Table 1.
Number of features | Training (CV = 10) | Prediction/r 2 | Parameters of SVM | ||||
---|---|---|---|---|---|---|---|
MSE | r 2 | Test set | Training set | C | γ | ε | |
4 | 0.1197 | 0.674 | 0.722 | 0.740 | 38.8833 | 0.6081 | 0.1491 |
5 | 0.1042 | 0.715 | 0.770 | 0.805 | 16.3419 | 0.7973 | 0.2743 |
6 | 0.0945 | 0.744 | 0.840 | 0.829 | 13.3573 | 0.7158 | 0.1513 |
7 | 0.0959 | 0.74 | 0.821 | 0.843 | 34.3067 | 0.5218 | 0.1595 |
8 | 0.0883 | 0.761 | 0.834 | 0.883 | 60.9596 | 0.5871 | 0.2357 |
9 | 0.0815 | 0.777 | 0.847 | 0.864 | 3.7770 | 0.8764 | 0.1663 |
10 | 0.0823 | 0.776 | 0.858 | 0.903 | 15.2236 | 0.6247 | 0.1434 |
11 | 0.0714 | 0.804 | 0.861 | 0.891 | 5.6937 | 0.6531 | 0.1573 |
12 | 0.0780 | 0.787 | 0.864 | 0.905 | 7.2787 | 0.7428 | 0.1515 |
13 | 0.0817 | 0.778 | 0.862 | 0.922 | 4.1957 | 0.7791 | 0.1574 |
14 | 0.0812 | 0.778 | 0.882 | 0.917 | 14.8391 | 0.5002 | 0.2054 |
15 | 0.0734 | 0.799 | 0.870 | 0.919 | 4.9915 | 0.5231 | 0.1077 |