Skip to main content
. 2015 Oct 4;2015:292683. doi: 10.1155/2015/292683

Table 1.

Performance comparison of models with different number of features.

Number of features Training (CV = 10) Prediction/r 2 Parameters of SVM
MSE r 2 Test set Training set C γ ε
4 0.1197 0.674 0.722 0.740 38.8833 0.6081 0.1491
5 0.1042 0.715 0.770 0.805 16.3419 0.7973 0.2743
6 0.0945 0.744 0.840 0.829 13.3573 0.7158 0.1513
7 0.0959 0.74 0.821 0.843 34.3067 0.5218 0.1595
8 0.0883 0.761 0.834 0.883 60.9596 0.5871 0.2357
9 0.0815 0.777 0.847 0.864 3.7770 0.8764 0.1663
10 0.0823 0.776 0.858 0.903 15.2236 0.6247 0.1434
11 0.0714 0.804 0.861 0.891 5.6937 0.6531 0.1573
12 0.0780 0.787 0.864 0.905 7.2787 0.7428 0.1515
13 0.0817 0.778 0.862 0.922 4.1957 0.7791 0.1574
14 0.0812 0.778 0.882 0.917 14.8391 0.5002 0.2054
15 0.0734 0.799 0.870 0.919 4.9915 0.5231 0.1077