 11, no. 1, pp. 137–148, 1969.

[57] M.Daszykowski, B.Walczak, andD. L.Massart, “Representative
subset selection,”Analytica Chimica Acta, vol. 468, no. 1, pp. 91–
103, 2002.

[58] R. Collobert and S. Bengio, “SVMTorch: support vector
machines for large-scale regression problems,” Journal of
Machine Learning Research, vol. 1, no. 2, pp. 143–160, 2001.

[59] A. J. Smola and B. Scholkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222,
2004.

[60] R. G. Brereton and G. R. Lloyd, “Support Vector Machines for
classification and regression,” Analyst, vol. 135, no. 2, pp. 230–
267, 2010.

[61] C. C. Chang andC. J. Lin, “LIBSVM: a library for support vector
machines,” 2001.

[62] H. Golmohammadi, Z. Dashtbozorgi, and W. E. Acree Jr.,
“Quantitative structure–activity relationship prediction of
blood-to-brain partitioning behavior using support vector
machine,” European Journal of Pharmaceutical Sciences, vol. 47,
no. 2, pp. 421–429, 2012.

[63] D. E. Clark, “In silico prediction of blood-brain barrier perme-
ation,” Drug Discovery Today, vol. 8, no. 20, pp. 927–933, 2003.

[64] S. Vilar, M. Chakrabarti, and S. Costanzi, “Prediction of
passive blood-brain partitioning: straightforward and effective
classificationmodels based on in silico derived physicochemical
descriptors,” Journal of Molecular Graphics and Modelling, vol.
28, no. 8, pp. 899–903, 2010.

[65] F.Herve, S. Urien, E. Albengres, J.-C.Duche, and J.-P. Tillement,
“Drug binding in plasma. A summary of recent trends in the
study of drug and hormone binding,”Clinical Pharmacokinetics,
vol. 26, no. 1, pp. 44–58, 1994.

[66] J. A. Platts, M. H. Abraham, Y. H. Zhao, A. Hersey, L. Ijaz,
and D. Butina, “Correlation and prediction of a large blood-
brain distribution data set—an LFER study,” European Journal
of Medicinal Chemistry, vol. 36, no. 9, pp. 719–730, 2001.

[67] M. Iyer, R. Mishra, Y. Han, and A. J. Hopfinger, “Predict-
ing blood-brain barrier partitioning of organic molecules
using membrane-interaction QSAR analysis,” Pharmaceutical
Research, vol. 19, no. 11, pp. 1611–1621, 2002.

[68] M. Lobell, L. Molnár, and G. M. Keserü, “Recent advances
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